linux/arch/s390/mm/pgtable.c

758 lines
20 KiB
C
Raw Normal View History

/*
* Copyright IBM Corp. 2007,2009
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/quicklist.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#ifndef CONFIG_64BIT
#define ALLOC_ORDER 1
#define FRAG_MASK 0x0f
#else
#define ALLOC_ORDER 2
#define FRAG_MASK 0x03
#endif
unsigned long VMALLOC_START = VMALLOC_END - VMALLOC_SIZE;
EXPORT_SYMBOL(VMALLOC_START);
static int __init parse_vmalloc(char *arg)
{
if (!arg)
return -EINVAL;
VMALLOC_START = (VMALLOC_END - memparse(arg, &arg)) & PAGE_MASK;
return 0;
}
early_param("vmalloc", parse_vmalloc);
unsigned long *crst_table_alloc(struct mm_struct *mm)
{
struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
if (!page)
return NULL;
return (unsigned long *) page_to_phys(page);
}
void crst_table_free(struct mm_struct *mm, unsigned long *table)
{
free_pages((unsigned long) table, ALLOC_ORDER);
}
#ifdef CONFIG_64BIT
int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
{
unsigned long *table, *pgd;
unsigned long entry;
BUG_ON(limit > (1UL << 53));
repeat:
table = crst_table_alloc(mm);
if (!table)
return -ENOMEM;
spin_lock_bh(&mm->page_table_lock);
if (mm->context.asce_limit < limit) {
pgd = (unsigned long *) mm->pgd;
if (mm->context.asce_limit <= (1UL << 31)) {
entry = _REGION3_ENTRY_EMPTY;
mm->context.asce_limit = 1UL << 42;
mm->context.asce_bits = _ASCE_TABLE_LENGTH |
_ASCE_USER_BITS |
_ASCE_TYPE_REGION3;
} else {
entry = _REGION2_ENTRY_EMPTY;
mm->context.asce_limit = 1UL << 53;
mm->context.asce_bits = _ASCE_TABLE_LENGTH |
_ASCE_USER_BITS |
_ASCE_TYPE_REGION2;
}
crst_table_init(table, entry);
pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
mm->pgd = (pgd_t *) table;
mm->task_size = mm->context.asce_limit;
table = NULL;
}
spin_unlock_bh(&mm->page_table_lock);
if (table)
crst_table_free(mm, table);
if (mm->context.asce_limit < limit)
goto repeat;
update_mm(mm, current);
return 0;
}
void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
{
pgd_t *pgd;
if (mm->context.asce_limit <= limit)
return;
__tlb_flush_mm(mm);
while (mm->context.asce_limit > limit) {
pgd = mm->pgd;
switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
case _REGION_ENTRY_TYPE_R2:
mm->context.asce_limit = 1UL << 42;
mm->context.asce_bits = _ASCE_TABLE_LENGTH |
_ASCE_USER_BITS |
_ASCE_TYPE_REGION3;
break;
case _REGION_ENTRY_TYPE_R3:
mm->context.asce_limit = 1UL << 31;
mm->context.asce_bits = _ASCE_TABLE_LENGTH |
_ASCE_USER_BITS |
_ASCE_TYPE_SEGMENT;
break;
default:
BUG();
}
mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
mm->task_size = mm->context.asce_limit;
crst_table_free(mm, (unsigned long *) pgd);
}
update_mm(mm, current);
}
#endif
#ifdef CONFIG_PGSTE
/**
* gmap_alloc - allocate a guest address space
* @mm: pointer to the parent mm_struct
*
* Returns a guest address space structure.
