linux/drivers/net/ethernet/rocker/rocker_main.c

2910 lines
76 KiB
C
Raw Normal View History

/*
* drivers/net/ethernet/rocker/rocker.c - Rocker switch device driver
* Copyright (c) 2014-2016 Jiri Pirko <jiri@mellanox.com>
* Copyright (c) 2014 Scott Feldman <sfeldma@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/spinlock.h>
#include <linux/sort.h>
#include <linux/random.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/socket.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
#include <linux/if_bridge.h>
#include <linux/bitops.h>
#include <linux/ctype.h>
#include <net/switchdev.h>
#include <net/rtnetlink.h>
rocker: implement IPv4 fib offloading The driver implements ndo_switch_fib_ipv4_add/del ops to add/del/mod IPv4 routes to/from switchdev device. Once a route is added to the device, and the route's nexthops are resolved to neighbor MAC address, the device will forward matching pkts rather than the kernel. This offloads the L3 forwarding path from the kernel to the device. Note that control and management planes are still mananged by Linux; only the data plane is offloaded. Standard routing control protocols such as OSPF and BGP run on Linux and manage the kernel's FIB via standard rtm netlink msgs...nothing changes here. A new hash table is added to rocker to track neighbors. The driver listens for neighbor updates events using netevent notifier NETEVENT_NEIGH_UPDATE. Any ARP table updates for ports on this device are recorded in this table. Routes installed to the device with nexthops that reference neighbors in this table are "qualified". In the case of a route with nexthops not resolved in the table, the kernel is asked to resolve the nexthop. The driver uses fib_info->fib_priority for the priority field in rocker's unicast routing table. The device can only forward to pkts matching route dst to resolved nexthops. Currently, the device only supports single-path routes (i.e. routes with one nexthop). Equal Cost Multipath (ECMP) route support will be added in followup patches. This patch is driver support for unicast IPv4 routing only. Followup patches will add driver and infrastructure for IPv6 routing and multicast routing. Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-06 13:21:20 +08:00
#include <net/netevent.h>
#include <net/arp.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <generated/utsrelease.h>
#include "rocker_hw.h"
#include "rocker.h"
#include "rocker_tlv.h"
static const char rocker_driver_name[] = "rocker";
static const struct pci_device_id rocker_pci_id_table[] = {
{PCI_VDEVICE(REDHAT, PCI_DEVICE_ID_REDHAT_ROCKER), 0},
{0, }
};
struct rocker_wait {
wait_queue_head_t wait;
bool done;
bool nowait;
};
static void rocker_wait_reset(struct rocker_wait *wait)
{
wait->done = false;
wait->nowait = false;
}
static void rocker_wait_init(struct rocker_wait *wait)
{
init_waitqueue_head(&wait->wait);
rocker_wait_reset(wait);
}
static struct rocker_wait *rocker_wait_create(void)
{
struct rocker_wait *wait;
wait = kzalloc(sizeof(*wait), GFP_KERNEL);
if (!wait)
return NULL;
return wait;
}
static void rocker_wait_destroy(struct rocker_wait *wait)
{
kfree(wait);
}
static bool rocker_wait_event_timeout(struct rocker_wait *wait,
unsigned long timeout)
{
wait_event_timeout(wait->wait, wait->done, HZ / 10);
if (!wait->done)
return false;
return true;
}
static void rocker_wait_wake_up(struct rocker_wait *wait)
{
wait->done = true;
wake_up(&wait->wait);
}
static u32 rocker_msix_vector(const struct rocker *rocker, unsigned int vector)
{
return rocker->msix_entries[vector].vector;
}
static u32 rocker_msix_tx_vector(const struct rocker_port *rocker_port)
{
return rocker_msix_vector(rocker_port->rocker,
ROCKER_MSIX_VEC_TX(rocker_port->port_number));
}
static u32 rocker_msix_rx_vector(const struct rocker_port *rocker_port)
{
return rocker_msix_vector(rocker_port->rocker,
ROCKER_MSIX_VEC_RX(rocker_port->port_number));
}
#define rocker_write32(rocker, reg, val) \
writel((val), (rocker)->hw_addr + (ROCKER_ ## reg))
#define rocker_read32(rocker, reg) \
readl((rocker)->hw_addr + (ROCKER_ ## reg))
#define rocker_write64(rocker, reg, val) \
writeq((val), (rocker)->hw_addr + (ROCKER_ ## reg))
#define rocker_read64(rocker, reg) \
readq((rocker)->hw_addr + (ROCKER_ ## reg))
/*****************************
* HW basic testing functions
*****************************/
static int rocker_reg_test(const struct rocker *rocker)
{
const struct pci_dev *pdev = rocker->pdev;
u64 test_reg;
u64 rnd;
rnd = prandom_u32();
rnd >>= 1;
rocker_write32(rocker, TEST_REG, rnd);
test_reg = rocker_read32(rocker, TEST_REG);
if (test_reg != rnd * 2) {
dev_err(&pdev->dev, "unexpected 32bit register value %08llx, expected %08llx\n",
test_reg, rnd * 2);
return -EIO;
}
rnd = prandom_u32();
rnd <<= 31;
rnd |= prandom_u32();
rocker_write64(rocker, TEST_REG64, rnd);
test_reg = rocker_read64(rocker, TEST_REG64);
if (test_reg != rnd * 2) {
dev_err(&pdev->dev, "unexpected 64bit register value %16llx, expected %16llx\n",
test_reg, rnd * 2);
return -EIO;
}
return 0;
}
static int rocker_dma_test_one(const struct rocker *rocker,
struct rocker_wait *wait, u32 test_type,
dma_addr_t dma_handle, const unsigned char *buf,
const unsigned char *expect, size_t size)
{
const struct pci_dev *pdev = rocker->pdev;
int i;
rocker_wait_reset(wait);
rocker_write32(rocker, TEST_DMA_CTRL, test_type);
if (!rocker_wait_event_timeout(wait, HZ / 10)) {
dev_err(&pdev->dev, "no interrupt received within a timeout\n");
return -EIO;
}
for (i = 0; i < size; i++) {
if (buf[i] != expect[i]) {
dev_err(&pdev->dev, "unexpected memory content %02x at byte %x\n, %02x expected",
buf[i], i, expect[i]);
return -EIO;
}
}
return 0;
}
#define ROCKER_TEST_DMA_BUF_SIZE (PAGE_SIZE * 4)
#define ROCKER_TEST_DMA_FILL_PATTERN 0x96
static int rocker_dma_test_offset(const struct rocker *rocker,
struct rocker_wait *wait, int offset)
{
struct pci_dev *pdev = rocker->pdev;
unsigned char *alloc;
unsigned char *buf;
unsigned char *expect;
dma_addr_t dma_handle;
int i;
int err;
alloc = kzalloc(ROCKER_TEST_DMA_BUF_SIZE * 2 + offset,
GFP_KERNEL | GFP_DMA);
if (!alloc)
return -ENOMEM;
buf = alloc + offset;
expect = buf + ROCKER_TEST_DMA_BUF_SIZE;
dma_handle = pci_map_single(pdev, buf, ROCKER_TEST_DMA_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(pdev, dma_handle)) {
err = -EIO;
goto free_alloc;
}
rocker_write64(rocker, TEST_DMA_ADDR, dma_handle);
rocker_write32(rocker, TEST_DMA_SIZE, ROCKER_TEST_DMA_BUF_SIZE);
memset(expect, ROCKER_TEST_DMA_FILL_PATTERN, ROCKER_TEST_DMA_BUF_SIZE);
err = rocker_dma_test_one(rocker, wait, ROCKER_TEST_DMA_CTRL_FILL,
dma_handle, buf, expect,
ROCKER_TEST_DMA_BUF_SIZE);
if (err)
goto unmap;
memset(expect, 0, ROCKER_TEST_DMA_BUF_SIZE);
err = rocker_dma_test_one(rocker, wait, ROCKER_TEST_DMA_CTRL_CLEAR,
dma_handle, buf, expect,
ROCKER_TEST_DMA_BUF_SIZE);
if (err)
goto unmap;
prandom_bytes(buf, ROCKER_TEST_DMA_BUF_SIZE);
for (i = 0; i < ROCKER_TEST_DMA_BUF_SIZE; i++)
expect[i] = ~buf[i];
err = rocker_dma_test_one(rocker, wait, ROCKER_TEST_DMA_CTRL_INVERT,
dma_handle, buf, expect,
ROCKER_TEST_DMA_BUF_SIZE);
if (err)
goto unmap;
unmap:
pci_unmap_single(pdev, dma_handle, ROCKER_TEST_DMA_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
free_alloc:
kfree(alloc);
return err;
}
static int rocker_dma_test(const struct rocker *rocker,
struct rocker_wait *wait)
{
int i;
int err;
for (i = 0; i < 8; i++) {
err = rocker_dma_test_offset(rocker, wait, i);
if (err)
return err;
}
return 0;
}
static irqreturn_t rocker_test_irq_handler(int irq, void *dev_id)
{
struct rocker_wait *wait = dev_id;
rocker_wait_wake_up(wait);
return IRQ_HANDLED;
}
static int rocker_basic_hw_test(const struct rocker *rocker)
{
const struct pci_dev *pdev = rocker->pdev;
struct rocker_wait wait;
int err;
err = rocker_reg_test(rocker);
if (err) {
dev_err(&pdev->dev, "reg test failed\n");
return err;
}
err = request_irq(rocker_msix_vector(rocker, ROCKER_MSIX_VEC_TEST),
rocker_test_irq_handler, 0,
rocker_driver_name, &wait);
if (err) {
dev_err(&pdev->dev, "cannot assign test irq\n");
return err;
}
rocker_wait_init(&wait);
rocker_write32(rocker, TEST_IRQ, ROCKER_MSIX_VEC_TEST);
if (!rocker_wait_event_timeout(&wait, HZ / 10)) {
dev_err(&pdev->dev, "no interrupt received within a timeout\n");
err = -EIO;
goto free_irq;
}
err = rocker_dma_test(rocker, &wait);
if (err)
dev_err(&pdev->dev, "dma test failed\n");
free_irq:
free_irq(rocker_msix_vector(rocker, ROCKER_MSIX_VEC_TEST), &wait);
return err;
}
/******************************************
* DMA rings and descriptors manipulations
******************************************/
static u32 __pos_inc(u32 pos, size_t limit)
{
return ++pos == limit ? 0 : pos;
}
static int rocker_desc_err(const struct rocker_desc_info *desc_info)
{
int err = desc_info->desc->comp_err & ~ROCKER_DMA_DESC_COMP_ERR_GEN;
switch (err) {
case ROCKER_OK:
return 0;
case -ROCKER_ENOENT:
return -ENOENT;
case -ROCKER_ENXIO:
return -ENXIO;
case -ROCKER_ENOMEM:
return -ENOMEM;
case -ROCKER_EEXIST:
return -EEXIST;
case -ROCKER_EINVAL:
return -EINVAL;
case -ROCKER_EMSGSIZE:
return -EMSGSIZE;
case -ROCKER_ENOTSUP:
return -EOPNOTSUPP;
case -ROCKER_ENOBUFS:
return -ENOBUFS;
}
return -EINVAL;
}
static void rocker_desc_gen_clear(const struct rocker_desc_info *desc_info)
{
desc_info->desc->comp_err &= ~ROCKER_DMA_DESC_COMP_ERR_GEN;
}
static bool rocker_desc_gen(const struct rocker_desc_info *desc_info)
{
u32 comp_err = desc_info->desc->comp_err;
return comp_err & ROCKER_DMA_DESC_COMP_ERR_GEN ? true : false;
}
static void *
rocker_desc_cookie_ptr_get(const struct rocker_desc_info *desc_info)
{
return (void *)(uintptr_t)desc_info->desc->cookie;
}
static void rocker_desc_cookie_ptr_set(const struct rocker_desc_info *desc_info,
void *ptr)
{
desc_info->desc->cookie = (uintptr_t) ptr;
}
static struct rocker_desc_info *
rocker_desc_head_get(const struct rocker_dma_ring_info *info)
{
static struct rocker_desc_info *desc_info;
u32 head = __pos_inc(info->head, info->size);
desc_info = &info->desc_info[info->head];
if (head == info->tail)
return NULL; /* ring full */
desc_info->tlv_size = 0;
return desc_info;
}
static void rocker_desc_commit(const struct rocker_desc_info *desc_info)
{
desc_info->desc->buf_size = desc_info->data_size;
desc_info->desc->tlv_size = desc_info->tlv_size;
}
static void rocker_desc_head_set(const struct rocker *rocker,
struct rocker_dma_ring_info *info,
const struct rocker_desc_info *desc_info)
{
u32 head = __pos_inc(info->head, info->size);
BUG_ON(head == info->tail);
rocker_desc_commit(desc_info);
info->head = head;
rocker_write32(rocker, DMA_DESC_HEAD(info->type), head);
}
static struct rocker_desc_info *
rocker_desc_tail_get(struct rocker_dma_ring_info *info)
{
static struct rocker_desc_info *desc_info;
if (info->tail == info->head)
return NULL; /* nothing to be done between head and tail */
desc_info = &info->desc_info[info->tail];
if (!rocker_desc_gen(desc_info))
return NULL; /* gen bit not set, desc is not ready yet */
info->tail = __pos_inc(info->tail, info->size);
desc_info->tlv_size = desc_info->desc->tlv_size;
return desc_info;
}
static void rocker_dma_ring_credits_set(const struct rocker *rocker,
const struct rocker_dma_ring_info *info,
u32 credits)
{
if (credits)
rocker_write32(rocker, DMA_DESC_CREDITS(info->type), credits);
}
static unsigned long rocker_dma_ring_size_fix(size_t size)
{
return max(ROCKER_DMA_SIZE_MIN,
min(roundup_pow_of_two(size), ROCKER_DMA_SIZE_MAX));
}
static int rocker_dma_ring_create(const struct rocker *rocker,
unsigned int type,
size_t size,
struct rocker_dma_ring_info *info)
{
int i;
BUG_ON(size != rocker_dma_ring_size_fix(size));
info->size = size;
info->type = type;
info->head = 0;
info->tail = 0;
info->desc_info = kcalloc(info->size, sizeof(*info->desc_info),
GFP_KERNEL);
if (!info->desc_info)
return -ENOMEM;
info->desc = pci_alloc_consistent(rocker->pdev,
info->size * sizeof(*info->desc),
&info->mapaddr);
if (!info->desc) {
kfree(info->desc_info);
return -ENOMEM;
}
for (i = 0; i < info->size; i++)
info->desc_info[i].desc = &info->desc[i];
rocker_write32(rocker, DMA_DESC_CTRL(info->type),
ROCKER_DMA_DESC_CTRL_RESET);
rocker_write64(rocker, DMA_DESC_ADDR(info->type), info->mapaddr);
rocker_write32(rocker, DMA_DESC_SIZE(info->type), info->size);
return 0;
}
static void rocker_dma_ring_destroy(const struct rocker *rocker,
const struct rocker_dma_ring_info *info)
{
rocker_write64(rocker, DMA_DESC_ADDR(info->type), 0);
pci_free_consistent(rocker->pdev,
info->size * sizeof(struct rocker_desc),
info->desc, info->mapaddr);
kfree(info->desc_info);
}
static void rocker_dma_ring_pass_to_producer(const struct rocker *rocker,
struct rocker_dma_ring_info *info)
{
int i;
BUG_ON(info->head || info->tail);
/* When ring is consumer, we need to advance head for each desc.
