linux/arch/x86/kernel/cpu/microcode/core.c

910 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* CPU Microcode Update Driver for Linux
*
* Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
* 2006 Shaohua Li <shaohua.li@intel.com>
* 2013-2016 Borislav Petkov <bp@alien8.de>
*
* X86 CPU microcode early update for Linux:
*
* Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
* H Peter Anvin" <hpa@zytor.com>
* (C) 2015 Borislav Petkov <bp@alien8.de>
*
* This driver allows to upgrade microcode on x86 processors.
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/platform_device.h>
#include <linux/stop_machine.h>
#include <linux/syscore_ops.h>
#include <linux/miscdevice.h>
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
#include <linux/capability.h>
#include <linux/firmware.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/cpu.h>
#include <linux/nmi.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <asm/microcode_intel.h>
#include <asm/cpu_device_id.h>
#include <asm/microcode_amd.h>
#include <asm/perf_event.h>
#include <asm/microcode.h>
#include <asm/processor.h>
#include <asm/cmdline.h>
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 17:55:21 +08:00
#include <asm/setup.h>
#define DRIVER_VERSION "2.2"
static struct microcode_ops *microcode_ops;
static bool dis_ucode_ldr = true;
x86/microcode: Do not access the initrd after it has been freed When we look for microcode blobs, we first try builtin and if that doesn't succeed, we fallback to the initrd supplied to the kernel. However, at some point doing boot, that initrd gets jettisoned and we shouldn't access it anymore. But we do, as the below KASAN report shows. That's because find_microcode_in_initrd() doesn't check whether the initrd is still valid or not. So do that. ================================================================== BUG: KASAN: use-after-free in find_cpio_data Read of size 1 by task swapper/1/0 page:ffffea0000db9d40 count:0 mapcount:0 mapping: (null) index:0x1 flags: 0x100000000000000() raw: 0100000000000000 0000000000000000 0000000000000001 00000000ffffffff raw: dead000000000100 dead000000000200 0000000000000000 0000000000000000 page dumped because: kasan: bad access detected CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 4.10.0-rc5-debug-00075-g2dbde22 #3 Hardware name: Dell Inc. XPS 13 9360/0839Y6, BIOS 1.2.3 12/01/2016 Call Trace: dump_stack ? _atomic_dec_and_lock ? __dump_page kasan_report_error ? pointer ? find_cpio_data __asan_report_load1_noabort ? find_cpio_data find_cpio_data ? vsprintf ? dump_stack ? get_ucode_user ? print_usage_bug find_microcode_in_initrd __load_ucode_intel ? collect_cpu_info_early ? debug_check_no_locks_freed load_ucode_intel_ap ? collect_cpu_info ? trace_hardirqs_on ? flat_send_IPI_mask_allbutself load_ucode_ap ? get_builtin_firmware ? flush_tlb_func ? do_raw_spin_trylock ? cpumask_weight cpu_init ? trace_hardirqs_off ? play_dead_common ? native_play_dead ? hlt_play_dead ? syscall_init ? arch_cpu_idle_dead ? do_idle start_secondary start_cpu Memory state around the buggy address: ffff880036e74f00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e74f80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff880036e75000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff880036e75080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e75100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Tested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170126165833.evjemhbqzaepirxo@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-26 04:00:48 +08:00
bool initrd_gone;
LIST_HEAD(microcode_cache);
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
/*
* Synchronization.
*
* All non cpu-hotplug-callback call sites use:
*
* - microcode_mutex to synchronize with each other;
* - get/put_online_cpus() to synchronize with
* the cpu-hotplug-callback call sites.
*
* We guarantee that only a single cpu is being
* updated at any particular moment of time.
*/
static DEFINE_MUTEX(microcode_mutex);
struct ucode_cpu_info ucode_cpu_info[NR_CPUS];
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
struct cpu_info_ctx {
struct cpu_signature *cpu_sig;
int err;
};
/*
* Those patch levels cannot be updated to newer ones and thus should be final.
*/
static u32 final_levels[] = {
0x01000098,
0x0100009f,
0x010000af,
0, /* T-101 terminator */
};
/*
* Check the current patch level on this CPU.
*
* Returns:
* - true: if update should stop
* - false: otherwise
*/
static bool amd_check_current_patch_level(void)
{
u32 lvl, dummy, i;
u32 *levels;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
if (IS_ENABLED(CONFIG_X86_32))
levels = (u32 *)__pa_nodebug(&final_levels);
else
levels = final_levels;
for (i = 0; levels[i]; i++) {
if (lvl == levels[i])
return true;
}
return false;
}
static bool __init check_loader_disabled_bsp(void)
{
static const char *__dis_opt_str = "dis_ucode_ldr";
#ifdef CONFIG_X86_32
const char *cmdline = (const char *)__pa_nodebug(boot_command_line);
const char *option = (const char *)__pa_nodebug(__dis_opt_str);
bool *res = (bool *)__pa_nodebug(&dis_ucode_ldr);
#else /* CONFIG_X86_64 */
const char *cmdline = boot_command_line;
const char *option = __dis_opt_str;
bool *res = &dis_ucode_ldr;
#endif
/*
* CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
* completely accurate as xen pv guests don't see that CPUID bit set but
* that's good enough as they don't land on the BSP path anyway.