*/
struct gmap *gmap_alloc(struct mm_struct *mm)
{
struct gmap *gmap;
struct page *page;
unsigned long *table;
gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
if (!gmap)
goto out;
INIT_LIST_HEAD(&gmap->crst_list);
gmap->mm = mm;
page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
if (!page)
goto out_free;
list_add(&page->lru, &gmap->crst_list);
table = (unsigned long *) page_to_phys(page);
crst_table_init(table, _REGION1_ENTRY_EMPTY);
gmap->table = table;
list_add(&gmap->list, &mm->context.gmap_list);
return gmap;
out_free:
kfree(gmap);
out:
return NULL;
}
EXPORT_SYMBOL_GPL(gmap_alloc);
static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table)
{
struct gmap_pgtable *mp;
struct gmap_rmap *rmap;
struct page *page;
if (*table & _SEGMENT_ENTRY_INV)
return 0;
page = pfn_to_page(*table >> PAGE_SHIFT);
mp = (struct gmap_pgtable *) page->index;
list_for_each_entry(rmap, &mp->mapper, list) {
if (rmap->entry != table)
continue;
list_del(&rmap->list);
kfree(rmap);
break;
}
*table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
return 1;
}
static void gmap_flush_tlb(struct gmap *gmap)
{
if (MACHINE_HAS_IDTE)
__tlb_flush_idte((unsigned long) gmap->table |
_ASCE_TYPE_REGION1);
else
__tlb_flush_global();
}
/**
* gmap_free - free a guest address space
* @gmap: pointer to the guest address space structure
*/
void gmap_free(struct gmap *gmap)
{
struct page *page, *next;
unsigned long *table;
int i;
/* Flush tlb. */
if (MACHINE_HAS_IDTE)
__tlb_flush_idte((unsigned long) gmap->table |
_ASCE_TYPE_REGION1);
else
__tlb_flush_global();
/* Free all segment & region tables. */
down_read(&gmap->mm->mmap_sem);
list_for_each_entry_safe(page, next, &gmap->crst_list, lru) {
table = (unsigned long *) page_to_phys(page);
if ((*table & _REGION_ENTRY_TYPE_MASK) == 0)
/* Remove gmap rmap structures for segment table. */
for (i = 0; i < PTRS_PER_PMD; i++, table++)
gmap_unlink_segment(gmap, table);
__free_pages(page, ALLOC_ORDER);
}
up_read(&gmap->mm->mmap_sem);
list_del(&gmap->list);
kfree(gmap);
}
EXPORT_SYMBOL_GPL(gmap_free);
/**
* gmap_enable - switch primary space to the guest address space
* @gmap: pointer to the guest address space structure
*/
void gmap_enable(struct gmap *gmap)
{
/* Load primary space page table origin. */
S390_lowcore.user_asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH |
_ASCE_USER_BITS | __pa(gmap->table);
asm volatile("lctlg 1,1,%0\n" : : "m" (S390_lowcore.user_asce) );
S390_lowcore.gmap = (unsigned long) gmap;
}
EXPORT_SYMBOL_GPL(gmap_enable);
/**
* gmap_disable - switch back to the standard primary address space
* @gmap: pointer to the guest address space structure
*/
void gmap_disable(struct gmap *gmap)
{
/* Load primary space page table origin. */
S390_lowcore.user_asce =
gmap->mm->context.asce_bits | __pa(gmap->mm->pgd);
asm volatile("lctlg 1,1,%0\n" : : "m" (S390_lowcore.user_asce) );
S390_lowcore.gmap = 0UL;
}
EXPORT_SYMBOL_GPL(gmap_disable);
static int gmap_alloc_table(struct gmap *gmap,
unsigned long *table, unsigned long init)
{
struct page *page;
unsigned long *new;
page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
if (!page)
return -ENOMEM;
new = (unsigned long *) page_to_phys(page);
crst_table_init(new, init);
down_read(&gmap->mm->mmap_sem);
if (*table & _REGION_ENTRY_INV) {
list_add(&page->lru, &gmap->crst_list);
*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
(*table & _REGION_ENTRY_TYPE_MASK);
} else
__free_pages(page, ALLOC_ORDER);
up_read(&gmap->mm->mmap_sem);
return 0;
}
/**
* gmap_unmap_segment - unmap segment from the guest address space
* @gmap: pointer to the guest address space structure
* @addr: address in the guest address space
* @len: length of the memory area to unmap
*
* Returns 0 if the unmap succeded, -EINVAL if not.