* That tells hw that the desc is ready to be used by it.
*/
for (i = 0; i < info->size - 1; i++)
rocker_desc_head_set(rocker, info, &info->desc_info[i]);
rocker_desc_commit(&info->desc_info[i]);
}
static int rocker_dma_ring_bufs_alloc(const struct rocker *rocker,
const struct rocker_dma_ring_info *info,
int direction, size_t buf_size)
{
struct pci_dev *pdev = rocker->pdev;
int i;
int err;
for (i = 0; i < info->size; i++) {
struct rocker_desc_info *desc_info = &info->desc_info[i];
struct rocker_desc *desc = &info->desc[i];
dma_addr_t dma_handle;
char *buf;
buf = kzalloc(buf_size, GFP_KERNEL | GFP_DMA);
if (!buf) {
err = -ENOMEM;
goto rollback;
}
dma_handle = pci_map_single(pdev, buf, buf_size, direction);
if (pci_dma_mapping_error(pdev, dma_handle)) {
kfree(buf);
err = -EIO;
goto rollback;
}
desc_info->data = buf;
desc_info->data_size = buf_size;
dma_unmap_addr_set(desc_info, mapaddr, dma_handle);
desc->buf_addr = dma_handle;
desc->buf_size = buf_size;
}
return 0;
rollback:
for (i--; i >= 0; i--) {
const struct rocker_desc_info *desc_info = &info->desc_info[i];
pci_unmap_single(pdev, dma_unmap_addr(desc_info, mapaddr),
desc_info->data_size, direction);
kfree(desc_info->data);
}
return err;
}
static void rocker_dma_ring_bufs_free(const struct rocker *rocker,
const struct rocker_dma_ring_info *info,
int direction)
{
struct pci_dev *pdev = rocker->pdev;
int i;
for (i = 0; i < info->size; i++) {
const struct rocker_desc_info *desc_info = &info->desc_info[i];
struct rocker_desc *desc = &info->desc[i];
desc->buf_addr = 0;
desc->buf_size = 0;
pci_unmap_single(pdev, dma_unmap_addr(desc_info, mapaddr),
desc_info->data_size, direction);
kfree(desc_info->data);
}
}
static int rocker_dma_cmd_ring_wait_alloc(struct rocker_desc_info *desc_info)
{
struct rocker_wait *wait;
wait = rocker_wait_create();
if (!wait)
return -ENOMEM;
rocker_desc_cookie_ptr_set(desc_info, wait);
return 0;
}
static void
rocker_dma_cmd_ring_wait_free(const struct rocker_desc_info *desc_info)
{
struct rocker_wait *wait = rocker_desc_cookie_ptr_get(desc_info);
rocker_wait_destroy(wait);
}
static int rocker_dma_cmd_ring_waits_alloc(const struct rocker *rocker)
{
const struct rocker_dma_ring_info *cmd_ring = &rocker->cmd_ring;
int i;
int err;
for (i = 0; i < cmd_ring->size; i++) {
err = rocker_dma_cmd_ring_wait_alloc(&cmd_ring->desc_info[i]);
if (err)
goto rollback;
}
return 0;
rollback:
for (i--; i >= 0; i--)
rocker_dma_cmd_ring_wait_free(&cmd_ring->desc_info[i]);
return err;
}
static void rocker_dma_cmd_ring_waits_free(const struct rocker *rocker)
{
const struct rocker_dma_ring_info *cmd_ring = &rocker->cmd_ring;
int i;
for (i = 0; i < cmd_ring->size; i++)
rocker_dma_cmd_ring_wait_free(&cmd_ring->desc_info[i]);
}
static int rocker_dma_rings_init(struct rocker *rocker)
{
const struct pci_dev *pdev = rocker->pdev;
int err;
err = rocker_dma_ring_create(rocker, ROCKER_DMA_CMD,
ROCKER_DMA_CMD_DEFAULT_SIZE,
&rocker->cmd_ring);
if (err) {
dev_err(&pdev->dev, "failed to create command dma ring\n");
return err;
}
spin_lock_init(&rocker->cmd_ring_lock);
err = rocker_dma_ring_bufs_alloc(rocker, &rocker->cmd_ring,
PCI_DMA_BIDIRECTIONAL, PAGE_SIZE);
if (err) {
dev_err(&pdev->dev, "failed to alloc command dma ring buffers\n");
goto err_dma_cmd_ring_bufs_alloc;
}
err = rocker_dma_cmd_ring_waits_alloc(rocker);
if (err) {
dev_err(&pdev->dev, "failed to alloc command dma ring waits\n");
goto err_dma_cmd_ring_waits_alloc;
}
err = rocker_dma_ring_create(rocker, ROCKER_DMA_EVENT,
ROCKER_DMA_EVENT_DEFAULT_SIZE,
&rocker->event_ring);
if (err) {
dev_err(&pdev->dev, "failed to create event dma ring\n");
goto err_dma_event_ring_create;
}
err = rocker_dma_ring_bufs_alloc(rocker, &rocker->event_ring,
PCI_DMA_FROMDEVICE, PAGE_SIZE);
if (err) {
dev_err(&pdev->dev, "failed to alloc event dma ring buffers\n");
goto err_dma_event_ring_bufs_alloc;
}
rocker_dma_ring_pass_to_producer(rocker, &rocker->event_ring);
return 0;
err_dma_event_ring_bufs_alloc:
rocker_dma_ring_destroy(rocker, &rocker->event_ring);
err_dma_event_ring_create:
rocker_dma_ring_bufs_free(rocker, &rocker->cmd_ring,
PCI_DMA_BIDIRECTIONAL);
err_dma_cmd_ring_waits_alloc:
rocker_dma_cmd_ring_waits_free(rocker);
err_dma_cmd_ring_bufs_alloc:
rocker_dma_ring_destroy(rocker, &rocker->cmd_ring);
return err;
}
static void rocker_dma_rings_fini(struct rocker *rocker)
{
rocker_dma_ring_bufs_free(rocker, &rocker->event_ring,
PCI_DMA_BIDIRECTIONAL);
rocker_dma_ring_destroy(rocker, &rocker->event_ring);
rocker_dma_cmd_ring_waits_free(rocker);
rocker_dma_ring_bufs_free(rocker, &rocker->cmd_ring,
PCI_DMA_BIDIRECTIONAL);
rocker_dma_ring_destroy(rocker, &rocker->cmd_ring);
}
static int rocker_dma_rx_ring_skb_map(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info,
struct sk_buff *skb, size_t buf_len)
{
const struct rocker *rocker = rocker_port->rocker;
struct pci_dev *pdev = rocker->pdev;
dma_addr_t dma_handle;
dma_handle = pci_map_single(pdev, skb->data, buf_len,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(pdev, dma_handle))
return -EIO;
if (rocker_tlv_put_u64(desc_info, ROCKER_TLV_RX_FRAG_ADDR, dma_handle))
goto tlv_put_failure;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_RX_FRAG_MAX_LEN, buf_len))
goto tlv_put_failure;
return 0;
tlv_put_failure:
pci_unmap_single(pdev, dma_handle, buf_len, PCI_DMA_FROMDEVICE);
desc_info->tlv_size = 0;
return -EMSGSIZE;
}
static size_t rocker_port_rx_buf_len(const struct rocker_port *rocker_port)
{
return rocker_port->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
}
static int rocker_dma_rx_ring_skb_alloc(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info)
{
struct net_device *dev = rocker_port->dev;
struct sk_buff *skb;
size_t buf_len = rocker_port_rx_buf_len(rocker_port);
int err;
/* Ensure that hw will see tlv_size zero in case of an error.
* That tells hw to use another descriptor.