*/
if (native_cpuid_ecx(1) & BIT(31))
return *res;
if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
if (amd_check_current_patch_level())
return *res;
}
if (cmdline_find_option_bool(cmdline, option) <= 0)
*res = false;
return *res;
}
extern struct builtin_fw __start_builtin_fw[];
extern struct builtin_fw __end_builtin_fw[];
bool get_builtin_firmware(struct cpio_data *cd, const char *name)
{
struct builtin_fw *b_fw;
for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
if (!strcmp(name, b_fw->name)) {
cd->size = b_fw->size;
cd->data = b_fw->data;
return true;
}
}
return false;
}
void __init load_ucode_bsp(void)
{
unsigned int cpuid_1_eax;
bool intel = true;
if (!have_cpuid_p())
return;
cpuid_1_eax = native_cpuid_eax(1);
switch (x86_cpuid_vendor()) {
case X86_VENDOR_INTEL:
if (x86_family(cpuid_1_eax) < 6)
return;
break;
case X86_VENDOR_AMD:
if (x86_family(cpuid_1_eax) < 0x10)
return;
intel = false;
break;
default:
return;
}
if (check_loader_disabled_bsp())
return;
if (intel)
load_ucode_intel_bsp();
else
load_ucode_amd_bsp(cpuid_1_eax);
}
static bool check_loader_disabled_ap(void)
{
#ifdef CONFIG_X86_32
return *((bool *)__pa_nodebug(&dis_ucode_ldr));
#else
return dis_ucode_ldr;
#endif
}
void load_ucode_ap(void)
{
unsigned int cpuid_1_eax;
if (check_loader_disabled_ap())
return;
cpuid_1_eax = native_cpuid_eax(1);
switch (x86_cpuid_vendor()) {
case X86_VENDOR_INTEL:
if (x86_family(cpuid_1_eax) >= 6)
load_ucode_intel_ap();
break;
case X86_VENDOR_AMD:
if (x86_family(cpuid_1_eax) >= 0x10)
load_ucode_amd_ap(cpuid_1_eax);
break;
default:
break;
}
}
static int __init save_microcode_in_initrd(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
x86/microcode: Do not access the initrd after it has been freed When we look for microcode blobs, we first try builtin and if that doesn't succeed, we fallback to the initrd supplied to the kernel. However, at some point doing boot, that initrd gets jettisoned and we shouldn't access it anymore. But we do, as the below KASAN report shows. That's because find_microcode_in_initrd() doesn't check whether the initrd is still valid or not. So do that. ================================================================== BUG: KASAN: use-after-free in find_cpio_data Read of size 1 by task swapper/1/0 page:ffffea0000db9d40 count:0 mapcount:0 mapping: (null) index:0x1 flags: 0x100000000000000() raw: 0100000000000000 0000000000000000 0000000000000001 00000000ffffffff raw: dead000000000100 dead000000000200 0000000000000000 0000000000000000 page dumped because: kasan: bad access detected CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 4.10.0-rc5-debug-00075-g2dbde22 #3 Hardware name: Dell Inc. XPS 13 9360/0839Y6, BIOS 1.2.3 12/01/2016 Call Trace: dump_stack ? _atomic_dec_and_lock ? __dump_page kasan_report_error ? pointer ? find_cpio_data __asan_report_load1_noabort ? find_cpio_data find_cpio_data ? vsprintf ? dump_stack ? get_ucode_user ? print_usage_bug find_microcode_in_initrd __load_ucode_intel ? collect_cpu_info_early ? debug_check_no_locks_freed load_ucode_intel_ap ? collect_cpu_info ? trace_hardirqs_on ? flat_send_IPI_mask_allbutself load_ucode_ap ? get_builtin_firmware ? flush_tlb_func ? do_raw_spin_trylock ? cpumask_weight cpu_init ? trace_hardirqs_off ? play_dead_common ? native_play_dead ? hlt_play_dead ? syscall_init ? arch_cpu_idle_dead ? do_idle start_secondary start_cpu Memory state around the buggy address: ffff880036e74f00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e74f80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff880036e75000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff880036e75080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e75100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Tested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170126165833.evjemhbqzaepirxo@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-26 04:00:48 +08:00
int ret = -EINVAL;
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
if (c->x86 >= 6)
x86/microcode: Do not access the initrd after it has been freed When we look for microcode blobs, we first try builtin and if that doesn't succeed, we fallback to the initrd supplied to the kernel. However, at some point doing boot, that initrd gets jettisoned and we shouldn't access it anymore. But we do, as the below KASAN report shows. That's because find_microcode_in_initrd() doesn't check whether the initrd is still valid or not. So do that. ================================================================== BUG: KASAN: use-after-free in find_cpio_data Read of size 1 by task swapper/1/0 page:ffffea0000db9d40 count:0 mapcount:0 mapping: (null) index:0x1 flags: 0x100000000000000() raw: 0100000000000000 0000000000000000 0000000000000001 00000000ffffffff raw: dead000000000100 dead000000000200 0000000000000000 0000000000000000 page dumped because: kasan: bad access detected CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 4.10.0-rc5-debug-00075-g2dbde22 #3 Hardware name: Dell Inc. XPS 13 9360/0839Y6, BIOS 1.2.3 12/01/2016 Call Trace: dump_stack ? _atomic_dec_and_lock ? __dump_page kasan_report_error ? pointer ? find_cpio_data __asan_report_load1_noabort ? find_cpio_data find_cpio_data ? vsprintf ? dump_stack ? get_ucode_user ? print_usage_bug find_microcode_in_initrd __load_ucode_intel ? collect_cpu_info_early ? debug_check_no_locks_freed load_ucode_intel_ap ? collect_cpu_info ? trace_hardirqs_on ? flat_send_IPI_mask_allbutself load_ucode_ap ? get_builtin_firmware ? flush_tlb_func ? do_raw_spin_trylock ? cpumask_weight cpu_init ? trace_hardirqs_off ? play_dead_common ? native_play_dead ? hlt_play_dead ? syscall_init ? arch_cpu_idle_dead ? do_idle start_secondary start_cpu Memory state around the buggy address: ffff880036e74f00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e74f80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff880036e75000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff880036e75080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e75100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Tested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170126165833.evjemhbqzaepirxo@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-26 04:00:48 +08:00
ret = save_microcode_in_initrd_intel();
break;
case X86_VENDOR_AMD:
if (c->x86 >= 0x10)
