linux/drivers/media/dvb-frontends/cxd2099.c

705 lines
14 KiB
C
Raw Normal View History

/*
* cxd2099.c: Driver for the Sony CXD2099AR Common Interface Controller
*
* Copyright (C) 2010-2013 Digital Devices GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/io.h>
#include "cxd2099.h"
static int buffermode;
module_param(buffermode, int, 0444);
MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)");
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
struct cxd {
struct dvb_ca_en50221 en;
struct cxd2099_cfg cfg;
struct i2c_client *client;
struct regmap *regmap;
u8 regs[0x23];
u8 lastaddress;
u8 clk_reg_f;
u8 clk_reg_b;
int mode;
int ready;
int dr;
int write_busy;
int slot_stat;
u8 amem[1024];
int amem_read;
int cammode;
struct mutex lock; /* device access lock */
u8 rbuf[1028];
u8 wbuf[1028];
};
static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
{
int status = 0;
if (ci->lastaddress != adr)
status = regmap_write(ci->regmap, 0, adr);
if (!status) {
ci->lastaddress = adr;
while (n) {
int len = n;
if (ci->cfg.max_i2c && len > ci->cfg.max_i2c)
len = ci->cfg.max_i2c;
status = regmap_raw_read(ci->regmap, 1, data, len);
if (status)
return status;
data += len;
n -= len;
}
}
return status;
}
static int read_reg(struct cxd *ci, u8 reg, u8 *val)
{
return read_block(ci, reg, val, 1);
}
static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
{
int status;
u8 addr[2] = {address & 0xff, address >> 8};
status = regmap_raw_write(ci->regmap, 2, addr, 2);
if (!status)
status = regmap_raw_read(ci->regmap, 3, data, n);
return status;
}
static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
{
int status;
u8 addr[2] = {address & 0xff, address >> 8};
status = regmap_raw_write(ci->regmap, 2, addr, 2);
if (!status) {
u8 buf[256];
memcpy(buf, data, n);
status = regmap_raw_write(ci->regmap, 3, buf, n);
}
return status;
}
static int read_io(struct cxd *ci, u16 address, unsigned int *val)
{
int status;
u8 addr[2] = {address & 0xff, address >> 8};
status = regmap_raw_write(ci->regmap, 2, addr, 2);
if (!status)
status = regmap_read(ci->regmap, 3, val);
return status;
}
static int write_io(struct cxd *ci, u16 address, u8 val)
{
int status;
u8 addr[2] = {address & 0xff, address >> 8};
status = regmap_raw_write(ci->regmap, 2, addr, 2);
if (!status)
status = regmap_write(ci->regmap, 3, val);
return status;
}
static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
{
int status = 0;
unsigned int regval;
if (ci->lastaddress != reg)
status = regmap_write(ci->regmap, 0, reg);
if (!status && reg >= 6 && reg <= 8 && mask != 0xff) {
status = regmap_read(ci->regmap, 1, &regval);
ci->regs[reg] = regval;
}
ci->lastaddress = reg;
ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
if (!status)
status = regmap_write(ci->regmap, 1, ci->regs[reg]);
if (reg == 0x20)
ci->regs[reg] &= 0x7f;
return status;
}
static int write_reg(struct cxd *ci, u8 reg, u8 val)
{
return write_regm(ci, reg, val, 0xff);
}
static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
{
int status = 0;
u8 *buf = ci->wbuf;
if (ci->lastaddress != adr)
status = regmap_write(ci->regmap, 0, adr);
if (status)
return status;
ci->lastaddress = adr;
while (n) {
int len = n;