*/
rocker_desc_cookie_ptr_set(desc_info, NULL);
desc_info->tlv_size = 0;
skb = netdev_alloc_skb_ip_align(dev, buf_len);
if (!skb)
return -ENOMEM;
err = rocker_dma_rx_ring_skb_map(rocker_port, desc_info, skb, buf_len);
if (err) {
dev_kfree_skb_any(skb);
return err;
}
rocker_desc_cookie_ptr_set(desc_info, skb);
return 0;
}
static void rocker_dma_rx_ring_skb_unmap(const struct rocker *rocker,
const struct rocker_tlv **attrs)
{
struct pci_dev *pdev = rocker->pdev;
dma_addr_t dma_handle;
size_t len;
if (!attrs[ROCKER_TLV_RX_FRAG_ADDR] ||
!attrs[ROCKER_TLV_RX_FRAG_MAX_LEN])
return;
dma_handle = rocker_tlv_get_u64(attrs[ROCKER_TLV_RX_FRAG_ADDR]);
len = rocker_tlv_get_u16(attrs[ROCKER_TLV_RX_FRAG_MAX_LEN]);
pci_unmap_single(pdev, dma_handle, len, PCI_DMA_FROMDEVICE);
}
static void rocker_dma_rx_ring_skb_free(const struct rocker *rocker,
const struct rocker_desc_info *desc_info)
{
const struct rocker_tlv *attrs[ROCKER_TLV_RX_MAX + 1];
struct sk_buff *skb = rocker_desc_cookie_ptr_get(desc_info);
if (!skb)
return;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_RX_MAX, desc_info);
rocker_dma_rx_ring_skb_unmap(rocker, attrs);
dev_kfree_skb_any(skb);
}
static int rocker_dma_rx_ring_skbs_alloc(const struct rocker_port *rocker_port)
{
const struct rocker_dma_ring_info *rx_ring = &rocker_port->rx_ring;
const struct rocker *rocker = rocker_port->rocker;
int i;
int err;
for (i = 0; i < rx_ring->size; i++) {
err = rocker_dma_rx_ring_skb_alloc(rocker_port,
&rx_ring->desc_info[i]);
if (err)
goto rollback;
}
return 0;
rollback:
for (i--; i >= 0; i--)
rocker_dma_rx_ring_skb_free(rocker, &rx_ring->desc_info[i]);
return err;
}
static void rocker_dma_rx_ring_skbs_free(const struct rocker_port *rocker_port)
{
const struct rocker_dma_ring_info *rx_ring = &rocker_port->rx_ring;
const struct rocker *rocker = rocker_port->rocker;
int i;
for (i = 0; i < rx_ring->size; i++)
rocker_dma_rx_ring_skb_free(rocker, &rx_ring->desc_info[i]);
}
static int rocker_port_dma_rings_init(struct rocker_port *rocker_port)
{
struct rocker *rocker = rocker_port->rocker;
int err;
err = rocker_dma_ring_create(rocker,
ROCKER_DMA_TX(rocker_port->port_number),
ROCKER_DMA_TX_DEFAULT_SIZE,
&rocker_port->tx_ring);
if (err) {
netdev_err(rocker_port->dev, "failed to create tx dma ring\n");
return err;
}
err = rocker_dma_ring_bufs_alloc(rocker, &rocker_port->tx_ring,
PCI_DMA_TODEVICE,
ROCKER_DMA_TX_DESC_SIZE);
if (err) {
netdev_err(rocker_port->dev, "failed to alloc tx dma ring buffers\n");
goto err_dma_tx_ring_bufs_alloc;
}
err = rocker_dma_ring_create(rocker,
ROCKER_DMA_RX(rocker_port->port_number),
ROCKER_DMA_RX_DEFAULT_SIZE,
&rocker_port->rx_ring);
if (err) {
netdev_err(rocker_port->dev, "failed to create rx dma ring\n");
goto err_dma_rx_ring_create;
}
err = rocker_dma_ring_bufs_alloc(rocker, &rocker_port->rx_ring,
PCI_DMA_BIDIRECTIONAL,
ROCKER_DMA_RX_DESC_SIZE);
if (err) {
netdev_err(rocker_port->dev, "failed to alloc rx dma ring buffers\n");
goto err_dma_rx_ring_bufs_alloc;
}
err = rocker_dma_rx_ring_skbs_alloc(rocker_port);
if (err) {
netdev_err(rocker_port->dev, "failed to alloc rx dma ring skbs\n");
goto err_dma_rx_ring_skbs_alloc;
}
rocker_dma_ring_pass_to_producer(rocker, &rocker_port->rx_ring);
return 0;
err_dma_rx_ring_skbs_alloc:
rocker_dma_ring_bufs_free(rocker, &rocker_port->rx_ring,
PCI_DMA_BIDIRECTIONAL);
err_dma_rx_ring_bufs_alloc:
rocker_dma_ring_destroy(rocker, &rocker_port->rx_ring);
err_dma_rx_ring_create:
rocker_dma_ring_bufs_free(rocker, &rocker_port->tx_ring,
PCI_DMA_TODEVICE);
err_dma_tx_ring_bufs_alloc:
rocker_dma_ring_destroy(rocker, &rocker_port->tx_ring);
return err;
}
static void rocker_port_dma_rings_fini(struct rocker_port *rocker_port)
{
struct rocker *rocker = rocker_port->rocker;
rocker_dma_rx_ring_skbs_free(rocker_port);
rocker_dma_ring_bufs_free(rocker, &rocker_port->rx_ring,
PCI_DMA_BIDIRECTIONAL);
rocker_dma_ring_destroy(rocker, &rocker_port->rx_ring);
rocker_dma_ring_bufs_free(rocker, &rocker_port->tx_ring,
PCI_DMA_TODEVICE);
rocker_dma_ring_destroy(rocker, &rocker_port->tx_ring);
}
static void rocker_port_set_enable(const struct rocker_port *rocker_port,
bool enable)
{
u64 val = rocker_read64(rocker_port->rocker, PORT_PHYS_ENABLE);
if (enable)
val |= 1ULL << rocker_port->pport;
else
val &= ~(1ULL << rocker_port->pport);
rocker_write64(rocker_port->rocker, PORT_PHYS_ENABLE, val);
}
/********************************
* Interrupt handler and helpers
********************************/
static irqreturn_t rocker_cmd_irq_handler(int irq, void *dev_id)
{
struct rocker *rocker = dev_id;
const struct rocker_desc_info *desc_info;
struct rocker_wait *wait;
u32 credits = 0;
spin_lock(&rocker->cmd_ring_lock);
while ((desc_info = rocker_desc_tail_get(&rocker->cmd_ring))) {
wait = rocker_desc_cookie_ptr_get(desc_info);
if (wait->nowait) {
rocker_desc_gen_clear(desc_info);
} else {
rocker_wait_wake_up(wait);
}
credits++;
}
spin_unlock(&rocker->cmd_ring_lock);
rocker_dma_ring_credits_set(rocker, &rocker->cmd_ring, credits);
return IRQ_HANDLED;
}
static void rocker_port_link_up(const struct rocker_port *rocker_port)
{
netif_carrier_on(rocker_port->dev);
netdev_info(rocker_port->dev, "Link is up\n");
}
static void rocker_port_link_down(const struct rocker_port *rocker_port)
{
netif_carrier_off(rocker_port->dev);
netdev_info(rocker_port->dev, "Link is down\n");
}
static int rocker_event_link_change(const struct rocker *rocker,
const struct rocker_tlv *info)
{
const struct rocker_tlv *attrs[ROCKER_TLV_EVENT_LINK_CHANGED_MAX + 1];
unsigned int port_number;
bool link_up;
struct rocker_port *rocker_port;
rocker_tlv_parse_nested(attrs, ROCKER_TLV_EVENT_LINK_CHANGED_MAX, info);
if (!attrs[ROCKER_TLV_EVENT_LINK_CHANGED_PPORT] ||
!attrs[ROCKER_TLV_EVENT_LINK_CHANGED_LINKUP])
return -EIO;
port_number =
rocker_tlv_get_u32(attrs[ROCKER_TLV_EVENT_LINK_CHANGED_PPORT]) - 1;
link_up = rocker_tlv_get_u8(attrs[ROCKER_TLV_EVENT_LINK_CHANGED_LINKUP]);
if (port_number >= rocker->port_count)
return -EINVAL;
rocker_port = rocker->ports[port_number];
if (netif_carrier_ok(rocker_port->dev) != link_up) {
if (link_up)
rocker_port_link_up(rocker_port);
else
rocker_port_link_down(rocker_port);
}
return 0;
}
static int rocker_world_port_ev_mac_vlan_seen(struct rocker_port *rocker_port,
const unsigned char *addr,
__be16 vlan_id);
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
static int rocker_event_mac_vlan_seen(const struct rocker *rocker,
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
const struct rocker_tlv *info)
{
const struct rocker_tlv *attrs[ROCKER_TLV_EVENT_MAC_VLAN_MAX + 1];
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
unsigned int port_number;
struct rocker_port *rocker_port;
const unsigned char *addr;
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
__be16 vlan_id;
rocker_tlv_parse_nested(attrs, ROCKER_TLV_EVENT_MAC_VLAN_MAX, info);
if (!attrs[ROCKER_TLV_EVENT_MAC_VLAN_PPORT] ||
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
!attrs[ROCKER_TLV_EVENT_MAC_VLAN_MAC] ||
!attrs[ROCKER_TLV_EVENT_MAC_VLAN_VLAN_ID])
return -EIO;
port_number =
rocker_tlv_get_u32(attrs[ROCKER_TLV_EVENT_MAC_VLAN_PPORT]) - 1;
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
addr = rocker_tlv_data(attrs[ROCKER_TLV_EVENT_MAC_VLAN_MAC]);
vlan_id = rocker_tlv_get_be16(attrs[ROCKER_TLV_EVENT_MAC_VLAN_VLAN_ID]);
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
if (port_number >= rocker->port_count)
return -EINVAL;
rocker_port = rocker->ports[port_number];
return rocker_world_port_ev_mac_vlan_seen(rocker_port, addr, vlan_id);
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
}
static int rocker_event_process(const struct rocker *rocker,
const struct rocker_desc_info *desc_info)
{
const struct rocker_tlv *attrs[ROCKER_TLV_EVENT_MAX + 1];
const struct rocker_tlv *info;
u16 type;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_EVENT_MAX, desc_info);
if (!attrs[ROCKER_TLV_EVENT_TYPE] ||
!attrs[ROCKER_TLV_EVENT_INFO])
return -EIO;
type = rocker_tlv_get_u16(attrs[ROCKER_TLV_EVENT_TYPE]);
info = attrs[ROCKER_TLV_EVENT_INFO];
switch (type) {
case ROCKER_TLV_EVENT_TYPE_LINK_CHANGED:
return rocker_event_link_change(rocker, info);
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
case ROCKER_TLV_EVENT_TYPE_MAC_VLAN_SEEN:
return rocker_event_mac_vlan_seen(rocker, info);
}
return -EOPNOTSUPP;
}
static irqreturn_t rocker_event_irq_handler(int irq, void *dev_id)
{
struct rocker *rocker = dev_id;
const struct pci_dev *pdev = rocker->pdev;
const struct rocker_desc_info *desc_info;
u32 credits = 0;
int err;
while ((desc_info = rocker_desc_tail_get(&rocker->event_ring))) {
err = rocker_desc_err(desc_info);
if (err) {
dev_err(&pdev->dev, "event desc received with err %d\n",
err);
} else {
err = rocker_event_process(rocker, desc_info);
if (err)
dev_err(&pdev->dev, "event processing failed with err %d\n",
err);
}
rocker_desc_gen_clear(desc_info);
rocker_desc_head_set(rocker, &rocker->event_ring, desc_info);
credits++;
}
rocker_dma_ring_credits_set(rocker, &rocker->event_ring, credits);
return IRQ_HANDLED;
}
static irqreturn_t rocker_tx_irq_handler(int irq, void *dev_id)
{
struct rocker_port *rocker_port = dev_id;
napi_schedule(&rocker_port->napi_tx);
return IRQ_HANDLED;
}
static irqreturn_t rocker_rx_irq_handler(int irq, void *dev_id)
{
struct rocker_port *rocker_port = dev_id;
napi_schedule(&rocker_port->napi_rx);
return IRQ_HANDLED;
}
/********************
* Command interface
********************/
int rocker_cmd_exec(struct rocker_port *rocker_port, bool nowait,
rocker_cmd_prep_cb_t prepare, void *prepare_priv,
rocker_cmd_proc_cb_t process, void *process_priv)
{
struct rocker *rocker = rocker_port->rocker;
struct rocker_desc_info *desc_info;
struct rocker_wait *wait;
unsigned long lock_flags;
int err;
spin_lock_irqsave(&rocker->cmd_ring_lock, lock_flags);
desc_info = rocker_desc_head_get(&rocker->cmd_ring);
if (!desc_info) {
spin_unlock_irqrestore(&rocker->cmd_ring_lock, lock_flags);
return -EAGAIN;
}
wait = rocker_desc_cookie_ptr_get(desc_info);
rocker_wait_init(wait);
wait->nowait = nowait;
err = prepare(rocker_port, desc_info, prepare_priv);
if (err) {
spin_unlock_irqrestore(&rocker->cmd_ring_lock, lock_flags);
return err;
}
rocker_desc_head_set(rocker, &rocker->cmd_ring, desc_info);
spin_unlock_irqrestore(&rocker->cmd_ring_lock, lock_flags);
if (nowait)
return 0;
if (!rocker_wait_event_timeout(wait, HZ / 10))
return -EIO;
err = rocker_desc_err(desc_info);
if (err)
return err;
if (process)
err = process(rocker_port, desc_info, process_priv);
rocker_desc_gen_clear(desc_info);
return err;
}
static int
rocker_cmd_get_port_settings_prep(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info,
void *priv)
{
struct rocker_tlv *cmd_info;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_CMD_TYPE,
ROCKER_TLV_CMD_TYPE_GET_PORT_SETTINGS))
return -EMSGSIZE;
cmd_info = rocker_tlv_nest_start(desc_info, ROCKER_TLV_CMD_INFO);
if (!cmd_info)
return -EMSGSIZE;
if (rocker_tlv_put_u32(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_PPORT,
rocker_port->pport))
