2014-09-01 09:27:47 +08:00
|
|
|
|
|
|
|
1. Control Interfaces
|
|
|
|
|
|
|
|
The interfaces for receiving network packages timestamps are:
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
* SO_TIMESTAMP
|
2014-09-01 09:27:47 +08:00
|
|
|
Generates a timestamp for each incoming packet in (not necessarily
|
|
|
|
monotonic) system time. Reports the timestamp via recvmsg() in a
|
|
|
|
control message as struct timeval (usec resolution).
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
* SO_TIMESTAMPNS
|
2014-09-01 09:27:47 +08:00
|
|
|
Same timestamping mechanism as SO_TIMESTAMP, but reports the
|
|
|
|
timestamp as struct timespec (nsec resolution).
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
* IP_MULTICAST_LOOP + SO_TIMESTAMP[NS]
|
2014-09-01 09:27:47 +08:00
|
|
|
Only for multicast:approximate transmit timestamp obtained by
|
|
|
|
reading the looped packet receive timestamp.
|
2009-02-12 13:03:36 +08:00
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
* SO_TIMESTAMPING
|
|
|
|
Generates timestamps on reception, transmission or both. Supports
|
|
|
|
multiple timestamp sources, including hardware. Supports generating
|
|
|
|
timestamps for stream sockets.
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
1.1 SO_TIMESTAMP:
|
2014-03-05 09:24:10 +08:00
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
This socket option enables timestamping of datagrams on the reception
|
|
|
|
path. Because the destination socket, if any, is not known early in
|
|
|
|
the network stack, the feature has to be enabled for all packets. The
|
|
|
|
same is true for all early receive timestamp options.
|
2014-03-05 09:24:10 +08:00
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
For interface details, see `man 7 socket`.
|
|
|
|
|
|
|
|
|
|
|
|
1.2 SO_TIMESTAMPNS:
|
|
|
|
|
|
|
|
This option is identical to SO_TIMESTAMP except for the returned data type.
|
|
|
|
Its struct timespec allows for higher resolution (ns) timestamps than the
|
|
|
|
timeval of SO_TIMESTAMP (ms).
|
|
|
|
|
|
|
|
|
|
|
|
1.3 SO_TIMESTAMPING:
|
|
|
|
|
|
|
|
Supports multiple types of timestamp requests. As a result, this
|
|
|
|
socket option takes a bitmap of flags, not a boolean. In
|
|
|
|
|
|
|
|
err = setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPING, (void *) val, &val);
|
|
|
|
|
|
|
|
val is an integer with any of the following bits set. Setting other
|
|
|
|
bit returns EINVAL and does not change the current state.
|
2014-03-05 09:24:10 +08:00
|
|
|
|
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
1.3.1 Timestamp Generation
|
2014-03-05 09:24:10 +08:00
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
Some bits are requests to the stack to try to generate timestamps. Any
|
|
|
|
combination of them is valid. Changes to these bits apply to newly
|
|
|
|
created packets, not to packets already in the stack. As a result, it
|
|
|
|
is possible to selectively request timestamps for a subset of packets
|
|
|
|
(e.g., for sampling) by embedding an send() call within two setsockopt
|
|
|
|
calls, one to enable timestamp generation and one to disable it.
|
|
|
|
Timestamps may also be generated for reasons other than being
|
|
|
|
requested by a particular socket, such as when receive timestamping is
|
|
|
|
enabled system wide, as explained earlier.
|
2014-03-05 09:24:10 +08:00
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
SOF_TIMESTAMPING_RX_HARDWARE:
|
|
|
|
Request rx timestamps generated by the network adapter.
|
|
|
|
|
|
|
|
SOF_TIMESTAMPING_RX_SOFTWARE:
|
|
|
|
Request rx timestamps when data enters the kernel. These timestamps
|
|
|
|
are generated just after a device driver hands a packet to the
|
|
|
|
kernel receive stack.
|
|
|
|
|
|
|
|
SOF_TIMESTAMPING_TX_HARDWARE:
|
|
|
|
Request tx timestamps generated by the network adapter.
|
|
|
|
|
|
|
|
SOF_TIMESTAMPING_TX_SOFTWARE:
|
|
|
|
Request tx timestamps when data leaves the kernel. These timestamps
|
|
|
|
are generated in the device driver as close as possible, but always
|
|
|
|
prior to, passing the packet to the network interface. Hence, they
|
|
|
|
require driver support and may not be available for all devices.