if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c))
len = ci->cfg.max_i2c - 1;
memcpy(buf, data, len);
status = regmap_raw_write(ci->regmap, 1, buf, len);
if (status)
return status;
n -= len;
data += len;
}
return status;
}
static void set_mode(struct cxd *ci, int mode)
{
if (mode == ci->mode)
return;
switch (mode) {
case 0x00: /* IO mem */
write_regm(ci, 0x06, 0x00, 0x07);
break;
case 0x01: /* ATT mem */
write_regm(ci, 0x06, 0x02, 0x07);
break;
default:
break;
}
ci->mode = mode;
}
static void cam_mode(struct cxd *ci, int mode)
{
u8 dummy;
if (mode == ci->cammode)
return;
switch (mode) {
case 0x00:
write_regm(ci, 0x20, 0x80, 0x80);
break;
case 0x01:
if (!ci->en.read_data)
return;
ci->write_busy = 0;
dev_info(&ci->client->dev, "enable cam buffer mode\n");
write_reg(ci, 0x0d, 0x00);
write_reg(ci, 0x0e, 0x01);
write_regm(ci, 0x08, 0x40, 0x40);
read_reg(ci, 0x12, &dummy);
write_regm(ci, 0x08, 0x80, 0x80);
break;
default:
break;
}
ci->cammode = mode;
}
static int init(struct cxd *ci)
{
int status;
mutex_lock(&ci->lock);
ci->mode = -1;
do {
status = write_reg(ci, 0x00, 0x00);
if (status < 0)
break;
status = write_reg(ci, 0x01, 0x00);
if (status < 0)
break;
status = write_reg(ci, 0x02, 0x10);
if (status < 0)
break;
status = write_reg(ci, 0x03, 0x00);
if (status < 0)
break;
status = write_reg(ci, 0x05, 0xFF);
if (status < 0)
break;
status = write_reg(ci, 0x06, 0x1F);
if (status < 0)
break;
status = write_reg(ci, 0x07, 0x1F);
if (status < 0)
break;
status = write_reg(ci, 0x08, 0x28);
if (status < 0)
break;
status = write_reg(ci, 0x14, 0x20);
if (status < 0)
break;
/* TOSTRT = 8, Mode B (gated clock), falling Edge,
* Serial, POL=HIGH, MSB
*/
status = write_reg(ci, 0x0A, 0xA7);
if (status < 0)
break;
status = write_reg(ci, 0x0B, 0x33);
if (status < 0)
break;
status = write_reg(ci, 0x0C, 0x33);
if (status < 0)
break;
status = write_regm(ci, 0x14, 0x00, 0x0F);
if (status < 0)
break;
status = write_reg(ci, 0x15, ci->clk_reg_b);
if (status < 0)
break;
status = write_regm(ci, 0x16, 0x00, 0x0F);
if (status < 0)
break;
status = write_reg(ci, 0x17, ci->clk_reg_f);
if (status < 0)
break;
if (ci->cfg.clock_mode == 2) {
/* bitrate*2^13/ 72000 */
u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
if (ci->cfg.polarity) {
status = write_reg(ci, 0x09, 0x6f);
if (status < 0)
break;
} else {
status = write_reg(ci, 0x09, 0x6d);
if (status < 0)
break;
}
status = write_reg(ci, 0x20, 0x08);
if (status < 0)
break;
status = write_reg(ci, 0x21, (reg >> 8) & 0xff);
if (status < 0)
break;
status = write_reg(ci, 0x22, reg & 0xff);
if (status < 0)
break;
} else if (ci->cfg.clock_mode == 1) {
if (ci->cfg.polarity) {
status = write_reg(ci, 0x09, 0x6f); /* D */
if (status < 0)
break;
} else {
status = write_reg(ci, 0x09, 0x6d);
if (status < 0)
break;
}
status = write_reg(ci, 0x20, 0x68);
if (status < 0)
break;
status = write_reg(ci, 0x21, 0x00);
if (status < 0)
break;
status = write_reg(ci, 0x22, 0x02);
if (status < 0)
break;
} else {
if (ci->cfg.polarity) {
status = write_reg(ci, 0x09, 0x4f); /* C */
if (status < 0)
break;
} else {
status = write_reg(ci, 0x09, 0x4d);
if (status < 0)
break;
}
status = write_reg(ci, 0x20, 0x28);
if (status < 0)
break;
status = write_reg(ci, 0x21, 0x00);
if (status < 0)