*/
int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
{
unsigned long *table;
unsigned long off;
int flush;
if ((to | len) & (PMD_SIZE - 1))
return -EINVAL;
if (len == 0 || to + len < to)
return -EINVAL;
flush = 0;
down_read(&gmap->mm->mmap_sem);
for (off = 0; off < len; off += PMD_SIZE) {
/* Walk the guest addr space page table */
table = gmap->table + (((to + off) >> 53) & 0x7ff);
if (*table & _REGION_ENTRY_INV)
return 0;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = table + (((to + off) >> 42) & 0x7ff);
if (*table & _REGION_ENTRY_INV)
return 0;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = table + (((to + off) >> 31) & 0x7ff);
if (*table & _REGION_ENTRY_INV)
return 0;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = table + (((to + off) >> 20) & 0x7ff);
/* Clear segment table entry in guest address space. */
flush |= gmap_unlink_segment(gmap, table);
*table = _SEGMENT_ENTRY_INV;
}
up_read(&gmap->mm->mmap_sem);
if (flush)
gmap_flush_tlb(gmap);
return 0;
}
EXPORT_SYMBOL_GPL(gmap_unmap_segment);
/**
* gmap_mmap_segment - map a segment to the guest address space
* @gmap: pointer to the guest address space structure
* @from: source address in the parent address space
* @to: target address in the guest address space
*
* Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not.
*/
int gmap_map_segment(struct gmap *gmap, unsigned long from,
unsigned long to, unsigned long len)
{
unsigned long *table;
unsigned long off;
int flush;
if ((from | to | len) & (PMD_SIZE - 1))
return -EINVAL;
if (len == 0 || from + len > PGDIR_SIZE ||
from + len < from || to + len < to)
return -EINVAL;
flush = 0;
down_read(&gmap->mm->mmap_sem);
for (off = 0; off < len; off += PMD_SIZE) {
/* Walk the gmap address space page table */
table = gmap->table + (((to + off) >> 53) & 0x7ff);
if ((*table & _REGION_ENTRY_INV) &&
gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY))
goto out_unmap;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = table + (((to + off) >> 42) & 0x7ff);
if ((*table & _REGION_ENTRY_INV) &&
gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY))
goto out_unmap;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = table + (((to + off) >> 31) & 0x7ff);
if ((*table & _REGION_ENTRY_INV) &&
gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY))
goto out_unmap;
table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN);
table = table + (((to + off) >> 20) & 0x7ff);
/* Store 'from' address in an invalid segment table entry. */
flush |= gmap_unlink_segment(gmap, table);
*table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | (from + off);
}
up_read(&gmap->mm->mmap_sem);
if (flush)
gmap_flush_tlb(gmap);
return 0;
out_unmap:
up_read(&gmap->mm->mmap_sem);
gmap_unmap_segment(gmap, to, len);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(gmap_map_segment);
unsigned long gmap_fault(unsigned long address, struct gmap *gmap)
{
unsigned long *table, vmaddr, segment;
struct mm_struct *mm;
struct gmap_pgtable *mp;
struct gmap_rmap *rmap;
struct vm_area_struct *vma;
struct page *page;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
current->thread.gmap_addr = address;
mm = gmap->mm;
/* Walk the gmap address space page table */
table = gmap->table + ((address >> 53) & 0x7ff);
if (unlikely(*table & _REGION_ENTRY_INV))
return -EFAULT;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = table + ((address >> 42) & 0x7ff);
if (unlikely(*table & _REGION_ENTRY_INV))
return -EFAULT;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = table + ((address >> 31) & 0x7ff);
if (unlikely(*table & _REGION_ENTRY_INV))
return -EFAULT;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = table + ((address >> 20) & 0x7ff);
/* Convert the gmap address to an mm address. */
segment = *table;
if (likely(!(segment & _SEGMENT_ENTRY_INV))) {
page = pfn_to_page(segment >> PAGE_SHIFT);
mp = (struct gmap_pgtable *) page->index;
return mp->vmaddr | (address & ~PMD_MASK);
} else if (segment & _SEGMENT_ENTRY_RO) {
vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
vma = find_vma(mm, vmaddr);
if (!vma || vma->vm_start > vmaddr)
return -EFAULT;
/* Walk the parent mm page table */
pgd = pgd_offset(mm, vmaddr);
pud = pud_alloc(mm, pgd, vmaddr);
if (!pud)
return -ENOMEM;
pmd = pmd_alloc(mm, pud, vmaddr);
if (!pmd)
return -ENOMEM;
if (!pmd_present(*pmd) &&
__pte_alloc(mm, vma, pmd, vmaddr))
return -ENOMEM;
/* pmd now points to a valid segment table entry. */
rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT);
if (!rmap)
return -ENOMEM;
/* Link gmap segment table entry location to page table. */
page = pmd_page(*pmd);
mp = (struct gmap_pgtable *) page->index;
rmap->entry = table;
list_add(&rmap->list, &mp->mapper);
/* Set gmap segment table entry to page table. */
*table = pmd_val(*pmd) & PAGE_MASK;
return vmaddr | (address & ~PMD_MASK);
}
return -EFAULT;
}
EXPORT_SYMBOL_GPL(gmap_fault);
void gmap_unmap_notifier(struct mm_struct *mm, unsigned long *table)
{
struct gmap_rmap *rmap, *next;
struct gmap_pgtable *mp;
struct page *page;
int flush;
flush = 0;
spin_lock(&mm->page_table_lock);
page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
mp = (struct gmap_pgtable *) page->index;
list_for_each_entry_safe(rmap, next, &mp->mapper, list) {
*rmap->entry =
_SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
list_del(&rmap->list);
kfree(rmap);
flush = 1;
}
spin_unlock(&mm->page_table_lock);
if (flush)
__tlb_flush_global();
}
static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
unsigned long vmaddr)
{
struct page *page;
unsigned long *table;
struct gmap_pgtable *mp;
page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
if (!page)
return NULL;
mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT);
if (!mp) {
__free_page(page);
return NULL;
}
pgtable_page_ctor(page);
mp->vmaddr = vmaddr & PMD_MASK;
INIT_LIST_HEAD(&mp->mapper);
page->index = (unsigned long) mp;
atomic_set(&page->_mapcount, 3);
table = (unsigned long *) page_to_phys(page);
clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE/2);
clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
return table;
}
static inline void page_table_free_pgste(unsigned long *table)
{
struct page *page;
struct gmap_pgtable *mp;
page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
mp = (struct gmap_pgtable *) page->index;
BUG_ON(!list_empty(&mp->mapper));
pgtable_page_ctor(page);
atomic_set(&page->_mapcount, -1);
kfree(mp);
__free_page(page);
}
#else /* CONFIG_PGSTE */
static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
unsigned long vmaddr)
{
return NULL;
}
static inline void page_table_free_pgste(unsigned long *table)
{
}
static inline void gmap_unmap_notifier(struct mm_struct *mm,
unsigned long *table)
{
}
#endif /* CONFIG_PGSTE */
static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
{
unsigned int old, new;
do {
old = atomic_read(v);
new = old ^ bits;
} while (atomic_cmpxchg(v, old, new) != old);
return new;
}
/*
* page table entry allocation/free routines.
*/
unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr)
{
struct page *page;
unsigned long *table;
unsigned int mask, bit;
if (mm_has_pgste(mm))
return page_table_alloc_pgste(mm, vmaddr);
/* Allocate fragments of a 4K page as 1K/2K page table */
spin_lock_bh(&mm->context.list_lock);
mask = FRAG_MASK;
if (!list_empty(&mm->context.pgtable_list)) {
page = list_first_entry(&mm->context.pgtable_list,
struct page, lru);
table = (unsigned long *) page_to_phys(page);
mask = atomic_read(&page->_mapcount);
mask = mask | (mask >> 4);
}
if ((mask & FRAG_MASK) == FRAG_MASK) {
spin_unlock_bh(&mm->context.list_lock);
page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
if (!page)
return NULL;
pgtable_page_ctor(page);
atomic_set(&page->_mapcount, 1);
table = (unsigned long *) page_to_phys(page);
clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE);
spin_lock_bh(&mm->context.list_lock);
list_add(&page->lru, &mm->context.pgtable_list);
} else {
for (bit = 1; mask & bit; bit <<= 1)
table += PTRS_PER_PTE;