|
|
|
|
|
|
|
|
SOF_TIMESTAMPING_TX_SCHED:
|
|
|
|
Request tx timestamps prior to entering the packet scheduler. Kernel
|
|
|
|
transmit latency is, if long, often dominated by queuing delay. The
|
|
|
|
difference between this timestamp and one taken at
|
|
|
|
SOF_TIMESTAMPING_TX_SOFTWARE will expose this latency independent
|
|
|
|
of protocol processing. The latency incurred in protocol
|
|
|
|
processing, if any, can be computed by subtracting a userspace
|
|
|
|
timestamp taken immediately before send() from this timestamp. On
|
|
|
|
machines with virtual devices where a transmitted packet travels
|
|
|
|
through multiple devices and, hence, multiple packet schedulers,
|
|
|
|
a timestamp is generated at each layer. This allows for fine
|
|
|
|
grained measurement of queuing delay.
|
|
|
|
|
|
|
|
SOF_TIMESTAMPING_TX_ACK:
|
|
|
|
Request tx timestamps when all data in the send buffer has been
|
|
|
|
acknowledged. This only makes sense for reliable protocols. It is
|
|
|
|
currently only implemented for TCP. For that protocol, it may
|
|
|
|
over-report measurement, because the timestamp is generated when all
|
|
|
|
data up to and including the buffer at send() was acknowledged: the
|
|
|
|
cumulative acknowledgment. The mechanism ignores SACK and FACK.
|
|
|
|
|
|
|
|
|
|
|
|
1.3.2 Timestamp Reporting
|
|
|
|
|
|
|
|
The other three bits control which timestamps will be reported in a
|
|
|
|
generated control message. Changes to the bits take immediate
|
|
|
|
effect at the timestamp reporting locations in the stack. Timestamps
|
|
|
|
are only reported for packets that also have the relevant timestamp
|
|
|
|
generation request set.
|
|
|
|
|
|
|
|
SOF_TIMESTAMPING_SOFTWARE:
|
|
|
|
Report any software timestamps when available.
|
|
|
|
|
|
|
|
SOF_TIMESTAMPING_SYS_HARDWARE:
|
|
|
|
This option is deprecated and ignored.
|
|
|
|
|
|
|
|
SOF_TIMESTAMPING_RAW_HARDWARE:
|
|
|
|
Report hardware timestamps as generated by
|
|
|
|
SOF_TIMESTAMPING_TX_HARDWARE when available.
|
|
|
|
|
|
|
|
|
|
|
|
1.3.3 Timestamp Options
|
|
|
|
|
net-timestamp: allow reading recv cmsg on errqueue with origin tstamp
Allow reading of timestamps and cmsg at the same time on all relevant
socket families. One use is to correlate timestamps with egress
device, by asking for cmsg IP_PKTINFO.
on AF_INET sockets, call the relevant function (ip_cmsg_recv). To
avoid changing legacy expectations, only do so if the caller sets a
new timestamping flag SOF_TIMESTAMPING_OPT_CMSG.
on AF_INET6 sockets, IPV6_PKTINFO and all other recv cmsg are already
returned for all origins. only change is to set ifindex, which is
not initialized for all error origins.
In both cases, only generate the pktinfo message if an ifindex is
known. This is not the case for ACK timestamps.
The difference between the protocol families is probably a historical
accident as a result of the different conditions for generating cmsg
in the relevant ip(v6)_recv_error function:
ipv4: if (serr->ee.ee_origin == SO_EE_ORIGIN_ICMP) {
ipv6: if (serr->ee.ee_origin != SO_EE_ORIGIN_LOCAL) {
At one time, this was the same test bar for the ICMP/ICMP6
distinction. This is no longer true.
Signed-off-by: Willem de Bruijn <willemb@google.com>
----
Changes
v1 -> v2
large rewrite
- integrate with existing pktinfo cmsg generation code
- on ipv4: only send with new flag, to maintain legacy behavior
- on ipv6: send at most a single pktinfo cmsg
- on ipv6: initialize fields if not yet initialized
The recv cmsg interfaces are also relevant to the discussion of
whether looping packet headers is problematic. For v6, cmsgs that
identify many headers are already returned. This patch expands
that to v4. If it sounds reasonable, I will follow with patches
1. request timestamps without payload with SOF_TIMESTAMPING_OPT_TSONLY
(http://patchwork.ozlabs.org/patch/366967/)
2. sysctl to conditionally drop all timestamps that have payload or
cmsg from users without CAP_NET_RAW.