break;
status = write_reg(ci, 0x22, 0x07);
if (status < 0)
break;
}
status = write_regm(ci, 0x20, 0x80, 0x80);
if (status < 0)
break;
status = write_regm(ci, 0x03, 0x02, 0x02);
if (status < 0)
break;
status = write_reg(ci, 0x01, 0x04);
if (status < 0)
break;
status = write_reg(ci, 0x00, 0x31);
if (status < 0)
break;
/* Put TS in bypass */
status = write_regm(ci, 0x09, 0x08, 0x08);
if (status < 0)
break;
ci->cammode = -1;
cam_mode(ci, 0);
} while (0);
mutex_unlock(&ci->lock);
return 0;
}
static int read_attribute_mem(struct dvb_ca_en50221 *ca,
int slot, int address)
{
struct cxd *ci = ca->data;
u8 val;
mutex_lock(&ci->lock);
set_mode(ci, 1);
read_pccard(ci, address, &val, 1);
mutex_unlock(&ci->lock);
return val;
}
static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
int address, u8 value)
{
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
set_mode(ci, 1);
write_pccard(ci, address, &value, 1);
mutex_unlock(&ci->lock);
return 0;
}
static int read_cam_control(struct dvb_ca_en50221 *ca,
int slot, u8 address)
{
struct cxd *ci = ca->data;
unsigned int val;
mutex_lock(&ci->lock);
set_mode(ci, 0);
read_io(ci, address, &val);
mutex_unlock(&ci->lock);
return val;
}
static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
u8 address, u8 value)
{
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
set_mode(ci, 0);
write_io(ci, address, value);
mutex_unlock(&ci->lock);
return 0;
}
static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
{
struct cxd *ci = ca->data;
if (ci->cammode)
read_data(ca, slot, ci->rbuf, 0);
mutex_lock(&ci->lock);
cam_mode(ci, 0);
write_reg(ci, 0x00, 0x21);
write_reg(ci, 0x06, 0x1F);
write_reg(ci, 0x00, 0x31);
write_regm(ci, 0x20, 0x80, 0x80);
write_reg(ci, 0x03, 0x02);
ci->ready = 0;
ci->mode = -1;
{
int i;
for (i = 0; i < 100; i++) {
usleep_range(10000, 11000);
if (ci->ready)
break;
}
}
mutex_unlock(&ci->lock);
return 0;
}
static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
{
struct cxd *ci = ca->data;
dev_dbg(&ci->client->dev, "%s\n", __func__);
if (ci->cammode)
read_data(ca, slot, ci->rbuf, 0);
mutex_lock(&ci->lock);
write_reg(ci, 0x00, 0x21);
write_reg(ci, 0x06, 0x1F);
msleep(300);
write_regm(ci, 0x09, 0x08, 0x08);
write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
ci->mode = -1;
ci->write_busy = 0;
mutex_unlock(&ci->lock);
return 0;
}
static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
{
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
write_regm(ci, 0x09, 0x00, 0x08);
set_mode(ci, 0);
cam_mode(ci, 1);
mutex_unlock(&ci->lock);
return 0;
}
static int campoll(struct cxd *ci)
{
u8 istat;
read_reg(ci, 0x04, &istat);
if (!istat)
return 0;
write_reg(ci, 0x05, istat);
if (istat & 0x40)
ci->dr = 1;
if (istat & 0x20)
ci->write_busy = 0;
if (istat & 2) {
u8 slotstat;
read_reg(ci, 0x01, &slotstat);
if (!(2 & slotstat)) {
if (!ci->slot_stat) {
ci->slot_stat |=
DVB_CA_EN50221_POLL_CAM_PRESENT;
write_regm(ci, 0x03, 0x08, 0x08);
}
} else {
if (ci->slot_stat) {
ci->slot_stat = 0;
write_regm(ci, 0x03, 0x00, 0x08);
dev_info(&ci->client->dev, "NO CAM\n");
ci->ready = 0;
}
}
if ((istat & 8) &&
ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
ci->ready = 1;
ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