x86/microcode: Fix again accessing initrd after having been freed Commit 24c2503255d3 ("x86/microcode: Do not access the initrd after it has been freed") fixed attempts to access initrd from the microcode loader after it has been freed. However, a similar KASAN warning was reported (stack trace edited): smpboot: Booting Node 0 Processor 1 APIC 0x11 ================================================================== BUG: KASAN: use-after-free in find_cpio_data+0x9b5/0xa50 Read of size 1 at addr ffff880035ffd000 by task swapper/1/0 CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.14.8-slack #7 Hardware name: System manufacturer System Product Name/A88X-PLUS, BIOS 3003 03/10/2016 Call Trace: dump_stack print_address_description kasan_report ? find_cpio_data __asan_report_load1_noabort find_cpio_data find_microcode_in_initrd __load_ucode_amd load_ucode_amd_ap load_ucode_ap After some investigation, it turned out that a merge was done using the wrong side to resolve, leading to picking up the previous state, before the 24c2503255d3 fix. Therefore the Fixes tag below contains a merge commit. Revert the mismerge by catching the save_microcode_in_initrd_amd() retval and thus letting the function exit with the last return statement so that initrd_gone can be set to true. Fixes: f26483eaedec ("Merge branch 'x86/urgent' into x86/microcode, to resolve conflicts") Reported-by: <higuita@gmx.net> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=198295 Link: https://lkml.kernel.org/r/20180123104133.918-2-bp@alien8.de
2018-01-23 18:41:33 +08:00
ret = save_microcode_in_initrd_amd(cpuid_eax(1));
break;
default:
break;
}
x86/microcode: Do not access the initrd after it has been freed When we look for microcode blobs, we first try builtin and if that doesn't succeed, we fallback to the initrd supplied to the kernel. However, at some point doing boot, that initrd gets jettisoned and we shouldn't access it anymore. But we do, as the below KASAN report shows. That's because find_microcode_in_initrd() doesn't check whether the initrd is still valid or not. So do that. ================================================================== BUG: KASAN: use-after-free in find_cpio_data Read of size 1 by task swapper/1/0 page:ffffea0000db9d40 count:0 mapcount:0 mapping: (null) index:0x1 flags: 0x100000000000000() raw: 0100000000000000 0000000000000000 0000000000000001 00000000ffffffff raw: dead000000000100 dead000000000200 0000000000000000 0000000000000000 page dumped because: kasan: bad access detected CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 4.10.0-rc5-debug-00075-g2dbde22 #3 Hardware name: Dell Inc. XPS 13 9360/0839Y6, BIOS 1.2.3 12/01/2016 Call Trace: dump_stack ? _atomic_dec_and_lock ? __dump_page kasan_report_error ? pointer ? find_cpio_data __asan_report_load1_noabort ? find_cpio_data find_cpio_data ? vsprintf ? dump_stack ? get_ucode_user ? print_usage_bug find_microcode_in_initrd __load_ucode_intel ? collect_cpu_info_early ? debug_check_no_locks_freed load_ucode_intel_ap ? collect_cpu_info ? trace_hardirqs_on ? flat_send_IPI_mask_allbutself load_ucode_ap ? get_builtin_firmware ? flush_tlb_func ? do_raw_spin_trylock ? cpumask_weight cpu_init ? trace_hardirqs_off ? play_dead_common ? native_play_dead ? hlt_play_dead ? syscall_init ? arch_cpu_idle_dead ? do_idle start_secondary start_cpu Memory state around the buggy address: ffff880036e74f00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e74f80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff880036e75000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff880036e75080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e75100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Tested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170126165833.evjemhbqzaepirxo@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-26 04:00:48 +08:00
initrd_gone = true;
return ret;
}
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 17:55:21 +08:00
struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa)
{
#ifdef CONFIG_BLK_DEV_INITRD
unsigned long start = 0;
size_t size;
#ifdef CONFIG_X86_32
struct boot_params *params;
if (use_pa)
params = (struct boot_params *)__pa_nodebug(&boot_params);
else
params = &boot_params;
size = params->hdr.ramdisk_size;
/*
* Set start only if we have an initrd image. We cannot use initrd_start
* because it is not set that early yet.
*/
if (size)
start = params->hdr.ramdisk_image;
# else /* CONFIG_X86_64 */
size = (unsigned long)boot_params.ext_ramdisk_size << 32;
size |= boot_params.hdr.ramdisk_size;
if (size) {
start = (unsigned long)boot_params.ext_ramdisk_image << 32;
start |= boot_params.hdr.ramdisk_image;
start += PAGE_OFFSET;
}
# endif
/*
* Fixup the start address: after reserve_initrd() runs, initrd_start
* has the virtual address of the beginning of the initrd. It also
* possibly relocates the ramdisk. In either case, initrd_start contains
* the updated address so use that instead.
x86/microcode: Do not access the initrd after it has been freed When we look for microcode blobs, we first try builtin and if that doesn't succeed, we fallback to the initrd supplied to the kernel. However, at some point doing boot, that initrd gets jettisoned and we shouldn't access it anymore. But we do, as the below KASAN report shows. That's because find_microcode_in_initrd() doesn't check whether the initrd is still valid or not. So do that. ================================================================== BUG: KASAN: use-after-free in find_cpio_data Read of size 1 by task swapper/1/0 page:ffffea0000db9d40 count:0 mapcount:0 mapping: (null) index:0x1 flags: 0x100000000000000() raw: 0100000000000000 0000000000000000 0000000000000001 00000000ffffffff raw: dead000000000100 dead000000000200 0000000000000000 0000000000000000 page dumped because: kasan: bad access detected CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 4.10.0-rc5-debug-00075-g2dbde22 #3 Hardware name: Dell Inc. XPS 13 9360/0839Y6, BIOS 1.2.3 12/01/2016 Call Trace: dump_stack ? _atomic_dec_and_lock ? __dump_page kasan_report_error ? pointer ? find_cpio_data __asan_report_load1_noabort ? find_cpio_data find_cpio_data ? vsprintf ? dump_stack ? get_ucode_user ? print_usage_bug find_microcode_in_initrd __load_ucode_intel ? collect_cpu_info_early ? debug_check_no_locks_freed load_ucode_intel_ap ? collect_cpu_info ? trace_hardirqs_on ? flat_send_IPI_mask_allbutself load_ucode_ap ? get_builtin_firmware ? flush_tlb_func ? do_raw_spin_trylock ? cpumask_weight cpu_init ? trace_hardirqs_off ? play_dead_common ? native_play_dead ? hlt_play_dead ? syscall_init ? arch_cpu_idle_dead ? do_idle start_secondary start_cpu Memory state around the buggy address: ffff880036e74f00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e74f80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff880036e75000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff880036e75080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e75100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Tested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170126165833.evjemhbqzaepirxo@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-26 04:00:48 +08:00
*
* initrd_gone is for the hotplug case where we've thrown out initrd
* already.