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-01 11:22:34 +08:00
|
|
|
The interface supports the options
|
2014-09-01 09:27:47 +08:00
|
|
|
|
|
|
|
SOF_TIMESTAMPING_OPT_ID:
|
|
|
|
|
|
|
|
Generate a unique identifier along with each packet. A process can
|
|
|
|
have multiple concurrent timestamping requests outstanding. Packets
|
|
|
|
can be reordered in the transmit path, for instance in the packet
|
|
|
|
scheduler. In that case timestamps will be queued onto the error
|
2014-12-01 11:22:35 +08:00
|
|
|
queue out of order from the original send() calls. It is not always
|
|
|
|
possible to uniquely match timestamps to the original send() calls
|
|
|
|
based on timestamp order or payload inspection alone, then.
|
|
|
|
|
|
|
|
This option associates each packet at send() with a unique
|
|
|
|
identifier and returns that along with the timestamp. The identifier
|
|
|
|
is derived from a per-socket u32 counter (that wraps). For datagram
|
|
|
|
sockets, the counter increments with each sent packet. For stream
|
|
|
|
sockets, it increments with every byte.
|
|
|
|
|
|
|
|
The counter starts at zero. It is initialized the first time that
|
|
|
|
the socket option is enabled. It is reset each time the option is
|
|
|
|
enabled after having been disabled. Resetting the counter does not
|
|
|
|
change the identifiers of existing packets in the system.
|
2014-09-01 09:27:47 +08:00
|
|
|
|
|
|
|
This option is implemented only for transmit timestamps. There, the
|
|
|
|
timestamp is always looped along with a struct sock_extended_err.
|
2014-11-25 04:02:29 +08:00
|
|
|
The option modifies field ee_data to pass an id that is unique
|
2014-09-01 09:27:47 +08:00
|
|
|
among all possibly concurrently outstanding timestamp requests for
|
2014-12-01 11:22:35 +08:00
|
|
|
that socket.
|
2014-09-01 09:27:47 +08:00
|
|
|
|
|
|
|
|
net-timestamp: allow reading recv cmsg on errqueue with origin tstamp
Allow reading of timestamps and cmsg at the same time on all relevant
socket families. One use is to correlate timestamps with egress
device, by asking for cmsg IP_PKTINFO.
on AF_INET sockets, call the relevant function (ip_cmsg_recv). To
avoid changing legacy expectations, only do so if the caller sets a
new timestamping flag SOF_TIMESTAMPING_OPT_CMSG.
on AF_INET6 sockets, IPV6_PKTINFO and all other recv cmsg are already
returned for all origins. only change is to set ifindex, which is
not initialized for all error origins.
In both cases, only generate the pktinfo message if an ifindex is
known. This is not the case for ACK timestamps.
The difference between the protocol families is probably a historical
accident as a result of the different conditions for generating cmsg
in the relevant ip(v6)_recv_error function:
ipv4: if (serr->ee.ee_origin == SO_EE_ORIGIN_ICMP) {
ipv6: if (serr->ee.ee_origin != SO_EE_ORIGIN_LOCAL) {
At one time, this was the same test bar for the ICMP/ICMP6
distinction. This is no longer true.
Signed-off-by: Willem de Bruijn <willemb@google.com>
----
Changes
v1 -> v2
large rewrite
- integrate with existing pktinfo cmsg generation code
- on ipv4: only send with new flag, to maintain legacy behavior
- on ipv6: send at most a single pktinfo cmsg
- on ipv6: initialize fields if not yet initialized
The recv cmsg interfaces are also relevant to the discussion of
whether looping packet headers is problematic. For v6, cmsgs that
identify many headers are already returned. This patch expands
that to v4. If it sounds reasonable, I will follow with patches
1. request timestamps without payload with SOF_TIMESTAMPING_OPT_TSONLY
(http://patchwork.ozlabs.org/patch/366967/)
2. sysctl to conditionally drop all timestamps that have payload or
cmsg from users without CAP_NET_RAW.