return -EMSGSIZE;
rocker_tlv_nest_end(desc_info, cmd_info);
return 0;
}
static int
rocker_cmd_get_port_settings_ethtool_proc(const struct rocker_port *rocker_port,
const struct rocker_desc_info *desc_info,
void *priv)
{
struct ethtool_cmd *ecmd = priv;
const struct rocker_tlv *attrs[ROCKER_TLV_CMD_MAX + 1];
const struct rocker_tlv *info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_MAX + 1];
u32 speed;
u8 duplex;
u8 autoneg;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_CMD_MAX, desc_info);
if (!attrs[ROCKER_TLV_CMD_INFO])
return -EIO;
rocker_tlv_parse_nested(info_attrs, ROCKER_TLV_CMD_PORT_SETTINGS_MAX,
attrs[ROCKER_TLV_CMD_INFO]);
if (!info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_SPEED] ||
!info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_DUPLEX] ||
!info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_AUTONEG])
return -EIO;
speed = rocker_tlv_get_u32(info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_SPEED]);
duplex = rocker_tlv_get_u8(info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_DUPLEX]);
autoneg = rocker_tlv_get_u8(info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_AUTONEG]);
ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = SUPPORTED_TP;
ecmd->phy_address = 0xff;
ecmd->port = PORT_TP;
ethtool_cmd_speed_set(ecmd, speed);
ecmd->duplex = duplex ? DUPLEX_FULL : DUPLEX_HALF;
ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
return 0;
}
static int
rocker_cmd_get_port_settings_macaddr_proc(const struct rocker_port *rocker_port,
const struct rocker_desc_info *desc_info,
void *priv)
{
unsigned char *macaddr = priv;
const struct rocker_tlv *attrs[ROCKER_TLV_CMD_MAX + 1];
const struct rocker_tlv *info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_MAX + 1];
const struct rocker_tlv *attr;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_CMD_MAX, desc_info);
if (!attrs[ROCKER_TLV_CMD_INFO])
return -EIO;
rocker_tlv_parse_nested(info_attrs, ROCKER_TLV_CMD_PORT_SETTINGS_MAX,
attrs[ROCKER_TLV_CMD_INFO]);
attr = info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_MACADDR];
if (!attr)
return -EIO;
if (rocker_tlv_len(attr) != ETH_ALEN)
return -EINVAL;
ether_addr_copy(macaddr, rocker_tlv_data(attr));
return 0;
}
static int
rocker_cmd_get_port_settings_mode_proc(const struct rocker_port *rocker_port,
const struct rocker_desc_info *desc_info,
void *priv)
{
u8 *p_mode = priv;
const struct rocker_tlv *attrs[ROCKER_TLV_CMD_MAX + 1];
const struct rocker_tlv *info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_MAX + 1];
const struct rocker_tlv *attr;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_CMD_MAX, desc_info);
if (!attrs[ROCKER_TLV_CMD_INFO])
return -EIO;
rocker_tlv_parse_nested(info_attrs, ROCKER_TLV_CMD_PORT_SETTINGS_MAX,
attrs[ROCKER_TLV_CMD_INFO]);
attr = info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_MODE];
if (!attr)
return -EIO;
*p_mode = rocker_tlv_get_u8(info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_MODE]);
return 0;
}
struct port_name {
char *buf;
size_t len;
};
static int
rocker_cmd_get_port_settings_phys_name_proc(const struct rocker_port *rocker_port,
const struct rocker_desc_info *desc_info,
void *priv)
{
const struct rocker_tlv *info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_MAX + 1];
const struct rocker_tlv *attrs[ROCKER_TLV_CMD_MAX + 1];
struct port_name *name = priv;
const struct rocker_tlv *attr;
size_t i, j, len;
const char *str;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_CMD_MAX, desc_info);
if (!attrs[ROCKER_TLV_CMD_INFO])
return -EIO;
rocker_tlv_parse_nested(info_attrs, ROCKER_TLV_CMD_PORT_SETTINGS_MAX,
attrs[ROCKER_TLV_CMD_INFO]);
attr = info_attrs[ROCKER_TLV_CMD_PORT_SETTINGS_PHYS_NAME];
if (!attr)
return -EIO;
len = min_t(size_t, rocker_tlv_len(attr), name->len);
str = rocker_tlv_data(attr);
/* make sure name only contains alphanumeric characters */
for (i = j = 0; i < len; ++i) {
if (isalnum(str[i])) {
name->buf[j] = str[i];
j++;
}
}
if (j == 0)
return -EIO;
name->buf[j] = '\0';
return 0;
}
static int
rocker_cmd_set_port_settings_ethtool_prep(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info,
void *priv)
{
struct ethtool_cmd *ecmd = priv;
struct rocker_tlv *cmd_info;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_CMD_TYPE,
ROCKER_TLV_CMD_TYPE_SET_PORT_SETTINGS))
return -EMSGSIZE;
cmd_info = rocker_tlv_nest_start(desc_info, ROCKER_TLV_CMD_INFO);
if (!cmd_info)
return -EMSGSIZE;
if (rocker_tlv_put_u32(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_PPORT,
rocker_port->pport))
return -EMSGSIZE;
if (rocker_tlv_put_u32(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_SPEED,
ethtool_cmd_speed(ecmd)))
return -EMSGSIZE;
if (rocker_tlv_put_u8(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_DUPLEX,
ecmd->duplex))
return -EMSGSIZE;
if (rocker_tlv_put_u8(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_AUTONEG,
ecmd->autoneg))
return -EMSGSIZE;
rocker_tlv_nest_end(desc_info, cmd_info);
return 0;
}
static int
rocker_cmd_set_port_settings_macaddr_prep(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info,
void *priv)
{
const unsigned char *macaddr = priv;
struct rocker_tlv *cmd_info;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_CMD_TYPE,
ROCKER_TLV_CMD_TYPE_SET_PORT_SETTINGS))
return -EMSGSIZE;
cmd_info = rocker_tlv_nest_start(desc_info, ROCKER_TLV_CMD_INFO);
if (!cmd_info)
return -EMSGSIZE;
if (rocker_tlv_put_u32(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_PPORT,
rocker_port->pport))
return -EMSGSIZE;
if (rocker_tlv_put(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_MACADDR,
ETH_ALEN, macaddr))
return -EMSGSIZE;
rocker_tlv_nest_end(desc_info, cmd_info);
return 0;
}
static int
rocker_cmd_set_port_settings_mtu_prep(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info,
void *priv)
{
int mtu = *(int *)priv;
struct rocker_tlv *cmd_info;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_CMD_TYPE,
ROCKER_TLV_CMD_TYPE_SET_PORT_SETTINGS))
return -EMSGSIZE;
cmd_info = rocker_tlv_nest_start(desc_info, ROCKER_TLV_CMD_INFO);
if (!cmd_info)
return -EMSGSIZE;
if (rocker_tlv_put_u32(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_PPORT,
rocker_port->pport))
return -EMSGSIZE;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_MTU,
mtu))
return -EMSGSIZE;
rocker_tlv_nest_end(desc_info, cmd_info);
return 0;
}
static int
rocker_cmd_set_port_learning_prep(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info,
void *priv)
{
bool learning = *(bool *)priv;
struct rocker_tlv *cmd_info;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_CMD_TYPE,
ROCKER_TLV_CMD_TYPE_SET_PORT_SETTINGS))
return -EMSGSIZE;
cmd_info = rocker_tlv_nest_start(desc_info, ROCKER_TLV_CMD_INFO);
if (!cmd_info)
return -EMSGSIZE;
if (rocker_tlv_put_u32(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_PPORT,
rocker_port->pport))
return -EMSGSIZE;
if (rocker_tlv_put_u8(desc_info, ROCKER_TLV_CMD_PORT_SETTINGS_LEARNING,
learning))
return -EMSGSIZE;
rocker_tlv_nest_end(desc_info, cmd_info);
return 0;
}
static int rocker_cmd_get_port_settings_ethtool(struct rocker_port *rocker_port,
struct ethtool_cmd *ecmd)
{
return rocker_cmd_exec(rocker_port, false,
rocker_cmd_get_port_settings_prep, NULL,
rocker_cmd_get_port_settings_ethtool_proc,
ecmd);
}
static int rocker_cmd_get_port_settings_macaddr(struct rocker_port *rocker_port,
unsigned char *macaddr)
{
return rocker_cmd_exec(rocker_port, false,
rocker_cmd_get_port_settings_prep, NULL,
rocker_cmd_get_port_settings_macaddr_proc,
macaddr);
}
static int rocker_cmd_get_port_settings_mode(struct rocker_port *rocker_port,
u8 *p_mode)
{
return rocker_cmd_exec(rocker_port, false,
rocker_cmd_get_port_settings_prep, NULL,
rocker_cmd_get_port_settings_mode_proc, p_mode);
}
static int rocker_cmd_set_port_settings_ethtool(struct rocker_port *rocker_port,
struct ethtool_cmd *ecmd)
{
return rocker_cmd_exec(rocker_port, false,
rocker_cmd_set_port_settings_ethtool_prep,
ecmd, NULL, NULL);
}
static int rocker_cmd_set_port_settings_macaddr(struct rocker_port *rocker_port,
unsigned char *macaddr)
{
return rocker_cmd_exec(rocker_port, false,
rocker_cmd_set_port_settings_macaddr_prep,
macaddr, NULL, NULL);
}
static int rocker_cmd_set_port_settings_mtu(struct rocker_port *rocker_port,
int mtu)
{
return rocker_cmd_exec(rocker_port, false,
rocker_cmd_set_port_settings_mtu_prep,
&mtu, NULL, NULL);
}
int rocker_port_set_learning(struct rocker_port *rocker_port,
bool learning)
{
return rocker_cmd_exec(rocker_port, false,
rocker_cmd_set_port_learning_prep,
&learning, NULL, NULL);
}
/**********************
* Worlds manipulation
**********************/
static struct rocker_world_ops *rocker_world_ops[] = {
&rocker_ofdpa_ops,
};
#define ROCKER_WORLD_OPS_LEN ARRAY_SIZE(rocker_world_ops)
static struct rocker_world_ops *rocker_world_ops_find(u8 mode)
{
int i;
for (i = 0; i < ROCKER_WORLD_OPS_LEN; i++)
if (rocker_world_ops[i]->mode == mode)
return rocker_world_ops[i];
return NULL;
}
static int rocker_world_init(struct rocker *rocker, u8 mode)
{
struct rocker_world_ops *wops;
int err;
wops = rocker_world_ops_find(mode);
if (!wops) {
dev_err(&rocker->pdev->dev, "port mode \"%d\" is not supported\n",
mode);
return -EINVAL;
}
rocker->wops = wops;
rocker->wpriv = kzalloc(wops->priv_size, GFP_KERNEL);
if (!rocker->wpriv)
return -ENOMEM;
if (!wops->init)
return 0;
err = wops->init(rocker);
if (err)
kfree(rocker->wpriv);
return err;
}
static void rocker_world_fini(struct rocker *rocker)
{
struct rocker_world_ops *wops = rocker->wops;
if (!wops || !wops->fini)
return;
wops->fini(rocker);
kfree(rocker->wpriv);
}
static int rocker_world_check_init(struct rocker_port *rocker_port)
{
struct rocker *rocker = rocker_port->rocker;
u8 mode;
int err;
err = rocker_cmd_get_port_settings_mode(rocker_port, &mode);
if (err) {
dev_err(&rocker->pdev->dev, "failed to get port mode\n");
return err;
}
if (rocker->wops) {
if (rocker->wops->mode != mode) {
dev_err(&rocker->pdev->dev, "hardware has ports in different worlds, which is not supported\n");
return err;
}
return 0;
}
return rocker_world_init(rocker, mode);
}
static int rocker_world_port_pre_init(struct rocker_port *rocker_port)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
int err;
rocker_port->wpriv = kzalloc(wops->port_priv_size, GFP_KERNEL);
if (!rocker_port->wpriv)
return -ENOMEM;
if (!wops->port_pre_init)
return 0;
err = wops->port_pre_init(rocker_port);
if (err)
kfree(rocker_port->wpriv);
return 0;
}
static int rocker_world_port_init(struct rocker_port *rocker_port)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_init)
return 0;
return wops->port_init(rocker_port);
}
static void rocker_world_port_fini(struct rocker_port *rocker_port)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_fini)
return;
wops->port_fini(rocker_port);
}
static void rocker_world_port_post_fini(struct rocker_port *rocker_port)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_post_fini)
return;
wops->port_post_fini(rocker_port);
kfree(rocker_port->wpriv);
}