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 17:55:21 +08:00
*/
x86/microcode: Do not access the initrd after it has been freed When we look for microcode blobs, we first try builtin and if that doesn't succeed, we fallback to the initrd supplied to the kernel. However, at some point doing boot, that initrd gets jettisoned and we shouldn't access it anymore. But we do, as the below KASAN report shows. That's because find_microcode_in_initrd() doesn't check whether the initrd is still valid or not. So do that. ================================================================== BUG: KASAN: use-after-free in find_cpio_data Read of size 1 by task swapper/1/0 page:ffffea0000db9d40 count:0 mapcount:0 mapping: (null) index:0x1 flags: 0x100000000000000() raw: 0100000000000000 0000000000000000 0000000000000001 00000000ffffffff raw: dead000000000100 dead000000000200 0000000000000000 0000000000000000 page dumped because: kasan: bad access detected CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 4.10.0-rc5-debug-00075-g2dbde22 #3 Hardware name: Dell Inc. XPS 13 9360/0839Y6, BIOS 1.2.3 12/01/2016 Call Trace: dump_stack ? _atomic_dec_and_lock ? __dump_page kasan_report_error ? pointer ? find_cpio_data __asan_report_load1_noabort ? find_cpio_data find_cpio_data ? vsprintf ? dump_stack ? get_ucode_user ? print_usage_bug find_microcode_in_initrd __load_ucode_intel ? collect_cpu_info_early ? debug_check_no_locks_freed load_ucode_intel_ap ? collect_cpu_info ? trace_hardirqs_on ? flat_send_IPI_mask_allbutself load_ucode_ap ? get_builtin_firmware ? flush_tlb_func ? do_raw_spin_trylock ? cpumask_weight cpu_init ? trace_hardirqs_off ? play_dead_common ? native_play_dead ? hlt_play_dead ? syscall_init ? arch_cpu_idle_dead ? do_idle start_secondary start_cpu Memory state around the buggy address: ffff880036e74f00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e74f80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff880036e75000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff880036e75080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e75100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Tested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170126165833.evjemhbqzaepirxo@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-26 04:00:48 +08:00
if (!use_pa) {
if (initrd_gone)
return (struct cpio_data){ NULL, 0, "" };
if (initrd_start)
start = initrd_start;
} else {
/*
* The picture with physical addresses is a bit different: we
* need to get the *physical* address to which the ramdisk was
* relocated, i.e., relocated_ramdisk (not initrd_start) and
* since we're running from physical addresses, we need to access
* relocated_ramdisk through its *physical* address too.
*/
u64 *rr = (u64 *)__pa_nodebug(&relocated_ramdisk);
if (*rr)
start = *rr;
x86/microcode: Do not access the initrd after it has been freed When we look for microcode blobs, we first try builtin and if that doesn't succeed, we fallback to the initrd supplied to the kernel. However, at some point doing boot, that initrd gets jettisoned and we shouldn't access it anymore. But we do, as the below KASAN report shows. That's because find_microcode_in_initrd() doesn't check whether the initrd is still valid or not. So do that. ================================================================== BUG: KASAN: use-after-free in find_cpio_data Read of size 1 by task swapper/1/0 page:ffffea0000db9d40 count:0 mapcount:0 mapping: (null) index:0x1 flags: 0x100000000000000() raw: 0100000000000000 0000000000000000 0000000000000001 00000000ffffffff raw: dead000000000100 dead000000000200 0000000000000000 0000000000000000 page dumped because: kasan: bad access detected CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 4.10.0-rc5-debug-00075-g2dbde22 #3 Hardware name: Dell Inc. XPS 13 9360/0839Y6, BIOS 1.2.3 12/01/2016 Call Trace: dump_stack ? _atomic_dec_and_lock ? __dump_page kasan_report_error ? pointer ? find_cpio_data __asan_report_load1_noabort ? find_cpio_data find_cpio_data ? vsprintf ? dump_stack ? get_ucode_user ? print_usage_bug find_microcode_in_initrd __load_ucode_intel ? collect_cpu_info_early ? debug_check_no_locks_freed load_ucode_intel_ap ? collect_cpu_info ? trace_hardirqs_on ? flat_send_IPI_mask_allbutself load_ucode_ap ? get_builtin_firmware ? flush_tlb_func ? do_raw_spin_trylock ? cpumask_weight cpu_init ? trace_hardirqs_off ? play_dead_common ? native_play_dead ? hlt_play_dead ? syscall_init ? arch_cpu_idle_dead ? do_idle start_secondary start_cpu Memory state around the buggy address: ffff880036e74f00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e74f80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff880036e75000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff880036e75080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff880036e75100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Tested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170126165833.evjemhbqzaepirxo@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-26 04:00:48 +08:00
}
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 17:55:21 +08:00
return find_cpio_data(path, (void *)start, size, NULL);
#else /* !CONFIG_BLK_DEV_INITRD */
return (struct cpio_data){ NULL, 0, "" };
#endif
}
void reload_early_microcode(void)
{
int vendor, family;
vendor = x86_cpuid_vendor();
family = x86_cpuid_family();
switch (vendor) {
case X86_VENDOR_INTEL:
if (family >= 6)
reload_ucode_intel();
break;
case X86_VENDOR_AMD:
if (family >= 0x10)
reload_ucode_amd();
break;
default:
break;
}
}
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
static void collect_cpu_info_local(void *arg)
{
struct cpu_info_ctx *ctx = arg;
ctx->err = microcode_ops->collect_cpu_info(smp_processor_id(),
ctx->cpu_sig);
}
static int collect_cpu_info_on_target(int cpu, struct cpu_signature *cpu_sig)
{
struct cpu_info_ctx ctx = { .cpu_sig = cpu_sig, .err = 0 };
int ret;
ret = smp_call_function_single(cpu, collect_cpu_info_local, &ctx, 1);
if (!ret)
ret = ctx.err;
return ret;
}
static int collect_cpu_info(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
int ret;
memset(uci, 0, sizeof(*uci));
ret = collect_cpu_info_on_target(cpu, &uci->cpu_sig);
if (!ret)
uci->valid = 1;
return ret;
}
static void apply_microcode_local(void *arg)
{
enum ucode_state *err = arg;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
*err = microcode_ops->apply_microcode(smp_processor_id());
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
}
static int apply_microcode_on_target(int cpu)
{
enum ucode_state err;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
int ret;
ret = smp_call_function_single(cpu, apply_microcode_local, &err, 1);
if (!ret) {
if (err == UCODE_ERROR)
ret = 1;
}
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
return ret;
}
#ifdef CONFIG_MICROCODE_OLD_INTERFACE
static int do_microcode_update(const void __user *buf, size_t size)
