mirror of https://gitee.com/openkylin/linux.git
429 lines
11 KiB
C
429 lines
11 KiB
C
|
/* -*- linux-c -*-
|
||
|
* linux/arch/blackfin/kernel/ipipe.c
|
||
|
*
|
||
|
* Copyright (C) 2005-2007 Philippe Gerum.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139,
|
||
|
* USA; either version 2 of the License, or (at your option) any later
|
||
|
* version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
*
|
||
|
* Architecture-dependent I-pipe support for the Blackfin.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kthread.h>
|
||
|
#include <asm/unistd.h>
|
||
|
#include <asm/system.h>
|
||
|
#include <asm/atomic.h>
|
||
|
#include <asm/io.h>
|
||
|
|
||
|
static int create_irq_threads;
|
||
|
|
||
|
DEFINE_PER_CPU(struct pt_regs, __ipipe_tick_regs);
|
||
|
|
||
|
static DEFINE_PER_CPU(unsigned long, pending_irqthread_mask);
|
||
|
|
||
|
static DEFINE_PER_CPU(int [IVG13 + 1], pending_irq_count);
|
||
|
|
||
|
asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs);
|
||
|
|
||
|
static void __ipipe_no_irqtail(void);
|
||
|
|
||
|
unsigned long __ipipe_irq_tail_hook = (unsigned long)&__ipipe_no_irqtail;
|
||
|
EXPORT_SYMBOL(__ipipe_irq_tail_hook);
|
||
|
|
||
|
unsigned long __ipipe_core_clock;
|
||
|
EXPORT_SYMBOL(__ipipe_core_clock);
|
||
|
|
||
|
unsigned long __ipipe_freq_scale;
|
||
|
EXPORT_SYMBOL(__ipipe_freq_scale);
|
||
|
|
||
|
atomic_t __ipipe_irq_lvdepth[IVG15 + 1];
|
||
|
|
||
|
unsigned long __ipipe_irq_lvmask = __all_masked_irq_flags;
|
||
|
EXPORT_SYMBOL(__ipipe_irq_lvmask);
|
||
|
|
||
|
static void __ipipe_ack_irq(unsigned irq, struct irq_desc *desc)
|
||
|
{
|
||
|
desc->ipipe_ack(irq, desc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __ipipe_enable_pipeline() -- We are running on the boot CPU, hw
|
||
|
* interrupts are off, and secondary CPUs are still lost in space.
|
||
|
*/
|
||
|
void __ipipe_enable_pipeline(void)
|
||
|
{
|
||
|
unsigned irq;
|
||
|
|
||
|
__ipipe_core_clock = get_cclk(); /* Fetch this once. */
|
||
|
__ipipe_freq_scale = 1000000000UL / __ipipe_core_clock;
|
||
|
|
||
|
for (irq = 0; irq < NR_IRQS; ++irq)
|
||
|
ipipe_virtualize_irq(ipipe_root_domain,
|
||
|
irq,
|
||
|
(ipipe_irq_handler_t)&asm_do_IRQ,
|
||
|
NULL,
|
||
|
&__ipipe_ack_irq,
|
||
|
IPIPE_HANDLE_MASK | IPIPE_PASS_MASK);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __ipipe_handle_irq() -- IPIPE's generic IRQ handler. An optimistic
|
||
|
* interrupt protection log is maintained here for each domain. Hw
|
||
|
* interrupts are masked on entry.
|
||
|
*/
|
||
|
void __ipipe_handle_irq(unsigned irq, struct pt_regs *regs)
|
||
|
{
|
||
|
struct ipipe_domain *this_domain, *next_domain;
|
||
|
struct list_head *head, *pos;
|
||
|
int m_ack, s = -1;
|
||
|
|
||
|
/*
|
||
|
* Software-triggered IRQs do not need any ack. The contents
|
||
|
* of the register frame should only be used when processing
|
||
|
* the timer interrupt, but not for handling any other
|
||
|
* interrupt.