static int rocker_world_port_open(struct rocker_port *rocker_port)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_open)
return 0;
return wops->port_open(rocker_port);
}
static void rocker_world_port_stop(struct rocker_port *rocker_port)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_stop)
return;
wops->port_stop(rocker_port);
}
static int rocker_world_port_attr_stp_state_set(struct rocker_port *rocker_port,
u8 state,
struct switchdev_trans *trans)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_attr_stp_state_set)
return -EOPNOTSUPP;
return wops->port_attr_stp_state_set(rocker_port, state, trans);
}
static int
rocker_world_port_attr_bridge_flags_set(struct rocker_port *rocker_port,
unsigned long brport_flags,
struct switchdev_trans *trans)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_attr_bridge_flags_set)
return -EOPNOTSUPP;
return wops->port_attr_bridge_flags_set(rocker_port, brport_flags,
trans);
}
static int
rocker_world_port_attr_bridge_flags_get(const struct rocker_port *rocker_port,
unsigned long *p_brport_flags)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_attr_bridge_flags_get)
return -EOPNOTSUPP;
return wops->port_attr_bridge_flags_get(rocker_port, p_brport_flags);
}
static int
rocker_world_port_attr_bridge_ageing_time_set(struct rocker_port *rocker_port,
u32 ageing_time,
struct switchdev_trans *trans)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_attr_bridge_ageing_time_set)
return -EOPNOTSUPP;
return wops->port_attr_bridge_ageing_time_set(rocker_port, ageing_time,
trans);
}
static int
rocker_world_port_obj_vlan_add(struct rocker_port *rocker_port,
const struct switchdev_obj_port_vlan *vlan,
struct switchdev_trans *trans)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_obj_vlan_add)
return -EOPNOTSUPP;
return wops->port_obj_vlan_add(rocker_port, vlan, trans);
}
static int
rocker_world_port_obj_vlan_del(struct rocker_port *rocker_port,
const struct switchdev_obj_port_vlan *vlan)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_obj_vlan_del)
return -EOPNOTSUPP;
return wops->port_obj_vlan_del(rocker_port, vlan);
}
static int
rocker_world_port_obj_vlan_dump(const struct rocker_port *rocker_port,
struct switchdev_obj_port_vlan *vlan,
switchdev_obj_dump_cb_t *cb)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_obj_vlan_dump)
return -EOPNOTSUPP;
return wops->port_obj_vlan_dump(rocker_port, vlan, cb);
}
static int
rocker_world_port_obj_fib4_add(struct rocker_port *rocker_port,
const struct switchdev_obj_ipv4_fib *fib4,
struct switchdev_trans *trans)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_obj_fib4_add)
return -EOPNOTSUPP;
return wops->port_obj_fib4_add(rocker_port, fib4, trans);
}
static int
rocker_world_port_obj_fib4_del(struct rocker_port *rocker_port,
const struct switchdev_obj_ipv4_fib *fib4)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_obj_fib4_del)
return -EOPNOTSUPP;
return wops->port_obj_fib4_del(rocker_port, fib4);
}
static int
rocker_world_port_obj_fdb_add(struct rocker_port *rocker_port,
const struct switchdev_obj_port_fdb *fdb,
struct switchdev_trans *trans)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_obj_fdb_add)
return -EOPNOTSUPP;
return wops->port_obj_fdb_add(rocker_port, fdb, trans);
}
static int
rocker_world_port_obj_fdb_del(struct rocker_port *rocker_port,
const struct switchdev_obj_port_fdb *fdb)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_obj_fdb_del)
return -EOPNOTSUPP;
return wops->port_obj_fdb_del(rocker_port, fdb);
}
static int
rocker_world_port_obj_fdb_dump(const struct rocker_port *rocker_port,
struct switchdev_obj_port_fdb *fdb,
switchdev_obj_dump_cb_t *cb)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_obj_fdb_dump)
return -EOPNOTSUPP;
return wops->port_obj_fdb_dump(rocker_port, fdb, cb);
}
static int rocker_world_port_master_linked(struct rocker_port *rocker_port,
struct net_device *master)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_master_linked)
return -EOPNOTSUPP;
return wops->port_master_linked(rocker_port, master);
}
static int rocker_world_port_master_unlinked(struct rocker_port *rocker_port,
struct net_device *master)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_master_unlinked)
return -EOPNOTSUPP;
return wops->port_master_unlinked(rocker_port, master);
}
static int rocker_world_port_neigh_update(struct rocker_port *rocker_port,
struct neighbour *n)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_neigh_update)
return -EOPNOTSUPP;
return wops->port_neigh_update(rocker_port, n);
}
static int rocker_world_port_neigh_destroy(struct rocker_port *rocker_port,
struct neighbour *n)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_neigh_destroy)
return -EOPNOTSUPP;
return wops->port_neigh_destroy(rocker_port, n);
}
static int rocker_world_port_ev_mac_vlan_seen(struct rocker_port *rocker_port,
const unsigned char *addr,
__be16 vlan_id)
{
struct rocker_world_ops *wops = rocker_port->rocker->wops;
if (!wops->port_ev_mac_vlan_seen)
return -EOPNOTSUPP;
return wops->port_ev_mac_vlan_seen(rocker_port, addr, vlan_id);
}
/*****************
* Net device ops
*****************/
static int rocker_port_open(struct net_device *dev)
{
struct rocker_port *rocker_port = netdev_priv(dev);
int err;
err = rocker_port_dma_rings_init(rocker_port);
if (err)
return err;
err = request_irq(rocker_msix_tx_vector(rocker_port),
rocker_tx_irq_handler, 0,
rocker_driver_name, rocker_port);
if (err) {
netdev_err(rocker_port->dev, "cannot assign tx irq\n");
goto err_request_tx_irq;
}
err = request_irq(rocker_msix_rx_vector(rocker_port),
rocker_rx_irq_handler, 0,
rocker_driver_name, rocker_port);
if (err) {
netdev_err(rocker_port->dev, "cannot assign rx irq\n");
goto err_request_rx_irq;
}
err = rocker_world_port_open(rocker_port);
if (err) {
netdev_err(rocker_port->dev, "cannot open port in world\n");
goto err_world_port_open;
}
napi_enable(&rocker_port->napi_tx);
napi_enable(&rocker_port->napi_rx);
if (!dev->proto_down)
rocker_port_set_enable(rocker_port, true);
netif_start_queue(dev);
return 0;
err_world_port_open:
free_irq(rocker_msix_rx_vector(rocker_port), rocker_port);
err_request_rx_irq:
free_irq(rocker_msix_tx_vector(rocker_port), rocker_port);
err_request_tx_irq:
rocker_port_dma_rings_fini(rocker_port);
return err;
}
static int rocker_port_stop(struct net_device *dev)
{
struct rocker_port *rocker_port = netdev_priv(dev);
netif_stop_queue(dev);
rocker_port_set_enable(rocker_port, false);
napi_disable(&rocker_port->napi_rx);
napi_disable(&rocker_port->napi_tx);
rocker_world_port_stop(rocker_port);
free_irq(rocker_msix_rx_vector(rocker_port), rocker_port);
free_irq(rocker_msix_tx_vector(rocker_port), rocker_port);
rocker_port_dma_rings_fini(rocker_port);
return 0;
}
static void rocker_tx_desc_frags_unmap(const struct rocker_port *rocker_port,
const struct rocker_desc_info *desc_info)
{
const struct rocker *rocker = rocker_port->rocker;
struct pci_dev *pdev = rocker->pdev;
const struct rocker_tlv *attrs[ROCKER_TLV_TX_MAX + 1];
struct rocker_tlv *attr;
int rem;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_TX_MAX, desc_info);
if (!attrs[ROCKER_TLV_TX_FRAGS])
return;
rocker_tlv_for_each_nested(attr, attrs[ROCKER_TLV_TX_FRAGS], rem) {
const struct rocker_tlv *frag_attrs[ROCKER_TLV_TX_FRAG_ATTR_MAX + 1];
dma_addr_t dma_handle;
size_t len;
if (rocker_tlv_type(attr) != ROCKER_TLV_TX_FRAG)
continue;
rocker_tlv_parse_nested(frag_attrs, ROCKER_TLV_TX_FRAG_ATTR_MAX,
attr);
if (!frag_attrs[ROCKER_TLV_TX_FRAG_ATTR_ADDR] ||
!frag_attrs[ROCKER_TLV_TX_FRAG_ATTR_LEN])
continue;
dma_handle = rocker_tlv_get_u64(frag_attrs[ROCKER_TLV_TX_FRAG_ATTR_ADDR]);
len = rocker_tlv_get_u16(frag_attrs[ROCKER_TLV_TX_FRAG_ATTR_LEN]);
pci_unmap_single(pdev, dma_handle, len, DMA_TO_DEVICE);
}
}
static int rocker_tx_desc_frag_map_put(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info,
char *buf, size_t buf_len)
{
const struct rocker *rocker = rocker_port->rocker;
struct pci_dev *pdev = rocker->pdev;
dma_addr_t dma_handle;
struct rocker_tlv *frag;
dma_handle = pci_map_single(pdev, buf, buf_len, DMA_TO_DEVICE);
if (unlikely(pci_dma_mapping_error(pdev, dma_handle))) {
if (net_ratelimit())
netdev_err(rocker_port->dev, "failed to dma map tx frag\n");
return -EIO;
}
frag = rocker_tlv_nest_start(desc_info, ROCKER_TLV_TX_FRAG);
if (!frag)
goto unmap_frag;
if (rocker_tlv_put_u64(desc_info, ROCKER_TLV_TX_FRAG_ATTR_ADDR,
dma_handle))
goto nest_cancel;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_TX_FRAG_ATTR_LEN,
buf_len))
goto nest_cancel;
rocker_tlv_nest_end(desc_info, frag);
return 0;
nest_cancel:
rocker_tlv_nest_cancel(desc_info, frag);
unmap_frag:
pci_unmap_single(pdev, dma_handle, buf_len, DMA_TO_DEVICE);
return -EMSGSIZE;
}
static netdev_tx_t rocker_port_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct rocker_port *rocker_port = netdev_priv(dev);
struct rocker *rocker = rocker_port->rocker;
struct rocker_desc_info *desc_info;
struct rocker_tlv *frags;
int i;
int err;
desc_info = rocker_desc_head_get(&rocker_port->tx_ring);
if (unlikely(!desc_info)) {
if (net_ratelimit())
netdev_err(dev, "tx ring full when queue awake\n");
return NETDEV_TX_BUSY;
}
rocker_desc_cookie_ptr_set(desc_info, skb);
frags = rocker_tlv_nest_start(desc_info, ROCKER_TLV_TX_FRAGS);
if (!frags)
goto out;
err = rocker_tx_desc_frag_map_put(rocker_port, desc_info,
skb->data, skb_headlen(skb));
if (err)
goto nest_cancel;
if (skb_shinfo(skb)->nr_frags > ROCKER_TX_FRAGS_MAX) {
err = skb_linearize(skb);
if (err)
goto unmap_frags;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
err = rocker_tx_desc_frag_map_put(rocker_port, desc_info,
skb_frag_address(frag),
skb_frag_size(frag));
if (err)
goto unmap_frags;
}
rocker_tlv_nest_end(desc_info, frags);
rocker_desc_gen_clear(desc_info);
rocker_desc_head_set(rocker, &rocker_port->tx_ring, desc_info);
desc_info = rocker_desc_head_get(&rocker_port->tx_ring);
if (!desc_info)
netif_stop_queue(dev);
return NETDEV_TX_OK;
unmap_frags:
rocker_tx_desc_frags_unmap(rocker_port, desc_info);
nest_cancel:
rocker_tlv_nest_cancel(desc_info, frags);
out:
dev_kfree_skb(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
static int rocker_port_set_mac_address(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct rocker_port *rocker_port = netdev_priv(dev);
int err;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
err = rocker_cmd_set_port_settings_macaddr(rocker_port, addr->sa_data);
if (err)
return err;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
return 0;
}
static int rocker_port_change_mtu(struct net_device *dev, int new_mtu)
{
struct rocker_port *rocker_port = netdev_priv(dev);
int running = netif_running(dev);
int err;
#define ROCKER_PORT_MIN_MTU 68
#define ROCKER_PORT_MAX_MTU 9000
if (new_mtu < ROCKER_PORT_MIN_MTU || new_mtu > ROCKER_PORT_MAX_MTU)
return -EINVAL;
if (running)
rocker_port_stop(dev);
netdev_info(dev, "MTU change from %d to %d\n", dev->mtu, new_mtu);
dev->mtu = new_mtu;
err = rocker_cmd_set_port_settings_mtu(rocker_port, new_mtu);
if (err)
return err;
if (running)