{
int error = 0;
int cpu;
for_each_online_cpu(cpu) {
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
enum ucode_state ustate;
if (!uci->valid)
continue;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
ustate = microcode_ops->request_microcode_user(cpu, buf, size);
if (ustate == UCODE_ERROR) {
error = -1;
break;
} else if (ustate == UCODE_NEW) {
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
apply_microcode_on_target(cpu);
}
}
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
return error;
}
static int microcode_open(struct inode *inode, struct file *file)
{
*: convert stream-like files from nonseekable_open -> stream_open Using scripts/coccinelle/api/stream_open.cocci added in 10dce8af3422 ("fs: stream_open - opener for stream-like files so that read and write can run simultaneously without deadlock"), search and convert to stream_open all in-kernel nonseekable_open users for which read and write actually do not depend on ppos and where there is no other methods in file_operations which assume @offset access. I've verified each generated change manually - that it is correct to convert - and each other nonseekable_open instance left - that it is either not correct to convert there, or that it is not converted due to current stream_open.cocci limitations. The script also does not convert files that should be valid to convert, but that currently have .llseek = noop_llseek or generic_file_llseek for unknown reason despite file being opened with nonseekable_open (e.g. drivers/input/mousedev.c) Among cases converted 14 were potentially vulnerable to read vs write deadlock (see details in 10dce8af3422): drivers/char/pcmcia/cm4000_cs.c:1685:7-23: ERROR: cm4000_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/gnss/core.c:45:1-17: ERROR: gnss_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/hid/uhid.c:635:1-17: ERROR: uhid_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/infiniband/core/user_mad.c:988:1-17: ERROR: umad_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/input/evdev.c:527:1-17: ERROR: evdev_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/input/misc/uinput.c:401:1-17: ERROR: uinput_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/isdn/capi/capi.c:963:8-24: ERROR: capi_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/leds/uleds.c:77:1-17: ERROR: uleds_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/media/rc/lirc_dev.c:198:1-17: ERROR: lirc_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/s390/char/fs3270.c:488:1-17: ERROR: fs3270_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/usb/misc/ldusb.c:310:1-17: ERROR: ld_usb_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. drivers/xen/evtchn.c:667:8-24: ERROR: evtchn_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. net/batman-adv/icmp_socket.c:80:1-17: ERROR: batadv_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. net/rfkill/core.c:1146:8-24: ERROR: rfkill_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix. and the rest were just safe to convert to stream_open because their read and write do not use ppos at all and corresponding file_operations do not have methods that assume @offset file access(*): arch/powerpc/platforms/52xx/mpc52xx_gpt.c:631:8-24: WARNING: mpc52xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_ibox_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_ibox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_mbox_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_mbox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_wbox_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_wbox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. arch/um/drivers/harddog_kern.c:88:8-24: WARNING: harddog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. arch/x86/kernel/cpu/microcode/core.c:430:33-49: WARNING: microcode_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/char/ds1620.c:215:8-24: WARNING: ds1620_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/char/dtlk.c:301:1-17: WARNING: dtlk_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/char/ipmi/ipmi_watchdog.c:840:9-25: WARNING: ipmi_wdog_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/char/pcmcia/scr24x_cs.c:95:8-24: WARNING: scr24x_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/char/tb0219.c:246:9-25: WARNING: tb0219_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/firewire/nosy.c:306:8-24: WARNING: nosy_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/hwmon/fschmd.c:840:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/hwmon/w83793.c:1344:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/infiniband/core/ucma.c:1747:8-24: WARNING: ucma_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/infiniband/core/ucm.c:1178:8-24: WARNING: ucm_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/infiniband/core/uverbs_main.c:1086:8-24: WARNING: uverbs_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/input/joydev.c:282:1-17: WARNING: joydev_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/pci/switch/switchtec.c:393:1-17: WARNING: switchtec_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/platform/chrome/cros_ec_debugfs.c:135:8-24: WARNING: cros_ec_console_log_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/rtc/rtc-ds1374.c:470:9-25: WARNING: ds1374_wdt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/rtc/rtc-m41t80.c:805:9-25: WARNING: wdt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/s390/char/tape_char.c:293:2-18: WARNING: tape_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/s390/char/zcore.c:194:8-24: WARNING: zcore_reipl_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/s390/crypto/zcrypt_api.c:528:8-24: WARNING: zcrypt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/spi/spidev.c:594:1-17: WARNING: spidev_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/staging/pi433/pi433_if.c:974:1-17: WARNING: pi433_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/acquirewdt.c:203:8-24: WARNING: acq_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/advantechwdt.c:202:8-24: WARNING: advwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/alim1535_wdt.c:252:8-24: WARNING: ali_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/alim7101_wdt.c:217:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/ar7_wdt.c:166:8-24: WARNING: ar7_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/at91rm9200_wdt.c:113:8-24: WARNING: at91wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/ath79_wdt.c:135:8-24: WARNING: ath79_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/bcm63xx_wdt.c:119:8-24: WARNING: bcm63xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/cpu5wdt.c:143:8-24: WARNING: cpu5wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/cpwd.c:397:8-24: WARNING: cpwd_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/eurotechwdt.c:319:8-24: WARNING: eurwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/f71808e_wdt.c:528:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/gef_wdt.c:232:8-24: WARNING: gef_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/geodewdt.c:95:8-24: WARNING: geodewdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/ib700wdt.c:241:8-24: WARNING: ibwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/ibmasr.c:326:8-24: WARNING: asr_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/indydog.c:80:8-24: WARNING: indydog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/intel_scu_watchdog.c:307:8-24: WARNING: intel_scu_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/iop_wdt.c:104:8-24: WARNING: iop_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/it8712f_wdt.c:330:8-24: WARNING: it8712f_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/ixp4xx_wdt.c:68:8-24: WARNING: ixp4xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/ks8695_wdt.c:145:8-24: WARNING: ks8695wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/m54xx_wdt.c:88:8-24: WARNING: m54xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/machzwd.c:336:8-24: WARNING: zf_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/mixcomwd.c:153:8-24: WARNING: mixcomwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/mtx-1_wdt.c:121:8-24: WARNING: mtx1_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/mv64x60_wdt.c:136:8-24: WARNING: mv64x60_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/nuc900_wdt.c:134:8-24: WARNING: nuc900wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/nv_tco.c:164:8-24: WARNING: nv_tco_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pc87413_wdt.c:289:8-24: WARNING: pc87413_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pcwd.c:698:8-24: WARNING: pcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pcwd.c:737:8-24: WARNING: pcwd_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pcwd_pci.c:581:8-24: WARNING: pcipcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pcwd_pci.c:623:8-24: WARNING: pcipcwd_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pcwd_usb.c:488:8-24: WARNING: usb_pcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pcwd_usb.c:527:8-24: WARNING: usb_pcwd_temperature_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pika_wdt.c:121:8-24: WARNING: pikawdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/pnx833x_wdt.c:119:8-24: WARNING: pnx833x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/rc32434_wdt.c:153:8-24: WARNING: rc32434_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/rdc321x_wdt.c:145:8-24: WARNING: rdc321x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/riowd.c:79:1-17: WARNING: riowd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sa1100_wdt.c:62:8-24: WARNING: sa1100dog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sbc60xxwdt.c:211:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sbc7240_wdt.c:139:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sbc8360.c:274:8-24: WARNING: sbc8360_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sbc_epx_c3.c:81:8-24: WARNING: epx_c3_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sbc_fitpc2_wdt.c:78:8-24: WARNING: fitpc2_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sb_wdog.c:108:1-17: WARNING: sbwdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sc1200wdt.c:181:8-24: WARNING: sc1200wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sc520_wdt.c:261:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/sch311x_wdt.c:319:8-24: WARNING: sch311x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/scx200_wdt.c:105:8-24: WARNING: scx200_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/smsc37b787_wdt.c:369:8-24: WARNING: wb_smsc_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/w83877f_wdt.c:227:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/w83977f_wdt.c:301:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wafer5823wdt.c:200:8-24: WARNING: wafwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/watchdog_dev.c:828:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wdrtas.c:379:8-24: WARNING: wdrtas_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wdrtas.c:445:8-24: WARNING: wdrtas_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wdt285.c:104:1-17: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wdt977.c:276:8-24: WARNING: wdt977_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wdt.c:424:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wdt.c:484:8-24: WARNING: wdt_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wdt_pci.c:464:8-24: WARNING: wdtpci_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open. drivers/watchdog/wdt_pci.c:527:8-24: WARNING: wdtpci_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. net/batman-adv/log.c:105:1-17: WARNING: batadv_log_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. sound/core/control.c:57:7-23: WARNING: snd_ctl_f_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. sound/core/rawmidi.c:385:7-23: WARNING: snd_rawmidi_f_ops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. sound/core/seq/seq_clientmgr.c:310:7-23: WARNING: snd_seq_f_ops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open. sound/core/timer.c:1428:7-23: WARNING: snd_timer_f_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open. One can also recheck/review the patch via generating it with explanation comments included via $ make coccicheck MODE=patch COCCI=scripts/coccinelle/api/stream_open.cocci SPFLAGS="-D explain" (*) This second group also contains cases with read/write deadlocks that stream_open.cocci don't yet detect, but which are still valid to convert to stream_open since ppos is not used. For example drivers/pci/switch/switchtec.c calls wait_for_completion_interruptible() in its .read, but stream_open.cocci currently detects only "wait_event*" as blocking. Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Yongzhi Pan <panyongzhi@gmail.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Juergen Gross <jgross@suse.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Tejun Heo <tj@kernel.org> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Nikolaus Rath <Nikolaus@rath.org> Cc: Han-Wen Nienhuys <hanwen@google.com> Cc: Anatolij Gustschin <agust@denx.de> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James R. Van Zandt" <jrv@vanzandt.mv.com> Cc: Corey Minyard <minyard@acm.org> Cc: Harald Welte <laforge@gnumonks.org> Acked-by: Lubomir Rintel <lkundrak@v3.sk> [scr24x_cs] Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: Johan Hovold <johan@kernel.org> Cc: David Herrmann <dh.herrmann@googlemail.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Benjamin Tissoires <benjamin.tissoires@redhat.com> Cc: Jean Delvare <jdelvare@suse.com> Acked-by: Guenter Roeck <linux@roeck-us.net> [watchdog/* hwmon/*] Cc: Rudolf Marek <r.marek@assembler.cz> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Kurt Schwemmer <kurt.schwemmer@microsemi.com> Acked-by: Logan Gunthorpe <logang@deltatee.com> [drivers/pci/switch/switchtec] Acked-by: Bjorn Helgaas <bhelgaas@google.com> [drivers/pci/switch/switchtec] Cc: Benson Leung <bleung@chromium.org> Acked-by: Enric Balletbo i Serra <enric.balletbo@collabora.com> [platform/chrome] Cc: Alessandro Zummo <a.zummo@towertech.it> Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> [rtc/*] Cc: Mark Brown <broonie@kernel.org> Cc: Wim Van Sebroeck <wim@linux-watchdog.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: bcm-kernel-feedback-list@broadcom.com Cc: Wan ZongShun <mcuos.com@gmail.com> Cc: Zwane Mwaikambo <zwanem@gmail.com> Cc: Marek Lindner <mareklindner@neomailbox.ch> Cc: Simon Wunderlich <sw@simonwunderlich.de> Cc: Antonio Quartulli <a@unstable.cc> Cc: "David S. Miller" <davem@davemloft.net> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Signed-off-by: Kirill Smelkov <kirr@nexedi.com>