|
||
|
*/
|
||
|
m_ack = (regs == NULL || irq == IRQ_SYSTMR || irq == IRQ_CORETMR);
|
||
|
|
||
|
this_domain = ipipe_current_domain;
|
||
|
|
||
|
if (unlikely(test_bit(IPIPE_STICKY_FLAG, &this_domain->irqs[irq].control)))
|
||
|
head = &this_domain->p_link;
|
||
|
else {
|
||
|
head = __ipipe_pipeline.next;
|
||
|
next_domain = list_entry(head, struct ipipe_domain, p_link);
|
||
|
if (likely(test_bit(IPIPE_WIRED_FLAG, &next_domain->irqs[irq].control))) {
|
||
|
if (!m_ack && next_domain->irqs[irq].acknowledge != NULL)
|
||
|
next_domain->irqs[irq].acknowledge(irq, irq_desc + irq);
|
||
|
if (test_bit(IPIPE_ROOTLOCK_FLAG, &ipipe_root_domain->flags))
|
||
|
s = __test_and_set_bit(IPIPE_STALL_FLAG,
|
||
|
&ipipe_root_cpudom_var(status));
|
||
|
__ipipe_dispatch_wired(next_domain, irq);
|
||
|
goto finalize;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Ack the interrupt. */
|
||
|
|
||
|
pos = head;
|
||
|
|
||
|
while (pos != &__ipipe_pipeline) {
|
||
|
next_domain = list_entry(pos, struct ipipe_domain, p_link);
|
||
|
/*
|
||
|
* For each domain handling the incoming IRQ, mark it
|
||
|
* as pending in its log.
|
||
|
*/
|
||
|
if (test_bit(IPIPE_HANDLE_FLAG, &next_domain->irqs[irq].control)) {
|
||
|
/*
|
||
|
* Domains that handle this IRQ are polled for
|
||
|
* acknowledging it by decreasing priority
|
||
|
* order. The interrupt must be made pending
|
||
|
* _first_ in the domain's status flags before
|
||
|
* the PIC is unlocked.
|
||
|
*/
|
||
|
__ipipe_set_irq_pending(next_domain, irq);
|
||
|
|
||
|
if (!m_ack && next_domain->irqs[irq].acknowledge != NULL) {
|
||
|
next_domain->irqs[irq].acknowledge(irq, irq_desc + irq);
|
||
|
m_ack = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the domain does not want the IRQ to be passed
|
||
|
* down the interrupt pipe, exit the loop now.
|
||
|
*/
|
||
|
if (!test_bit(IPIPE_PASS_FLAG, &next_domain->irqs[irq].control))
|
||
|
break;
|
||
|
|
||
|
pos = next_domain->p_link.next;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now walk the pipeline, yielding control to the highest
|
||
|
* priority domain that has pending interrupt(s) or
|
||
|
* immediately to the current domain if the interrupt has been
|
||
|
* marked as 'sticky'. This search does not go beyond the
|
||
|
* current domain in the pipeline. We also enforce the
|
||
|
* additional root stage lock (blackfin-specific). */
|
||
|
|
||
|
if (test_bit(IPIPE_ROOTLOCK_FLAG, &ipipe_root_domain->flags))
|
||
|
s = __test_and_set_bit(IPIPE_STALL_FLAG,
|
||
|
&ipipe_root_cpudom_var(status));
|
||
|
finalize:
|
||
|
|
||
|
__ipipe_walk_pipeline(head);
|
||
|
|
||
|
if (!s)
|
||
|
__clear_bit(IPIPE_STALL_FLAG,
|
||
|
&ipipe_root_cpudom_var(status));
|
||
|
}
|
||
|
|
||
|
int __ipipe_check_root(void)
|
||
|
{
|
||
|
return ipipe_root_domain_p;
|
||
|
}
|
||
|
|
||
|
void __ipipe_enable_irqdesc(struct ipipe_domain *ipd, unsigned irq)
|
||
|
{
|
||
|
struct irq_desc *desc = irq_desc + irq;
|
||
|
int prio = desc->ic_prio;
|
||
|
|
||
|
desc->depth = 0;
|
||
|
if (ipd != &ipipe_root &&
|
||
|
atomic_inc_return(&__ipipe_irq_lvdepth[prio]) == 1)
|
||
|
__set_bit(prio, &__ipipe_irq_lvmask);
|
||
|
}
|
||
|
EXPORT_SYMBOL(__ipipe_enable_irqdesc);
|
||
|
|
||
|
void __ipipe_disable_irqdesc(struct ipipe_domain *ipd, unsigned irq)
|
||
|
{
|
||
|
struct irq_desc *desc = irq_desc + irq;
|
||
|
int prio = desc->ic_prio;
|
||
|
|
||
|
if (ipd != &ipipe_root &&
|
||
|
atomic_dec_and_test(&__ipipe_irq_lvdepth[prio]))
|
||
|
__clear_bit(prio, &__ipipe_irq_lvmask);
|
||
|
}
|
||
|
EXPORT_SYMBOL(__ipipe_disable_irqdesc);
|
||
|
|
||
|
void __ipipe_stall_root_raw(void)
|
||
|
{
|
||
|
/*
|
||
|
* This code is called by the ins{bwl} routines (see
|
||
|
* arch/blackfin/lib/ins.S), which are heavily used by the
|
||
|
* network stack. It masks all interrupts but those handled by
|
||
|
* non-root domains, so that we keep decent network transfer
|
||
|
* rates for Linux without inducing pathological jitter for
|
||
|
* the real-time domain.