err = rocker_port_open(dev);
return err;
}
static int rocker_port_get_phys_port_name(struct net_device *dev,
char *buf, size_t len)
{
struct rocker_port *rocker_port = netdev_priv(dev);
struct port_name name = { .buf = buf, .len = len };
int err;
err = rocker_cmd_exec(rocker_port, false,
rocker_cmd_get_port_settings_prep, NULL,
rocker_cmd_get_port_settings_phys_name_proc,
&name);
return err ? -EOPNOTSUPP : 0;
}
static int rocker_port_change_proto_down(struct net_device *dev,
bool proto_down)
{
struct rocker_port *rocker_port = netdev_priv(dev);
if (rocker_port->dev->flags & IFF_UP)
rocker_port_set_enable(rocker_port, !proto_down);
rocker_port->dev->proto_down = proto_down;
return 0;
}
static void rocker_port_neigh_destroy(struct neighbour *n)
{
struct rocker_port *rocker_port = netdev_priv(n->dev);
int err;
err = rocker_world_port_neigh_destroy(rocker_port, n);
if (err)
netdev_warn(rocker_port->dev, "failed to handle neigh destroy (err %d)\n",
err);
}
static const struct net_device_ops rocker_port_netdev_ops = {
.ndo_open = rocker_port_open,
.ndo_stop = rocker_port_stop,
.ndo_start_xmit = rocker_port_xmit,
.ndo_set_mac_address = rocker_port_set_mac_address,
.ndo_change_mtu = rocker_port_change_mtu,
.ndo_bridge_getlink = switchdev_port_bridge_getlink,
.ndo_bridge_setlink = switchdev_port_bridge_setlink,
.ndo_bridge_dellink = switchdev_port_bridge_dellink,
.ndo_fdb_add = switchdev_port_fdb_add,
.ndo_fdb_del = switchdev_port_fdb_del,
.ndo_fdb_dump = switchdev_port_fdb_dump,
.ndo_get_phys_port_name = rocker_port_get_phys_port_name,
.ndo_change_proto_down = rocker_port_change_proto_down,
.ndo_neigh_destroy = rocker_port_neigh_destroy,
};
/********************
* swdev interface
********************/
static int rocker_port_attr_get(struct net_device *dev,
struct switchdev_attr *attr)
{
const struct rocker_port *rocker_port = netdev_priv(dev);
const struct rocker *rocker = rocker_port->rocker;
int err = 0;
switch (attr->id) {
case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
attr->u.ppid.id_len = sizeof(rocker->hw.id);
memcpy(&attr->u.ppid.id, &rocker->hw.id, attr->u.ppid.id_len);
break;
case SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS:
err = rocker_world_port_attr_bridge_flags_get(rocker_port,
&attr->u.brport_flags);
break;
default:
return -EOPNOTSUPP;
}
return err;
}
static int rocker_port_attr_set(struct net_device *dev,
const struct switchdev_attr *attr,
struct switchdev_trans *trans)
{
struct rocker_port *rocker_port = netdev_priv(dev);
int err = 0;
switch (attr->id) {
case SWITCHDEV_ATTR_ID_PORT_STP_STATE:
err = rocker_world_port_attr_stp_state_set(rocker_port,
attr->u.stp_state,
trans);
break;
case SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS:
err = rocker_world_port_attr_bridge_flags_set(rocker_port,
attr->u.brport_flags,
trans);
break;
case SWITCHDEV_ATTR_ID_BRIDGE_AGEING_TIME:
err = rocker_world_port_attr_bridge_ageing_time_set(rocker_port,
attr->u.ageing_time,
trans);
break;
default:
err = -EOPNOTSUPP;
break;
}
return err;
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
}
static int rocker_port_obj_add(struct net_device *dev,
const struct switchdev_obj *obj,
struct switchdev_trans *trans)
{
struct rocker_port *rocker_port = netdev_priv(dev);
int err = 0;
switch (obj->id) {
case SWITCHDEV_OBJ_ID_PORT_VLAN:
err = rocker_world_port_obj_vlan_add(rocker_port,
SWITCHDEV_OBJ_PORT_VLAN(obj),
trans);
break;
case SWITCHDEV_OBJ_ID_IPV4_FIB:
err = rocker_world_port_obj_fib4_add(rocker_port,
SWITCHDEV_OBJ_IPV4_FIB(obj),
trans);
break;
case SWITCHDEV_OBJ_ID_PORT_FDB:
err = rocker_world_port_obj_fdb_add(rocker_port,
SWITCHDEV_OBJ_PORT_FDB(obj),
trans);
break;
default:
err = -EOPNOTSUPP;
break;
}
return err;
}
static int rocker_port_obj_del(struct net_device *dev,
const struct switchdev_obj *obj)
{
struct rocker_port *rocker_port = netdev_priv(dev);
int err = 0;
switch (obj->id) {
case SWITCHDEV_OBJ_ID_PORT_VLAN:
err = rocker_world_port_obj_vlan_del(rocker_port,
SWITCHDEV_OBJ_PORT_VLAN(obj));
break;
case SWITCHDEV_OBJ_ID_IPV4_FIB:
err = rocker_world_port_obj_fib4_del(rocker_port,
SWITCHDEV_OBJ_IPV4_FIB(obj));
break;
case SWITCHDEV_OBJ_ID_PORT_FDB:
err = rocker_world_port_obj_fdb_del(rocker_port,
SWITCHDEV_OBJ_PORT_FDB(obj));
break;
default:
err = -EOPNOTSUPP;
break;
}
return err;
}
static int rocker_port_obj_dump(struct net_device *dev,
struct switchdev_obj *obj,
switchdev_obj_dump_cb_t *cb)
{
const struct rocker_port *rocker_port = netdev_priv(dev);
int err = 0;
switch (obj->id) {
case SWITCHDEV_OBJ_ID_PORT_FDB:
err = rocker_world_port_obj_fdb_dump(rocker_port,
SWITCHDEV_OBJ_PORT_FDB(obj),
cb);
break;
case SWITCHDEV_OBJ_ID_PORT_VLAN:
err = rocker_world_port_obj_vlan_dump(rocker_port,
SWITCHDEV_OBJ_PORT_VLAN(obj),
cb);
break;
default:
err = -EOPNOTSUPP;
break;
}
return err;
}
static const struct switchdev_ops rocker_port_switchdev_ops = {
.switchdev_port_attr_get = rocker_port_attr_get,
.switchdev_port_attr_set = rocker_port_attr_set,
.switchdev_port_obj_add = rocker_port_obj_add,
.switchdev_port_obj_del = rocker_port_obj_del,
.switchdev_port_obj_dump = rocker_port_obj_dump,
};
/********************
* ethtool interface
********************/
static int rocker_port_get_settings(struct net_device *dev,
struct ethtool_cmd *ecmd)
{
struct rocker_port *rocker_port = netdev_priv(dev);
return rocker_cmd_get_port_settings_ethtool(rocker_port, ecmd);
}
static int rocker_port_set_settings(struct net_device *dev,
struct ethtool_cmd *ecmd)
{
struct rocker_port *rocker_port = netdev_priv(dev);
return rocker_cmd_set_port_settings_ethtool(rocker_port, ecmd);
}
static void rocker_port_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strlcpy(drvinfo->driver, rocker_driver_name, sizeof(drvinfo->driver));
strlcpy(drvinfo->version, UTS_RELEASE, sizeof(drvinfo->version));
}
static struct rocker_port_stats {
char str[ETH_GSTRING_LEN];
int type;
} rocker_port_stats[] = {
{ "rx_packets", ROCKER_TLV_CMD_PORT_STATS_RX_PKTS, },
{ "rx_bytes", ROCKER_TLV_CMD_PORT_STATS_RX_BYTES, },
{ "rx_dropped", ROCKER_TLV_CMD_PORT_STATS_RX_DROPPED, },
{ "rx_errors", ROCKER_TLV_CMD_PORT_STATS_RX_ERRORS, },
{ "tx_packets", ROCKER_TLV_CMD_PORT_STATS_TX_PKTS, },
{ "tx_bytes", ROCKER_TLV_CMD_PORT_STATS_TX_BYTES, },
{ "tx_dropped", ROCKER_TLV_CMD_PORT_STATS_TX_DROPPED, },
{ "tx_errors", ROCKER_TLV_CMD_PORT_STATS_TX_ERRORS, },
};
#define ROCKER_PORT_STATS_LEN ARRAY_SIZE(rocker_port_stats)
static void rocker_port_get_strings(struct net_device *netdev, u32 stringset,
u8 *data)
{
u8 *p = data;
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(rocker_port_stats); i++) {
memcpy(p, rocker_port_stats[i].str, ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
break;
}
}
static int
rocker_cmd_get_port_stats_prep(const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info,
void *priv)
{
struct rocker_tlv *cmd_stats;
if (rocker_tlv_put_u16(desc_info, ROCKER_TLV_CMD_TYPE,
ROCKER_TLV_CMD_TYPE_GET_PORT_STATS))
return -EMSGSIZE;
cmd_stats = rocker_tlv_nest_start(desc_info, ROCKER_TLV_CMD_INFO);
if (!cmd_stats)
return -EMSGSIZE;
if (rocker_tlv_put_u32(desc_info, ROCKER_TLV_CMD_PORT_STATS_PPORT,
rocker_port->pport))
return -EMSGSIZE;
rocker_tlv_nest_end(desc_info, cmd_stats);
return 0;
}
static int
rocker_cmd_get_port_stats_ethtool_proc(const struct rocker_port *rocker_port,
const struct rocker_desc_info *desc_info,
void *priv)
{
const struct rocker_tlv *attrs[ROCKER_TLV_CMD_MAX + 1];
const struct rocker_tlv *stats_attrs[ROCKER_TLV_CMD_PORT_STATS_MAX + 1];
const struct rocker_tlv *pattr;
u32 pport;
u64 *data = priv;
int i;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_CMD_MAX, desc_info);
if (!attrs[ROCKER_TLV_CMD_INFO])
return -EIO;
rocker_tlv_parse_nested(stats_attrs, ROCKER_TLV_CMD_PORT_STATS_MAX,
attrs[ROCKER_TLV_CMD_INFO]);
if (!stats_attrs[ROCKER_TLV_CMD_PORT_STATS_PPORT])
return -EIO;
pport = rocker_tlv_get_u32(stats_attrs[ROCKER_TLV_CMD_PORT_STATS_PPORT]);
if (pport != rocker_port->pport)
return -EIO;
for (i = 0; i < ARRAY_SIZE(rocker_port_stats); i++) {
pattr = stats_attrs[rocker_port_stats[i].type];
if (!pattr)
continue;
data[i] = rocker_tlv_get_u64(pattr);
}
return 0;
}
static int rocker_cmd_get_port_stats_ethtool(struct rocker_port *rocker_port,
void *priv)
{
return rocker_cmd_exec(rocker_port, false,
rocker_cmd_get_port_stats_prep, NULL,
rocker_cmd_get_port_stats_ethtool_proc,
priv);
}
static void rocker_port_get_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct rocker_port *rocker_port = netdev_priv(dev);
if (rocker_cmd_get_port_stats_ethtool(rocker_port, data) != 0) {
int i;
for (i = 0; i < ARRAY_SIZE(rocker_port_stats); ++i)
data[i] = 0;
}
}
static int rocker_port_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ROCKER_PORT_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static const struct ethtool_ops rocker_port_ethtool_ops = {
.get_settings = rocker_port_get_settings,
.set_settings = rocker_port_set_settings,
.get_drvinfo = rocker_port_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_strings = rocker_port_get_strings,
.get_ethtool_stats = rocker_port_get_stats,
.get_sset_count = rocker_port_get_sset_count,
};
/*****************
* NAPI interface
*****************/
static struct rocker_port *rocker_port_napi_tx_get(struct napi_struct *napi)
{
return container_of(napi, struct rocker_port, napi_tx);
}
static int rocker_port_poll_tx(struct napi_struct *napi, int budget)
{
struct rocker_port *rocker_port = rocker_port_napi_tx_get(napi);
const struct rocker *rocker = rocker_port->rocker;
const struct rocker_desc_info *desc_info;
u32 credits = 0;
int err;
/* Cleanup tx descriptors */
while ((desc_info = rocker_desc_tail_get(&rocker_port->tx_ring))) {
struct sk_buff *skb;
err = rocker_desc_err(desc_info);
if (err && net_ratelimit())
netdev_err(rocker_port->dev, "tx desc received with err %d\n",
err);
rocker_tx_desc_frags_unmap(rocker_port, desc_info);
skb = rocker_desc_cookie_ptr_get(desc_info);
if (err == 0) {
rocker_port->dev->stats.tx_packets++;
rocker_port->dev->stats.tx_bytes += skb->len;
} else {
rocker_port->dev->stats.tx_errors++;
}
dev_kfree_skb_any(skb);
credits++;
}
if (credits && netif_queue_stopped(rocker_port->dev))
netif_wake_queue(rocker_port->dev);
napi_complete(napi);
rocker_dma_ring_credits_set(rocker, &rocker_port->tx_ring, credits);
return 0;
}
static int rocker_port_rx_proc(const struct rocker *rocker,
const struct rocker_port *rocker_port,
struct rocker_desc_info *desc_info)
{
const struct rocker_tlv *attrs[ROCKER_TLV_RX_MAX + 1];
struct sk_buff *skb = rocker_desc_cookie_ptr_get(desc_info);
size_t rx_len;
u16 rx_flags = 0;
if (!skb)
return -ENOENT;
rocker_tlv_parse_desc(attrs, ROCKER_TLV_RX_MAX, desc_info);
if (!attrs[ROCKER_TLV_RX_FRAG_LEN])
return -EINVAL;
if (attrs[ROCKER_TLV_RX_FLAGS])
rx_flags = rocker_tlv_get_u16(attrs[ROCKER_TLV_RX_FLAGS]);
rocker_dma_rx_ring_skb_unmap(rocker, attrs);
rx_len = rocker_tlv_get_u16(attrs[ROCKER_TLV_RX_FRAG_LEN]);
skb_put(skb, rx_len);
skb->protocol = eth_type_trans(skb, rocker_port->dev);
if (rx_flags & ROCKER_RX_FLAGS_FWD_OFFLOAD)