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-01 11:22:34 +08:00
|
|
|
SOF_TIMESTAMPING_OPT_CMSG:
|
|
|
|
|
|
|
|
Support recv() cmsg for all timestamped packets. Control messages
|
|
|
|
are already supported unconditionally on all packets with receive
|
|
|
|
timestamps and on IPv6 packets with transmit timestamp. This option
|
|
|
|
extends them to IPv4 packets with transmit timestamp. One use case
|
|
|
|
is to correlate packets with their egress device, by enabling socket
|
|
|
|
option IP_PKTINFO simultaneously.
|
|
|
|
|
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
1.4 Bytestream Timestamps
|
|
|
|
|
|
|
|
The SO_TIMESTAMPING interface supports timestamping of bytes in a
|
|
|
|
bytestream. Each request is interpreted as a request for when the
|
|
|
|
entire contents of the buffer has passed a timestamping point. That
|
|
|
|
is, for streams option SOF_TIMESTAMPING_TX_SOFTWARE will record
|
|
|
|
when all bytes have reached the device driver, regardless of how
|
|
|
|
many packets the data has been converted into.
|
|
|
|
|
|
|
|
In general, bytestreams have no natural delimiters and therefore
|
|
|
|
correlating a timestamp with data is non-trivial. A range of bytes
|
|
|
|
may be split across segments, any segments may be merged (possibly
|
|
|
|
coalescing sections of previously segmented buffers associated with
|
|
|
|
independent send() calls). Segments can be reordered and the same
|
|
|
|
byte range can coexist in multiple segments for protocols that
|
|
|
|
implement retransmissions.
|
|
|
|
|
|
|
|
It is essential that all timestamps implement the same semantics,
|
|
|
|
regardless of these possible transformations, as otherwise they are
|
|
|
|
incomparable. Handling "rare" corner cases differently from the
|
|
|
|
simple case (a 1:1 mapping from buffer to skb) is insufficient
|
|
|
|
because performance debugging often needs to focus on such outliers.
|
|
|
|
|
|
|
|
In practice, timestamps can be correlated with segments of a
|
|
|
|
bytestream consistently, if both semantics of the timestamp and the
|
|
|
|
timing of measurement are chosen correctly. This challenge is no
|
|
|
|
different from deciding on a strategy for IP fragmentation. There, the
|
|
|
|
definition is that only the first fragment is timestamped. For
|
|
|
|
bytestreams, we chose that a timestamp is generated only when all
|
|
|
|
bytes have passed a point. SOF_TIMESTAMPING_TX_ACK as defined is easy to
|
|
|
|
implement and reason about. An implementation that has to take into
|
|
|
|
account SACK would be more complex due to possible transmission holes
|
|
|
|
and out of order arrival.
|
|
|
|
|
|
|
|
On the host, TCP can also break the simple 1:1 mapping from buffer to
|
|
|
|
skbuff as a result of Nagle, cork, autocork, segmentation and GSO. The
|
|
|
|
implementation ensures correctness in all cases by tracking the
|
|
|
|
individual last byte passed to send(), even if it is no longer the
|
|
|
|
last byte after an skbuff extend or merge operation. It stores the
|
|
|
|
relevant sequence number in skb_shinfo(skb)->tskey. Because an skbuff
|
|
|
|
has only one such field, only one timestamp can be generated.
|
|
|
|
|
|
|
|
In rare cases, a timestamp request can be missed if two requests are
|
|
|
|
collapsed onto the same skb. A process can detect this situation by
|
|
|
|
enabling SOF_TIMESTAMPING_OPT_ID and comparing the byte offset at
|
|
|
|
send time with the value returned for each timestamp. It can prevent
|
|
|
|
the situation by always flushing the TCP stack in between requests,
|
|
|
|
for instance by enabling TCP_NODELAY and disabling TCP_CORK and
|
|
|
|
autocork.
|
|
|
|
|
|
|
|
These precautions ensure that the timestamp is generated only when all
|
|
|
|
bytes have passed a timestamp point, assuming that the network stack
|
|
|
|
itself does not reorder the segments. The stack indeed tries to avoid
|
|
|
|
reordering. The one exception is under administrator control: it is
|
|
|
|
possible to construct a packet scheduler configuration that delays
|
|
|
|
segments from the same stream differently. Such a setup would be
|
|
|
|
unusual.
|
|
|
|
|
|
|
|
|
|
|
|
2 Data Interfaces
|
|
|
|
|
|
|
|
Timestamps are read using the ancillary data feature of recvmsg().
|
|
|
|
See `man 3 cmsg` for details of this interface. The socket manual
|
|
|
|
page (`man 7 socket`) describes how timestamps generated with
|
|
|
|
SO_TIMESTAMP and SO_TIMESTAMPNS records can be retrieved.