|
||
|
*/
|
||
|
__asm__ __volatile__ ("sti %0;" : : "d"(__ipipe_irq_lvmask));
|
||
|
|
||
|
__set_bit(IPIPE_STALL_FLAG,
|
||
|
&ipipe_root_cpudom_var(status));
|
||
|
}
|
||
|
|
||
|
void __ipipe_unstall_root_raw(void)
|
||
|
{
|
||
|
__clear_bit(IPIPE_STALL_FLAG,
|
||
|
&ipipe_root_cpudom_var(status));
|
||
|
|
||
|
__asm__ __volatile__ ("sti %0;" : : "d"(bfin_irq_flags));
|
||
|
}
|
||
|
|
||
|
int __ipipe_syscall_root(struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
/* We need to run the IRQ tail hook whenever we don't
|
||
|
* propagate a syscall to higher domains, because we know that
|
||
|
* important operations might be pending there (e.g. Xenomai
|
||
|
* deferred rescheduling). */
|
||
|
|
||
|
if (!__ipipe_syscall_watched_p(current, regs->orig_p0)) {
|
||
|
void (*hook)(void) = (void (*)(void))__ipipe_irq_tail_hook;
|
||
|
hook();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This routine either returns:
|
||
|
* 0 -- if the syscall is to be passed to Linux;
|
||
|
* 1 -- if the syscall should not be passed to Linux, and no
|
||
|
* tail work should be performed;
|
||
|
* -1 -- if the syscall should not be passed to Linux but the
|
||
|
* tail work has to be performed (for handling signals etc).
|
||
|
*/
|
||
|
|
||
|
if (__ipipe_event_monitored_p(IPIPE_EVENT_SYSCALL) &&
|
||
|
__ipipe_dispatch_event(IPIPE_EVENT_SYSCALL, regs) > 0) {
|
||
|
if (ipipe_root_domain_p && !in_atomic()) {
|
||
|
/*
|
||
|
* Sync pending VIRQs before _TIF_NEED_RESCHED
|
||
|
* is tested.
|
||
|
*/
|
||
|
local_irq_save_hw(flags);
|
||
|
if ((ipipe_root_cpudom_var(irqpend_himask) & IPIPE_IRQMASK_VIRT) != 0)
|
||
|
__ipipe_sync_pipeline(IPIPE_IRQMASK_VIRT);
|
||
|
local_irq_restore_hw(flags);
|
||
|
return -1;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
unsigned long ipipe_critical_enter(void (*syncfn) (void))
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
local_irq_save_hw(flags);
|
||
|
|
||
|
return flags;
|
||
|
}
|
||
|
|
||
|
void ipipe_critical_exit(unsigned long flags)
|
||
|
{
|
||
|
local_irq_restore_hw(flags);
|
||
|
}
|
||
|
|
||
|
static void __ipipe_no_irqtail(void)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
int ipipe_get_sysinfo(struct ipipe_sysinfo *info)
|
||
|
{
|
||
|
info->ncpus = num_online_cpus();
|
||
|
info->cpufreq = ipipe_cpu_freq();
|
||
|
info->archdep.tmirq = IPIPE_TIMER_IRQ;
|
||
|
info->archdep.tmfreq = info->cpufreq;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ipipe_trigger_irq() -- Push the interrupt at front of the pipeline
|
||
|
* just like if it has been actually received from a hw source. Also
|
||
|
* works for virtual interrupts.