2019-03-27 04:51:19 +08:00
return capable(CAP_SYS_RAWIO) ? stream_open(inode, file) : -EPERM;
}
static ssize_t microcode_write(struct file *file, const char __user *buf,
size_t len, loff_t *ppos)
{
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
ssize_t ret = -EINVAL;
unsigned long nr_pages = totalram_pages();
mm: reference totalram_pages and managed_pages once per function Patch series "mm: convert totalram_pages, totalhigh_pages and managed pages to atomic", v5. This series converts totalram_pages, totalhigh_pages and zone->managed_pages to atomic variables. totalram_pages, zone->managed_pages and totalhigh_pages updates are protected by managed_page_count_lock, but readers never care about it. Convert these variables to atomic to avoid readers potentially seeing a store tear. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 It seemes better to remove the lock and convert variables to atomic. With the change, preventing poteintial store-to-read tearing comes as a bonus. This patch (of 4): This is in preparation to a later patch which converts totalram_pages and zone->managed_pages to atomic variables. Please note that re-reading the value might lead to a different value and as such it could lead to unexpected behavior. There are no known bugs as a result of the current code but it is better to prevent from them in principle. Link: http://lkml.kernel.org/r/1542090790-21750-2-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 16:34:20 +08:00
if ((len >> PAGE_SHIFT) > nr_pages) {
pr_err("too much data (max %ld pages)\n", nr_pages);
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
return ret;
}
get_online_cpus();
mutex_lock(&microcode_mutex);
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
if (do_microcode_update(buf, len) == 0)
ret = (ssize_t)len;
if (ret > 0)
perf_check_microcode();
mutex_unlock(&microcode_mutex);
put_online_cpus();
return ret;
}
static const struct file_operations microcode_fops = {
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
.owner = THIS_MODULE,
.write = microcode_write,
.open = microcode_open,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-16 00:52:59 +08:00
.llseek = no_llseek,
};
static struct miscdevice microcode_dev = {
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
.minor = MICROCODE_MINOR,
.name = "microcode",
.nodename = "cpu/microcode",
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
.fops = &microcode_fops,
};
static int __init microcode_dev_init(void)
{
int error;
error = misc_register(&microcode_dev);
if (error) {
pr_err("can't misc_register on minor=%d\n", MICROCODE_MINOR);
return error;
}
return 0;
}
static void __exit microcode_dev_exit(void)
{
misc_deregister(&microcode_dev);
}
#else
#define microcode_dev_init() 0
#define microcode_dev_exit() do { } while (0)
#endif
/* fake device for request_firmware */
static struct platform_device *microcode_pdev;
/*
* Late loading dance. Why the heavy-handed stomp_machine effort?
*
* - HT siblings must be idle and not execute other code while the other sibling
* is loading microcode in order to avoid any negative interactions caused by
* the loading.
*
* - In addition, microcode update on the cores must be serialized until this
* requirement can be relaxed in the future. Right now, this is conservative
* and good.
*/
#define SPINUNIT 100 /* 100 nsec */
static int check_online_cpus(void)
{
unsigned int cpu;
/*
* Make sure all CPUs are online. It's fine for SMT to be disabled if
* all the primary threads are still online.
*/
for_each_present_cpu(cpu) {
if (topology_is_primary_thread(cpu) && !cpu_online(cpu)) {
pr_err("Not all CPUs online, aborting microcode update.\n");
return -EINVAL;
}
}
return 0;
}
x86/microcode: Fix CPU synchronization routine Emanuel reported an issue with a hang during microcode update because my dumb idea to use one atomic synchronization variable for both rendezvous - before and after update - was simply bollocks: microcode: microcode_reload_late: late_cpus: 4 microcode: __reload_late: cpu 2 entered microcode: __reload_late: cpu 1 entered microcode: __reload_late: cpu 3 entered microcode: __reload_late: cpu 0 entered microcode: __reload_late: cpu 1 left microcode: Timeout while waiting for CPUs rendezvous, remaining: 1 CPU1 above would finish, leave and the others will still spin waiting for it to join. So do two synchronization atomics instead, which makes the code a lot more straightforward. Also, since the update is serialized and it also takes quite some time per microcode engine, increase the exit timeout by the number of CPUs on the system. That's ok because the moment all CPUs are done, that timeout will be cut short. Furthermore, panic when some of the CPUs timeout when returning from a microcode update: we can't allow a system with not all cores updated. Also, as an optimization, do not do the exit sync if microcode wasn't updated. Reported-by: Emanuel Czirai <xftroxgpx@protonmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Emanuel Czirai <xftroxgpx@protonmail.com> Tested-by: Ashok Raj <ashok.raj@intel.com> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lkml.kernel.org/r/20180314183615.17629-2-bp@alien8.de
2018-03-15 02:36:15 +08:00
static atomic_t late_cpus_in;
static atomic_t late_cpus_out;
static int __wait_for_cpus(atomic_t *t, long long timeout)
{
int all_cpus = num_online_cpus();
atomic_inc(t);
while (atomic_read(t) < all_cpus) {
if (timeout < SPINUNIT) {
pr_err("Timeout while waiting for CPUs rendezvous, remaining: %d\n",
all_cpus - atomic_read(t));
return 1;
}
ndelay(SPINUNIT);
timeout -= SPINUNIT;
touch_nmi_watchdog();
}
return 0;
}
/*
* Returns:
* < 0 - on error
* 0 - success (no update done or microcode was updated)
*/
static int __reload_late(void *info)
{
int cpu = smp_processor_id();
enum ucode_state err;
int ret = 0;
/*
* Wait for all CPUs to arrive. A load will not be attempted unless all
* CPUs show up.