|
|
|
|
|
|
|
|
|
|
|
|
2.1 SCM_TIMESTAMPING records
|
|
|
|
|
|
|
|
These timestamps are returned in a control message with cmsg_level
|
|
|
|
SOL_SOCKET, cmsg_type SCM_TIMESTAMPING, and payload of type
|
2010-04-08 12:52:07 +08:00
|
|
|
|
|
|
|
struct scm_timestamping {
|
2014-09-01 09:27:47 +08:00
|
|
|
struct timespec ts[3];
|
2010-04-08 12:52:07 +08:00
|
|
|
};
|
2009-02-12 13:03:36 +08:00
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
The structure can return up to three timestamps. This is a legacy
|
|
|
|
feature. Only one field is non-zero at any time. Most timestamps
|
|
|
|
are passed in ts[0]. Hardware timestamps are passed in ts[2].
|
|
|
|
|
|
|
|
ts[1] used to hold hardware timestamps converted to system time.
|
|
|
|
Instead, expose the hardware clock device on the NIC directly as
|
|
|
|
a HW PTP clock source, to allow time conversion in userspace and
|
|
|
|
optionally synchronize system time with a userspace PTP stack such
|
|
|
|
as linuxptp. For the PTP clock API, see Documentation/ptp/ptp.txt.
|
|
|
|
|
|
|
|
2.1.1 Transmit timestamps with MSG_ERRQUEUE
|
|
|
|
|
|
|
|
For transmit timestamps the outgoing packet is looped back to the
|
|
|
|
socket's error queue with the send timestamp(s) attached. A process
|
|
|
|
receives the timestamps by calling recvmsg() with flag MSG_ERRQUEUE
|
|
|
|
set and with a msg_control buffer sufficiently large to receive the
|
|
|
|
relevant metadata structures. The recvmsg call returns the original
|
|
|
|
outgoing data packet with two ancillary messages attached.
|
|
|
|
|
|
|
|
A message of cm_level SOL_IP(V6) and cm_type IP(V6)_RECVERR
|
|
|
|
embeds a struct sock_extended_err. This defines the error type. For
|
|
|
|
timestamps, the ee_errno field is ENOMSG. The other ancillary message
|
|
|
|
will have cm_level SOL_SOCKET and cm_type SCM_TIMESTAMPING. This
|
|
|
|
embeds the struct scm_timestamping.
|
|
|
|
|
|
|
|
|
|
|
|
2.1.1.2 Timestamp types
|
|
|
|
|
|
|
|
The semantics of the three struct timespec are defined by field
|
|
|
|
ee_info in the extended error structure. It contains a value of
|
|
|
|
type SCM_TSTAMP_* to define the actual timestamp passed in
|
|
|
|
scm_timestamping.
|
|
|
|
|
|
|
|
The SCM_TSTAMP_* types are 1:1 matches to the SOF_TIMESTAMPING_*
|
|
|
|
control fields discussed previously, with one exception. For legacy
|
|
|
|
reasons, SCM_TSTAMP_SND is equal to zero and can be set for both
|
|
|
|
SOF_TIMESTAMPING_TX_HARDWARE and SOF_TIMESTAMPING_TX_SOFTWARE. It
|
|
|
|
is the first if ts[2] is non-zero, the second otherwise, in which
|
|
|
|
case the timestamp is stored in ts[0].
|
|
|
|
|
|
|
|
|
|
|
|
2.1.1.3 Fragmentation
|
|
|
|
|
|
|
|
Fragmentation of outgoing datagrams is rare, but is possible, e.g., by
|
|
|
|
explicitly disabling PMTU discovery. If an outgoing packet is fragmented,
|
|
|
|
then only the first fragment is timestamped and returned to the sending
|
|
|
|
socket.
|
|
|
|
|
|
|
|
|
|
|
|
2.1.1.4 Packet Payload
|
|
|
|
|
|
|
|
The calling application is often not interested in receiving the whole
|
|
|
|
packet payload that it passed to the stack originally: the socket
|
|
|
|
error queue mechanism is just a method to piggyback the timestamp on.
|
|
|
|
In this case, the application can choose to read datagrams with a
|
|
|
|
smaller buffer, possibly even of length 0. The payload is truncated
|
|
|
|
accordingly. Until the process calls recvmsg() on the error queue,
|
|
|
|
however, the full packet is queued, taking up budget from SO_RCVBUF.