|
||
|
*/
|
||
|
int ipipe_trigger_irq(unsigned irq)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (irq >= IPIPE_NR_IRQS ||
|
||
|
(ipipe_virtual_irq_p(irq)
|
||
|
&& !test_bit(irq - IPIPE_VIRQ_BASE, &__ipipe_virtual_irq_map)))
|
||
|
return -EINVAL;
|
||
|
|
||
|
local_irq_save_hw(flags);
|
||
|
|
||
|
__ipipe_handle_irq(irq, NULL);
|
||
|
|
||
|
local_irq_restore_hw(flags);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Move Linux IRQ to threads. */
|
||
|
|
||
|
static int do_irqd(void *__desc)
|
||
|
{
|
||
|
struct irq_desc *desc = __desc;
|
||
|
unsigned irq = desc - irq_desc;
|
||
|
int thrprio = desc->thr_prio;
|
||
|
int thrmask = 1 << thrprio;
|
||
|
int cpu = smp_processor_id();
|
||
|
cpumask_t cpumask;
|
||
|
|
||
|
sigfillset(¤t->blocked);
|
||
|
current->flags |= PF_NOFREEZE;
|
||
|
cpumask = cpumask_of_cpu(cpu);
|
||
|
set_cpus_allowed(current, cpumask);
|
||
|
ipipe_setscheduler_root(current, SCHED_FIFO, 50 + thrprio);
|
||
|
|
||
|
while (!kthread_should_stop()) {
|
||
|
local_irq_disable();
|
||
|
if (!(desc->status & IRQ_SCHEDULED)) {
|
||
|
set_current_state(TASK_INTERRUPTIBLE);
|
||
|
resched:
|
||
|
local_irq_enable();
|
||
|
schedule();
|
||
|
local_irq_disable();
|
||
|
}
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
/*
|
||
|
* If higher priority interrupt servers are ready to
|
||
|
* run, reschedule immediately. We need this for the
|
||
|
* GPIO demux IRQ handler to unmask the interrupt line
|
||
|
* _last_, after all GPIO IRQs have run.
|
||
|
*/
|
||
|
if (per_cpu(pending_irqthread_mask, cpu) & ~(thrmask|(thrmask-1)))
|
||
|
goto resched;
|
||
|
if (--per_cpu(pending_irq_count[thrprio], cpu) == 0)
|
||
|
per_cpu(pending_irqthread_mask, cpu) &= ~thrmask;
|
||
|
desc->status &= ~IRQ_SCHEDULED;
|
||
|
desc->thr_handler(irq, &__raw_get_cpu_var(__ipipe_tick_regs));
|
||
|
local_irq_enable();
|
||
|
}
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void kick_irqd(unsigned irq, void *cookie)
|
||
|
{
|
||
|
struct irq_desc *desc = irq_desc + irq;
|
||
|
int thrprio = desc->thr_prio;
|
||
|
int thrmask = 1 << thrprio;
|
||
|
int cpu = smp_processor_id();
|
||
|
|
||
|
if (!(desc->status & IRQ_SCHEDULED)) {
|
||
|
desc->status |= IRQ_SCHEDULED;
|
||
|
per_cpu(pending_irqthread_mask, cpu) |= thrmask;
|
||
|
++per_cpu(pending_irq_count[thrprio], cpu);
|
||
|
wake_up_process(desc->thread);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int ipipe_start_irq_thread(unsigned irq, struct irq_desc *desc)
|
||
|
{
|
||
|
if (desc->thread || !create_irq_threads)
|
||
|
return 0;
|
||
|
|
||
|
desc->thread = kthread_create(do_irqd, desc, "IRQ %d", irq);
|
||
|
if (desc->thread == NULL) {
|
||
|
printk(KERN_ERR "irqd: could not create IRQ thread %d!\n", irq);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
wake_up_process(desc->thread);
|
||
|
|
||
|
desc->thr_handler = ipipe_root_domain->irqs[irq].handler;
|
||
|
ipipe_root_domain->irqs[irq].handler = &kick_irqd;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __init ipipe_init_irq_threads(void)
|
||
|
{
|
||
|
unsigned irq;
|
||
|
struct irq_desc *desc;
|
||
|
|
||
|
create_irq_threads = 1;
|
||
|
|
||
|
for (irq = 0; irq < NR_IRQS; irq++) {
|
||
|
desc = irq_desc + irq;
|
||
|
if (desc->action != NULL ||
|
||
|
(desc->status & IRQ_NOREQUEST) != 0)
|
||
|
ipipe_start_irq_thread(irq, desc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(show_stack);
|
||
|
|
||
|
#ifdef CONFIG_IPIPE_TRACE_MCOUNT
|
||
|
void notrace _mcount(void);
|
||
|
EXPORT_SYMBOL(_mcount);
|
||
|
#endif /* CONFIG_IPIPE_TRACE_MCOUNT */
|