skb->offload_fwd_mark = rocker_port->dev->offload_fwd_mark;
rocker_port->dev->stats.rx_packets++;
rocker_port->dev->stats.rx_bytes += skb->len;
netif_receive_skb(skb);
return rocker_dma_rx_ring_skb_alloc(rocker_port, desc_info);
}
static struct rocker_port *rocker_port_napi_rx_get(struct napi_struct *napi)
{
return container_of(napi, struct rocker_port, napi_rx);
}
static int rocker_port_poll_rx(struct napi_struct *napi, int budget)
{
struct rocker_port *rocker_port = rocker_port_napi_rx_get(napi);
const struct rocker *rocker = rocker_port->rocker;
struct rocker_desc_info *desc_info;
u32 credits = 0;
int err;
/* Process rx descriptors */
while (credits < budget &&
(desc_info = rocker_desc_tail_get(&rocker_port->rx_ring))) {
err = rocker_desc_err(desc_info);
if (err) {
if (net_ratelimit())
netdev_err(rocker_port->dev, "rx desc received with err %d\n",
err);
} else {
err = rocker_port_rx_proc(rocker, rocker_port,
desc_info);
if (err && net_ratelimit())
netdev_err(rocker_port->dev, "rx processing failed with err %d\n",
err);
}
if (err)
rocker_port->dev->stats.rx_errors++;
rocker_desc_gen_clear(desc_info);
rocker_desc_head_set(rocker, &rocker_port->rx_ring, desc_info);
credits++;
}
if (credits < budget)
napi_complete(napi);
rocker_dma_ring_credits_set(rocker, &rocker_port->rx_ring, credits);
return credits;
}
/*****************
* PCI driver ops
*****************/
static void rocker_carrier_init(const struct rocker_port *rocker_port)
{
const struct rocker *rocker = rocker_port->rocker;
u64 link_status = rocker_read64(rocker, PORT_PHYS_LINK_STATUS);
bool link_up;
link_up = link_status & (1 << rocker_port->pport);
if (link_up)
netif_carrier_on(rocker_port->dev);
else
netif_carrier_off(rocker_port->dev);
}
static void rocker_remove_ports(struct rocker *rocker)
{
struct rocker_port *rocker_port;
int i;
for (i = 0; i < rocker->port_count; i++) {
rocker_port = rocker->ports[i];
if (!rocker_port)
continue;
rocker_world_port_fini(rocker_port);
unregister_netdev(rocker_port->dev);
rocker_world_port_post_fini(rocker_port);
free_netdev(rocker_port->dev);
}
rocker_world_fini(rocker);
kfree(rocker->ports);
}
static void rocker_port_dev_addr_init(struct rocker_port *rocker_port)
{
const struct rocker *rocker = rocker_port->rocker;
const struct pci_dev *pdev = rocker->pdev;
int err;
err = rocker_cmd_get_port_settings_macaddr(rocker_port,
rocker_port->dev->dev_addr);
if (err) {
dev_warn(&pdev->dev, "failed to get mac address, using random\n");
eth_hw_addr_random(rocker_port->dev);
}
}
static int rocker_probe_port(struct rocker *rocker, unsigned int port_number)
{
const struct pci_dev *pdev = rocker->pdev;
struct rocker_port *rocker_port;
struct net_device *dev;
int err;
dev = alloc_etherdev(sizeof(struct rocker_port));
if (!dev)
return -ENOMEM;
rocker_port = netdev_priv(dev);
rocker_port->dev = dev;
rocker_port->rocker = rocker;
rocker_port->port_number = port_number;
rocker_port->pport = port_number + 1;
err = rocker_world_check_init(rocker_port);
if (err) {
dev_err(&pdev->dev, "world init failed\n");
goto err_world_check_init;
}
rocker_port_dev_addr_init(rocker_port);
dev->netdev_ops = &rocker_port_netdev_ops;
dev->ethtool_ops = &rocker_port_ethtool_ops;
dev->switchdev_ops = &rocker_port_switchdev_ops;
netif_tx_napi_add(dev, &rocker_port->napi_tx, rocker_port_poll_tx,
NAPI_POLL_WEIGHT);
netif_napi_add(dev, &rocker_port->napi_rx, rocker_port_poll_rx,
NAPI_POLL_WEIGHT);
rocker_carrier_init(rocker_port);
dev->features |= NETIF_F_NETNS_LOCAL | NETIF_F_SG;
err = rocker_world_port_pre_init(rocker_port);
if (err) {
dev_err(&pdev->dev, "port world pre-init failed\n");
goto err_world_port_pre_init;
}
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "register_netdev failed\n");
goto err_register_netdev;
}
rocker->ports[port_number] = rocker_port;
err = rocker_world_port_init(rocker_port);
if (err) {
dev_err(&pdev->dev, "port world init failed\n");
goto err_world_port_init;
}
return 0;
err_world_port_init:
rocker->ports[port_number] = NULL;
unregister_netdev(dev);
err_register_netdev:
rocker_world_port_post_fini(rocker_port);
err_world_port_pre_init:
err_world_check_init:
free_netdev(dev);
return err;
}
static int rocker_probe_ports(struct rocker *rocker)
{
int i;
size_t alloc_size;
int err;
alloc_size = sizeof(struct rocker_port *) * rocker->port_count;
rocker->ports = kzalloc(alloc_size, GFP_KERNEL);
if (!rocker->ports)
return -ENOMEM;
for (i = 0; i < rocker->port_count; i++) {
err = rocker_probe_port(rocker, i);
if (err)
goto remove_ports;
}
return 0;
remove_ports:
rocker_remove_ports(rocker);
return err;
}
static int rocker_msix_init(struct rocker *rocker)
{
struct pci_dev *pdev = rocker->pdev;
int msix_entries;
int i;
int err;
msix_entries = pci_msix_vec_count(pdev);
if (msix_entries < 0)
return msix_entries;
if (msix_entries != ROCKER_MSIX_VEC_COUNT(rocker->port_count))
return -EINVAL;
rocker->msix_entries = kmalloc_array(msix_entries,
sizeof(struct msix_entry),
GFP_KERNEL);
if (!rocker->msix_entries)
return -ENOMEM;
for (i = 0; i < msix_entries; i++)
rocker->msix_entries[i].entry = i;
err = pci_enable_msix_exact(pdev, rocker->msix_entries, msix_entries);
if (err < 0)
goto err_enable_msix;
return 0;
err_enable_msix:
kfree(rocker->msix_entries);
return err;
}
static void rocker_msix_fini(const struct rocker *rocker)
{
pci_disable_msix(rocker->pdev);
kfree(rocker->msix_entries);
}
static int rocker_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct rocker *rocker;
int err;
rocker = kzalloc(sizeof(*rocker), GFP_KERNEL);
if (!rocker)
return -ENOMEM;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "pci_enable_device failed\n");
goto err_pci_enable_device;
}
err = pci_request_regions(pdev, rocker_driver_name);
if (err) {
dev_err(&pdev->dev, "pci_request_regions failed\n");
goto err_pci_request_regions;
}
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (!err) {
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (err) {
dev_err(&pdev->dev, "pci_set_consistent_dma_mask failed\n");
goto err_pci_set_dma_mask;
}
} else {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "pci_set_dma_mask failed\n");
goto err_pci_set_dma_mask;
}
}
if (pci_resource_len(pdev, 0) < ROCKER_PCI_BAR0_SIZE) {
dev_err(&pdev->dev, "invalid PCI region size\n");
err = -EINVAL;
goto err_pci_resource_len_check;
}
rocker->hw_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!rocker->hw_addr) {
dev_err(&pdev->dev, "ioremap failed\n");
err = -EIO;
goto err_ioremap;
}
pci_set_master(pdev);
rocker->pdev = pdev;
pci_set_drvdata(pdev, rocker);
rocker->port_count = rocker_read32(rocker, PORT_PHYS_COUNT);
err = rocker_msix_init(rocker);
if (err) {
dev_err(&pdev->dev, "MSI-X init failed\n");
goto err_msix_init;
}
err = rocker_basic_hw_test(rocker);
if (err) {
dev_err(&pdev->dev, "basic hw test failed\n");
goto err_basic_hw_test;
}
rocker_write32(rocker, CONTROL, ROCKER_CONTROL_RESET);
err = rocker_dma_rings_init(rocker);
if (err)
goto err_dma_rings_init;
err = request_irq(rocker_msix_vector(rocker, ROCKER_MSIX_VEC_CMD),
rocker_cmd_irq_handler, 0,
rocker_driver_name, rocker);
if (err) {
dev_err(&pdev->dev, "cannot assign cmd irq\n");
goto err_request_cmd_irq;
}
err = request_irq(rocker_msix_vector(rocker, ROCKER_MSIX_VEC_EVENT),
rocker_event_irq_handler, 0,
rocker_driver_name, rocker);
if (err) {
dev_err(&pdev->dev, "cannot assign event irq\n");
goto err_request_event_irq;
}
rocker->hw.id = rocker_read64(rocker, SWITCH_ID);
err = rocker_probe_ports(rocker);
if (err) {
dev_err(&pdev->dev, "failed to probe ports\n");
goto err_probe_ports;
}
dev_info(&pdev->dev, "Rocker switch with id %*phN\n",
(int)sizeof(rocker->hw.id), &rocker->hw.id);
return 0;
err_probe_ports:
free_irq(rocker_msix_vector(rocker, ROCKER_MSIX_VEC_EVENT), rocker);
err_request_event_irq:
free_irq(rocker_msix_vector(rocker, ROCKER_MSIX_VEC_CMD), rocker);
err_request_cmd_irq:
rocker_dma_rings_fini(rocker);
err_dma_rings_init:
err_basic_hw_test:
rocker_msix_fini(rocker);
err_msix_init:
iounmap(rocker->hw_addr);
err_ioremap:
err_pci_resource_len_check:
err_pci_set_dma_mask:
pci_release_regions(pdev);
err_pci_request_regions:
pci_disable_device(pdev);
err_pci_enable_device:
kfree(rocker);
return err;
}
static void rocker_remove(struct pci_dev *pdev)
{
struct rocker *rocker = pci_get_drvdata(pdev);
rocker_write32(rocker, CONTROL, ROCKER_CONTROL_RESET);
rocker_remove_ports(rocker);
free_irq(rocker_msix_vector(rocker, ROCKER_MSIX_VEC_EVENT), rocker);
free_irq(rocker_msix_vector(rocker, ROCKER_MSIX_VEC_CMD), rocker);
rocker_dma_rings_fini(rocker);
rocker_msix_fini(rocker);
iounmap(rocker->hw_addr);
pci_release_regions(rocker->pdev);
pci_disable_device(rocker->pdev);
kfree(rocker);
}
static struct pci_driver rocker_pci_driver = {
.name = rocker_driver_name,
.id_table = rocker_pci_id_table,
.probe = rocker_probe,
.remove = rocker_remove,
};
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
/************************************
* Net device notifier event handler
************************************/
static bool rocker_port_dev_check(const struct net_device *dev)
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
{
return dev->netdev_ops == &rocker_port_netdev_ops;
}
static int rocker_netdevice_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct netdev_notifier_changeupper_info *info;
struct rocker_port *rocker_port;
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
int err;
if (!rocker_port_dev_check(dev))
return NOTIFY_DONE;
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
switch (event) {
case NETDEV_CHANGEUPPER:
info = ptr;
if (!info->master)
goto out;
rocker_port = netdev_priv(dev);
if (info->linking) {
err = rocker_world_port_master_linked(rocker_port,
info->upper_dev);
if (err)
netdev_warn(dev, "failed to reflect master linked (err %d)\n",
err);
} else {
err = rocker_world_port_master_unlinked(rocker_port,
info->upper_dev);
if (err)
netdev_warn(dev, "failed to reflect master unlinked (err %d)\n",
err);
}
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
}
out:
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
return NOTIFY_DONE;
}
static struct notifier_block rocker_netdevice_nb __read_mostly = {
.notifier_call = rocker_netdevice_event,
};
rocker: implement IPv4 fib offloading The driver implements ndo_switch_fib_ipv4_add/del ops to add/del/mod IPv4 routes to/from switchdev device. Once a route is added to the device, and the route's nexthops are resolved to neighbor MAC address, the device will forward matching pkts rather than the kernel. This offloads the L3 forwarding path from the kernel to the device. Note that control and management planes are still mananged by Linux; only the data plane is offloaded. Standard routing control protocols such as OSPF and BGP run on Linux and manage the kernel's FIB via standard rtm netlink msgs...nothing changes here. A new hash table is added to rocker to track neighbors. The driver listens for neighbor updates events using netevent notifier NETEVENT_NEIGH_UPDATE. Any ARP table updates for ports on this device are recorded in this table. Routes installed to the device with nexthops that reference neighbors in this table are "qualified". In the case of a route with nexthops not resolved in the table, the kernel is asked to resolve the nexthop. The driver uses fib_info->fib_priority for the priority field in rocker's unicast routing table. The device can only forward to pkts matching route dst to resolved nexthops. Currently, the device only supports single-path routes (i.e. routes with one nexthop). Equal Cost Multipath (ECMP) route support will be added in followup patches. This patch is driver support for unicast IPv4 routing only. Followup patches will add driver and infrastructure for IPv6 routing and multicast routing. Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-06 13:21:20 +08:00