|
|
|
|
|
|
|
|
|
|
|
|
2.1.1.5 Blocking Read
|
|
|
|
|
|
|
|
Reading from the error queue is always a non-blocking operation. To
|
|
|
|
block waiting on a timestamp, use poll or select. poll() will return
|
|
|
|
POLLERR in pollfd.revents if any data is ready on the error queue.
|
|
|
|
There is no need to pass this flag in pollfd.events. This flag is
|
|
|
|
ignored on request. See also `man 2 poll`.
|
|
|
|
|
|
|
|
|
|
|
|
2.1.2 Receive timestamps
|
|
|
|
|
|
|
|
On reception, there is no reason to read from the socket error queue.
|
|
|
|
The SCM_TIMESTAMPING ancillary data is sent along with the packet data
|
|
|
|
on a normal recvmsg(). Since this is not a socket error, it is not
|
|
|
|
accompanied by a message SOL_IP(V6)/IP(V6)_RECVERROR. In this case,
|
|
|
|
the meaning of the three fields in struct scm_timestamping is
|
|
|
|
implicitly defined. ts[0] holds a software timestamp if set, ts[1]
|
|
|
|
is again deprecated and ts[2] holds a hardware timestamp if set.
|
|
|
|
|
|
|
|
|
|
|
|
3. Hardware Timestamping configuration: SIOCSHWTSTAMP and SIOCGHWTSTAMP
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
Hardware time stamping must also be initialized for each device driver
|
2010-04-08 12:52:07 +08:00
|
|
|
that is expected to do hardware time stamping. The parameter is defined in
|
|
|
|
/include/linux/net_tstamp.h as:
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
struct hwtstamp_config {
|
2010-04-08 12:52:07 +08:00
|
|
|
int flags; /* no flags defined right now, must be zero */
|
|
|
|
int tx_type; /* HWTSTAMP_TX_* */
|
|
|
|
int rx_filter; /* HWTSTAMP_FILTER_* */
|
2009-02-12 13:03:36 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
Desired behavior is passed into the kernel and to a specific device by
|
|
|
|
calling ioctl(SIOCSHWTSTAMP) with a pointer to a struct ifreq whose
|
|
|
|
ifr_data points to a struct hwtstamp_config. The tx_type and
|
|
|
|
rx_filter are hints to the driver what it is expected to do. If
|
|
|
|
the requested fine-grained filtering for incoming packets is not
|
|
|
|
supported, the driver may time stamp more than just the requested types
|
|
|
|
of packets.
|
|
|
|
|
|
|
|
A driver which supports hardware time stamping shall update the struct
|
|
|
|
with the actual, possibly more permissive configuration. If the
|
|
|
|
requested packets cannot be time stamped, then nothing should be
|
|
|
|
changed and ERANGE shall be returned (in contrast to EINVAL, which
|
|
|
|
indicates that SIOCSHWTSTAMP is not supported at all).
|
|
|
|
|
|
|
|
Only a processes with admin rights may change the configuration. User
|
|
|
|
space is responsible to ensure that multiple processes don't interfere
|
|
|
|
with each other and that the settings are reset.
|
|
|
|
|
2013-11-14 09:19:29 +08:00
|
|
|
Any process can read the actual configuration by passing this
|
|
|
|
structure to ioctl(SIOCGHWTSTAMP) in the same way. However, this has
|
|
|
|
not been implemented in all drivers.