}
}
return 0;
}
static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
{
struct cxd *ci = ca->data;
u8 slotstat;
mutex_lock(&ci->lock);
campoll(ci);
read_reg(ci, 0x01, &slotstat);
mutex_unlock(&ci->lock);
return ci->slot_stat;
}
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
{
struct cxd *ci = ca->data;
u8 msb, lsb;
u16 len;
mutex_lock(&ci->lock);
campoll(ci);
mutex_unlock(&ci->lock);
if (!ci->dr)
return 0;
mutex_lock(&ci->lock);
read_reg(ci, 0x0f, &msb);
read_reg(ci, 0x10, &lsb);
len = ((u16)msb << 8) | lsb;
if (len > ecount || len < 2) {
/* read it anyway or cxd may hang */
read_block(ci, 0x12, ci->rbuf, len);
mutex_unlock(&ci->lock);
return -EIO;
}
read_block(ci, 0x12, ebuf, len);
ci->dr = 0;
mutex_unlock(&ci->lock);
return len;
}
static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
{
struct cxd *ci = ca->data;
if (ci->write_busy)
return -EAGAIN;
mutex_lock(&ci->lock);
write_reg(ci, 0x0d, ecount >> 8);
write_reg(ci, 0x0e, ecount & 0xff);
write_block(ci, 0x11, ebuf, ecount);
ci->write_busy = 1;
mutex_unlock(&ci->lock);
return ecount;
}
static struct dvb_ca_en50221 en_templ = {
.read_attribute_mem = read_attribute_mem,
.write_attribute_mem = write_attribute_mem,
.read_cam_control = read_cam_control,
.write_cam_control = write_cam_control,
.slot_reset = slot_reset,
.slot_shutdown = slot_shutdown,
.slot_ts_enable = slot_ts_enable,
.poll_slot_status = poll_slot_status,
.read_data = read_data,
.write_data = write_data,
};
static int cxd2099_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct cxd *ci;
struct cxd2099_cfg *cfg = client->dev.platform_data;
static const struct regmap_config rm_cfg = {
.reg_bits = 8,
.val_bits = 8,
};
unsigned int val;
int ret;
ci = kzalloc(sizeof(*ci), GFP_KERNEL);
if (!ci) {
ret = -ENOMEM;
goto err;
}
ci->client = client;
memcpy(&ci->cfg, cfg, sizeof(ci->cfg));
ci->regmap = regmap_init_i2c(client, &rm_cfg);
if (IS_ERR(ci->regmap)) {
ret = PTR_ERR(ci->regmap);
goto err_kfree;
}
ret = regmap_read(ci->regmap, 0x00, &val);
if (ret < 0) {
dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n",
client->addr);
goto err_rmexit;
}
mutex_init(&ci->lock);
ci->lastaddress = 0xff;
ci->clk_reg_b = 0x4a;
ci->clk_reg_f = 0x1b;
ci->en = en_templ;
ci->en.data = ci;
init(ci);
dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr);
*cfg->en = &ci->en;
if (!buffermode) {
ci->en.read_data = NULL;
ci->en.write_data = NULL;
} else {
dev_info(&client->dev, "Using CXD2099AR buffer mode");
}
i2c_set_clientdata(client, ci);
return 0;
err_rmexit:
regmap_exit(ci->regmap);
err_kfree:
kfree(ci);
err:
return ret;
}
static int cxd2099_remove(struct i2c_client *client)
{
struct cxd *ci = i2c_get_clientdata(client);
regmap_exit(ci->regmap);
kfree(ci);
return 0;
}
static const struct i2c_device_id cxd2099_id[] = {
{"cxd2099", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, cxd2099_id);
static struct i2c_driver cxd2099_driver = {
.driver = {
.name = "cxd2099",
},
.probe = cxd2099_probe,
.remove = cxd2099_remove,
.id_table = cxd2099_id,
};
module_i2c_driver(cxd2099_driver);
MODULE_DESCRIPTION("Sony CXD2099AR Common Interface controller driver");
MODULE_AUTHOR("Ralph Metzler");
MODULE_LICENSE("GPL");