mask = atomic_xor_bits(&page->_mapcount, bit);
if ((mask & FRAG_MASK) == FRAG_MASK)
list_del(&page->lru);
}
spin_unlock_bh(&mm->context.list_lock);
return table;
}
void page_table_free(struct mm_struct *mm, unsigned long *table)
{
struct page *page;
unsigned int bit, mask;
if (mm_has_pgste(mm)) {
gmap_unmap_notifier(mm, table);
return page_table_free_pgste(table);
}
/* Free 1K/2K page table fragment of a 4K page */
page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
spin_lock_bh(&mm->context.list_lock);
if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
list_del(&page->lru);
mask = atomic_xor_bits(&page->_mapcount, bit);
if (mask & FRAG_MASK)
list_add(&page->lru, &mm->context.pgtable_list);
spin_unlock_bh(&mm->context.list_lock);
if (mask == 0) {
pgtable_page_dtor(page);
atomic_set(&page->_mapcount, -1);
__free_page(page);
}
}
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
static void __page_table_free_rcu(void *table, unsigned bit)
{
struct page *page;
if (bit == FRAG_MASK)
return page_table_free_pgste(table);
/* Free 1K/2K page table fragment of a 4K page */
page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
pgtable_page_dtor(page);
atomic_set(&page->_mapcount, -1);
__free_page(page);
}
}
void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table)
{
struct mm_struct *mm;
struct page *page;
unsigned int bit, mask;
mm = tlb->mm;
if (mm_has_pgste(mm)) {
gmap_unmap_notifier(mm, table);
table = (unsigned long *) (__pa(table) | FRAG_MASK);
tlb_remove_table(tlb, table);
return;
}
bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
spin_lock_bh(&mm->context.list_lock);
if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
list_del(&page->lru);
mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
if (mask & FRAG_MASK)
list_add_tail(&page->lru, &mm->context.pgtable_list);
spin_unlock_bh(&mm->context.list_lock);
table = (unsigned long *) (__pa(table) | (bit << 4));
tlb_remove_table(tlb, table);
}
void __tlb_remove_table(void *_table)
{
void *table = (void *)((unsigned long) _table & PAGE_MASK);
unsigned type = (unsigned long) _table & ~PAGE_MASK;
if (type)
__page_table_free_rcu(table, type);
else
free_pages((unsigned long) table, ALLOC_ORDER);
}
#endif
/*
* switch on pgstes for its userspace process (for kvm)
*/
int s390_enable_sie(void)
{
struct task_struct *tsk = current;
struct mm_struct *mm, *old_mm;
/* Do we have switched amode? If no, we cannot do sie */
if (user_mode == HOME_SPACE_MODE)
return -EINVAL;
/* Do we have pgstes? if yes, we are done */
if (mm_has_pgste(tsk->mm))
return 0;
/* lets check if we are allowed to replace the mm */
task_lock(tsk);
if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
#ifdef CONFIG_AIO
!hlist_empty(&tsk->mm->ioctx_list) ||
#endif
tsk->mm != tsk->active_mm) {
task_unlock(tsk);
return -EINVAL;
}
task_unlock(tsk);
/* we copy the mm and let dup_mm create the page tables with_pgstes */
tsk->mm->context.alloc_pgste = 1;
mm = dup_mm(tsk);
tsk->mm->context.alloc_pgste = 0;
if (!mm)
return -ENOMEM;
/* Now lets check again if something happened */
task_lock(tsk);
if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
#ifdef CONFIG_AIO
!hlist_empty(&tsk->mm->ioctx_list) ||
#endif
tsk->mm != tsk->active_mm) {
mmput(mm);
task_unlock(tsk);
return -EINVAL;
}
/* ok, we are alone. No ptrace, no threads, etc. */
old_mm = tsk->mm;
tsk->mm = tsk->active_mm = mm;
preempt_disable();
update_mm(mm, tsk);
atomic_inc(&mm->context.attach_count);
atomic_dec(&old_mm->context.attach_count);
cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
preempt_enable();
task_unlock(tsk);
mmput(old_mm);
return 0;
}
EXPORT_SYMBOL_GPL(s390_enable_sie);
#if defined(CONFIG_DEBUG_PAGEALLOC) && defined(CONFIG_HIBERNATION)
bool kernel_page_present(struct page *page)
{
unsigned long addr;
int cc;
addr = page_to_phys(page);
asm volatile(
" lra %1,0(%1)\n"
" ipm %0\n"
" srl %0,28"
: "=d" (cc), "+a" (addr) : : "cc");
return cc == 0;
}
#endif /* CONFIG_HIBERNATION && CONFIG_DEBUG_PAGEALLOC */