|
|
|
|
|
2009-02-12 13:03:36 +08:00
|
|
|
/* possible values for hwtstamp_config->tx_type */
|
|
|
|
enum {
|
|
|
|
/*
|
|
|
|
* no outgoing packet will need hardware time stamping;
|
|
|
|
* should a packet arrive which asks for it, no hardware
|
|
|
|
* time stamping will be done
|
|
|
|
*/
|
|
|
|
HWTSTAMP_TX_OFF,
|
|
|
|
|
|
|
|
/*
|
|
|
|
* enables hardware time stamping for outgoing packets;
|
|
|
|
* the sender of the packet decides which are to be
|
|
|
|
* time stamped by setting SOF_TIMESTAMPING_TX_SOFTWARE
|
|
|
|
* before sending the packet
|
|
|
|
*/
|
|
|
|
HWTSTAMP_TX_ON,
|
|
|
|
};
|
|
|
|
|
|
|
|
/* possible values for hwtstamp_config->rx_filter */
|
|
|
|
enum {
|
|
|
|
/* time stamp no incoming packet at all */
|
|
|
|
HWTSTAMP_FILTER_NONE,
|
|
|
|
|
|
|
|
/* time stamp any incoming packet */
|
|
|
|
HWTSTAMP_FILTER_ALL,
|
|
|
|
|
2010-04-08 12:52:07 +08:00
|
|
|
/* return value: time stamp all packets requested plus some others */
|
|
|
|
HWTSTAMP_FILTER_SOME,
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
/* PTP v1, UDP, any kind of event packet */
|
|
|
|
HWTSTAMP_FILTER_PTP_V1_L4_EVENT,
|
|
|
|
|
2010-04-08 12:52:07 +08:00
|
|
|
/* for the complete list of values, please check
|
|
|
|
* the include file /include/linux/net_tstamp.h
|
|
|
|
*/
|
2009-02-12 13:03:36 +08:00
|
|
|
};
|
|
|
|
|
2014-09-01 09:27:47 +08:00
|
|
|
3.1 Hardware Timestamping Implementation: Device Drivers
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
A driver which supports hardware time stamping must support the
|
2010-04-08 12:52:07 +08:00
|
|
|
SIOCSHWTSTAMP ioctl and update the supplied struct hwtstamp_config with
|
2013-11-14 09:19:29 +08:00
|
|
|
the actual values as described in the section on SIOCSHWTSTAMP. It
|
|
|
|
should also support SIOCGHWTSTAMP.
|
2010-04-08 12:52:07 +08:00
|
|
|
|
|
|
|
Time stamps for received packets must be stored in the skb. To get a pointer
|
|
|
|
to the shared time stamp structure of the skb call skb_hwtstamps(). Then
|
|
|
|
set the time stamps in the structure:
|
|
|
|
|
|
|
|
struct skb_shared_hwtstamps {
|
|
|
|
/* hardware time stamp transformed into duration
|
|
|
|
* since arbitrary point in time
|
|
|
|
*/
|
|
|
|
ktime_t hwtstamp;
|
|
|
|
};
|
2009-02-12 13:03:36 +08:00
|
|
|
|
|
|
|
Time stamps for outgoing packets are to be generated as follows:
|
2010-08-17 16:59:14 +08:00
|
|
|
- In hard_start_xmit(), check if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
|
|
|
|
is set no-zero. If yes, then the driver is expected to do hardware time
|
|
|
|
stamping.
|
2009-02-12 13:03:36 +08:00
|
|
|
- If this is possible for the skb and requested, then declare
|
2010-08-17 16:59:14 +08:00
|
|
|
that the driver is doing the time stamping by setting the flag
|
|
|
|
SKBTX_IN_PROGRESS in skb_shinfo(skb)->tx_flags , e.g. with
|
|
|
|
|
|
|
|
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
|
|
|
|
|
|
|
|
You might want to keep a pointer to the associated skb for the next step
|
|
|
|
and not free the skb. A driver not supporting hardware time stamping doesn't
|
|
|
|
do that. A driver must never touch sk_buff::tstamp! It is used to store
|
|
|
|
software generated time stamps by the network subsystem.
|
2014-03-17 03:32:48 +08:00
|
|
|
- Driver should call skb_tx_timestamp() as close to passing sk_buff to hardware
|
|
|
|
as possible. skb_tx_timestamp() provides a software time stamp if requested
|
|
|
|
and hardware timestamping is not possible (SKBTX_IN_PROGRESS not set).
|
2009-02-12 13:03:36 +08:00
|
|
|
- As soon as the driver has sent the packet and/or obtained a
|
|
|
|
hardware time stamp for it, it passes the time stamp back by
|
|
|
|
calling skb_hwtstamp_tx() with the original skb, the raw
|
2010-04-08 12:52:07 +08:00
|
|
|
hardware time stamp. skb_hwtstamp_tx() clones the original skb and
|
|
|
|
adds the timestamps, therefore the original skb has to be freed now.
|
|
|
|
If obtaining the hardware time stamp somehow fails, then the driver
|
|
|
|
should not fall back to software time stamping. The rationale is that
|
|
|
|
this would occur at a later time in the processing pipeline than other
|
|
|
|
software time stamping and therefore could lead to unexpected deltas
|
|
|
|
between time stamps.
|