/************************************
* Net event notifier event handler
************************************/
static int rocker_netevent_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct rocker_port *rocker_port;
rocker: implement IPv4 fib offloading The driver implements ndo_switch_fib_ipv4_add/del ops to add/del/mod IPv4 routes to/from switchdev device. Once a route is added to the device, and the route's nexthops are resolved to neighbor MAC address, the device will forward matching pkts rather than the kernel. This offloads the L3 forwarding path from the kernel to the device. Note that control and management planes are still mananged by Linux; only the data plane is offloaded. Standard routing control protocols such as OSPF and BGP run on Linux and manage the kernel's FIB via standard rtm netlink msgs...nothing changes here. A new hash table is added to rocker to track neighbors. The driver listens for neighbor updates events using netevent notifier NETEVENT_NEIGH_UPDATE. Any ARP table updates for ports on this device are recorded in this table. Routes installed to the device with nexthops that reference neighbors in this table are "qualified". In the case of a route with nexthops not resolved in the table, the kernel is asked to resolve the nexthop. The driver uses fib_info->fib_priority for the priority field in rocker's unicast routing table. The device can only forward to pkts matching route dst to resolved nexthops. Currently, the device only supports single-path routes (i.e. routes with one nexthop). Equal Cost Multipath (ECMP) route support will be added in followup patches. This patch is driver support for unicast IPv4 routing only. Followup patches will add driver and infrastructure for IPv6 routing and multicast routing. Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-06 13:21:20 +08:00
struct net_device *dev;
struct neighbour *n = ptr;
int err;
switch (event) {
case NETEVENT_NEIGH_UPDATE:
if (n->tbl != &arp_tbl)
return NOTIFY_DONE;
dev = n->dev;
if (!rocker_port_dev_check(dev))
return NOTIFY_DONE;
rocker_port = netdev_priv(dev);
err = rocker_world_port_neigh_update(rocker_port, n);
if (err)
netdev_warn(dev, "failed to handle neigh update (err %d)\n",
err);
rocker: implement IPv4 fib offloading The driver implements ndo_switch_fib_ipv4_add/del ops to add/del/mod IPv4 routes to/from switchdev device. Once a route is added to the device, and the route's nexthops are resolved to neighbor MAC address, the device will forward matching pkts rather than the kernel. This offloads the L3 forwarding path from the kernel to the device. Note that control and management planes are still mananged by Linux; only the data plane is offloaded. Standard routing control protocols such as OSPF and BGP run on Linux and manage the kernel's FIB via standard rtm netlink msgs...nothing changes here. A new hash table is added to rocker to track neighbors. The driver listens for neighbor updates events using netevent notifier NETEVENT_NEIGH_UPDATE. Any ARP table updates for ports on this device are recorded in this table. Routes installed to the device with nexthops that reference neighbors in this table are "qualified". In the case of a route with nexthops not resolved in the table, the kernel is asked to resolve the nexthop. The driver uses fib_info->fib_priority for the priority field in rocker's unicast routing table. The device can only forward to pkts matching route dst to resolved nexthops. Currently, the device only supports single-path routes (i.e. routes with one nexthop). Equal Cost Multipath (ECMP) route support will be added in followup patches. This patch is driver support for unicast IPv4 routing only. Followup patches will add driver and infrastructure for IPv6 routing and multicast routing. Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-06 13:21:20 +08:00
break;
}
return NOTIFY_DONE;
}
static struct notifier_block rocker_netevent_nb __read_mostly = {
.notifier_call = rocker_netevent_event,
};
/***********************
* Module init and exit
***********************/
static int __init rocker_module_init(void)
{
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
int err;
register_netdevice_notifier(&rocker_netdevice_nb);
rocker: implement IPv4 fib offloading The driver implements ndo_switch_fib_ipv4_add/del ops to add/del/mod IPv4 routes to/from switchdev device. Once a route is added to the device, and the route's nexthops are resolved to neighbor MAC address, the device will forward matching pkts rather than the kernel. This offloads the L3 forwarding path from the kernel to the device. Note that control and management planes are still mananged by Linux; only the data plane is offloaded. Standard routing control protocols such as OSPF and BGP run on Linux and manage the kernel's FIB via standard rtm netlink msgs...nothing changes here. A new hash table is added to rocker to track neighbors. The driver listens for neighbor updates events using netevent notifier NETEVENT_NEIGH_UPDATE. Any ARP table updates for ports on this device are recorded in this table. Routes installed to the device with nexthops that reference neighbors in this table are "qualified". In the case of a route with nexthops not resolved in the table, the kernel is asked to resolve the nexthop. The driver uses fib_info->fib_priority for the priority field in rocker's unicast routing table. The device can only forward to pkts matching route dst to resolved nexthops. Currently, the device only supports single-path routes (i.e. routes with one nexthop). Equal Cost Multipath (ECMP) route support will be added in followup patches. This patch is driver support for unicast IPv4 routing only. Followup patches will add driver and infrastructure for IPv6 routing and multicast routing. Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-06 13:21:20 +08:00
register_netevent_notifier(&rocker_netevent_nb);
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
err = pci_register_driver(&rocker_pci_driver);
if (err)
goto err_pci_register_driver;
return 0;
err_pci_register_driver:
unregister_netevent_notifier(&rocker_netevent_nb);
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
unregister_netdevice_notifier(&rocker_netdevice_nb);
return err;
}
static void __exit rocker_module_exit(void)
{
rocker: implement IPv4 fib offloading The driver implements ndo_switch_fib_ipv4_add/del ops to add/del/mod IPv4 routes to/from switchdev device. Once a route is added to the device, and the route's nexthops are resolved to neighbor MAC address, the device will forward matching pkts rather than the kernel. This offloads the L3 forwarding path from the kernel to the device. Note that control and management planes are still mananged by Linux; only the data plane is offloaded. Standard routing control protocols such as OSPF and BGP run on Linux and manage the kernel's FIB via standard rtm netlink msgs...nothing changes here. A new hash table is added to rocker to track neighbors. The driver listens for neighbor updates events using netevent notifier NETEVENT_NEIGH_UPDATE. Any ARP table updates for ports on this device are recorded in this table. Routes installed to the device with nexthops that reference neighbors in this table are "qualified". In the case of a route with nexthops not resolved in the table, the kernel is asked to resolve the nexthop. The driver uses fib_info->fib_priority for the priority field in rocker's unicast routing table. The device can only forward to pkts matching route dst to resolved nexthops. Currently, the device only supports single-path routes (i.e. routes with one nexthop). Equal Cost Multipath (ECMP) route support will be added in followup patches. This patch is driver support for unicast IPv4 routing only. Followup patches will add driver and infrastructure for IPv6 routing and multicast routing. Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-06 13:21:20 +08:00
unregister_netevent_notifier(&rocker_netevent_nb);
rocker: implement L2 bridge offloading Add L2 bridge offloading support to rocker driver. Here, the Linux bridge driver is used to collect swdev ports into a tagged (or untagged) VLAN bridge. The switchdev will offload from the bridge driver the following L2 bridging functions: - Learning of neighbor MAC addresses on VLAN X Learned mac/vlan is installed in bridge FDB. (And removed when device unlearns mac/vlan). Learning must be turned off on each bridge port to disable the feature in the bridge driver. - Flooding of multicast/broadcast and unknown unicast pkts to (STP) active ports in bridge. The bridge driver is unaware of the flooding happening at the device level. Flooding must be turned off on each bridge port to disable the feature on the bridge driver. - STP port state is pushed down to driver/device. The bridge still processes STP BDPUs and maintains port STP state (for all VLANs in bridge), but the driver/device must be notified of port STP state change to program the device. Multiple (VLAN) bridges are supported. The device (implemented per the OF-DPA spec) must use a portion of the VLAN namespace for internal VLANs. Right now, the upper 255 VLANs (0xf00 to 0xffe) are used as internal VLAN IDs for untagged traffic and are not available as port VLANs. The driver uses the following interfaces: 1. To track VLAN add/del on ports in bridge: .ndo_vlan_rx_add_vid .ndo_vlan_rx_kill_vid 2. To track port add/del membership in bridge: NETDEV_CHANGEUPPER netdevice notifier 3. To catch static FDB entries installed on bridge/vlan by user using netlink: .ndo_fdb_add .ndo_fdb_del 4. To be notified on port STP state change: .ndo_switch_port_stp_update 5. To notify bridge driver on learned/forgotten mac/vlans on bridge port: br_fdb_external_learn_add br_fdb_external_learn_del Signed-off-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-28 21:34:28 +08:00
unregister_netdevice_notifier(&rocker_netdevice_nb);
pci_unregister_driver(&rocker_pci_driver);
}
module_init(rocker_module_init);
module_exit(rocker_module_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>");
MODULE_AUTHOR("Scott Feldman <sfeldma@gmail.com>");
MODULE_DESCRIPTION("Rocker switch device driver");
MODULE_DEVICE_TABLE(pci, rocker_pci_id_table);