* */
x86/microcode: Fix CPU synchronization routine Emanuel reported an issue with a hang during microcode update because my dumb idea to use one atomic synchronization variable for both rendezvous - before and after update - was simply bollocks: microcode: microcode_reload_late: late_cpus: 4 microcode: __reload_late: cpu 2 entered microcode: __reload_late: cpu 1 entered microcode: __reload_late: cpu 3 entered microcode: __reload_late: cpu 0 entered microcode: __reload_late: cpu 1 left microcode: Timeout while waiting for CPUs rendezvous, remaining: 1 CPU1 above would finish, leave and the others will still spin waiting for it to join. So do two synchronization atomics instead, which makes the code a lot more straightforward. Also, since the update is serialized and it also takes quite some time per microcode engine, increase the exit timeout by the number of CPUs on the system. That's ok because the moment all CPUs are done, that timeout will be cut short. Furthermore, panic when some of the CPUs timeout when returning from a microcode update: we can't allow a system with not all cores updated. Also, as an optimization, do not do the exit sync if microcode wasn't updated. Reported-by: Emanuel Czirai <xftroxgpx@protonmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Emanuel Czirai <xftroxgpx@protonmail.com> Tested-by: Ashok Raj <ashok.raj@intel.com> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lkml.kernel.org/r/20180314183615.17629-2-bp@alien8.de
2018-03-15 02:36:15 +08:00
if (__wait_for_cpus(&late_cpus_in, NSEC_PER_SEC))
return -1;
/*
* On an SMT system, it suffices to load the microcode on one sibling of
* the core because the microcode engine is shared between the threads.
* Synchronization still needs to take place so that no concurrent
* loading attempts happen on multiple threads of an SMT core. See
* below.
*/
if (cpumask_first(topology_sibling_cpumask(cpu)) == cpu)
apply_microcode_local(&err);
else
goto wait_for_siblings;
if (err >= UCODE_NFOUND) {
if (err == UCODE_ERROR)
pr_warn("Error reloading microcode on CPU %d\n", cpu);
ret = -1;
}
wait_for_siblings:
if (__wait_for_cpus(&late_cpus_out, NSEC_PER_SEC))
panic("Timeout during microcode update!\n");
x86/microcode: Fix CPU synchronization routine Emanuel reported an issue with a hang during microcode update because my dumb idea to use one atomic synchronization variable for both rendezvous - before and after update - was simply bollocks: microcode: microcode_reload_late: late_cpus: 4 microcode: __reload_late: cpu 2 entered microcode: __reload_late: cpu 1 entered microcode: __reload_late: cpu 3 entered microcode: __reload_late: cpu 0 entered microcode: __reload_late: cpu 1 left microcode: Timeout while waiting for CPUs rendezvous, remaining: 1 CPU1 above would finish, leave and the others will still spin waiting for it to join. So do two synchronization atomics instead, which makes the code a lot more straightforward. Also, since the update is serialized and it also takes quite some time per microcode engine, increase the exit timeout by the number of CPUs on the system. That's ok because the moment all CPUs are done, that timeout will be cut short. Furthermore, panic when some of the CPUs timeout when returning from a microcode update: we can't allow a system with not all cores updated. Also, as an optimization, do not do the exit sync if microcode wasn't updated. Reported-by: Emanuel Czirai <xftroxgpx@protonmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Emanuel Czirai <xftroxgpx@protonmail.com> Tested-by: Ashok Raj <ashok.raj@intel.com> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lkml.kernel.org/r/20180314183615.17629-2-bp@alien8.de
2018-03-15 02:36:15 +08:00
/*
* At least one thread has completed update on each core.
* For others, simply call the update to make sure the
* per-cpu cpuinfo can be updated with right microcode
* revision.
x86/microcode: Fix CPU synchronization routine Emanuel reported an issue with a hang during microcode update because my dumb idea to use one atomic synchronization variable for both rendezvous - before and after update - was simply bollocks: microcode: microcode_reload_late: late_cpus: 4 microcode: __reload_late: cpu 2 entered microcode: __reload_late: cpu 1 entered microcode: __reload_late: cpu 3 entered microcode: __reload_late: cpu 0 entered microcode: __reload_late: cpu 1 left microcode: Timeout while waiting for CPUs rendezvous, remaining: 1 CPU1 above would finish, leave and the others will still spin waiting for it to join. So do two synchronization atomics instead, which makes the code a lot more straightforward. Also, since the update is serialized and it also takes quite some time per microcode engine, increase the exit timeout by the number of CPUs on the system. That's ok because the moment all CPUs are done, that timeout will be cut short. Furthermore, panic when some of the CPUs timeout when returning from a microcode update: we can't allow a system with not all cores updated. Also, as an optimization, do not do the exit sync if microcode wasn't updated. Reported-by: Emanuel Czirai <xftroxgpx@protonmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Emanuel Czirai <xftroxgpx@protonmail.com> Tested-by: Ashok Raj <ashok.raj@intel.com> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lkml.kernel.org/r/20180314183615.17629-2-bp@alien8.de
2018-03-15 02:36:15 +08:00
*/
if (cpumask_first(topology_sibling_cpumask(cpu)) != cpu)
apply_microcode_local(&err);
return ret;
}
/*
* Reload microcode late on all CPUs. Wait for a sec until they
* all gather together.
*/
static int microcode_reload_late(void)
{
int ret;
x86/microcode: Fix CPU synchronization routine Emanuel reported an issue with a hang during microcode update because my dumb idea to use one atomic synchronization variable for both rendezvous - before and after update - was simply bollocks: microcode: microcode_reload_late: late_cpus: 4 microcode: __reload_late: cpu 2 entered microcode: __reload_late: cpu 1 entered microcode: __reload_late: cpu 3 entered microcode: __reload_late: cpu 0 entered microcode: __reload_late: cpu 1 left microcode: Timeout while waiting for CPUs rendezvous, remaining: 1 CPU1 above would finish, leave and the others will still spin waiting for it to join. So do two synchronization atomics instead, which makes the code a lot more straightforward. Also, since the update is serialized and it also takes quite some time per microcode engine, increase the exit timeout by the number of CPUs on the system. That's ok because the moment all CPUs are done, that timeout will be cut short. Furthermore, panic when some of the CPUs timeout when returning from a microcode update: we can't allow a system with not all cores updated. Also, as an optimization, do not do the exit sync if microcode wasn't updated. Reported-by: Emanuel Czirai <xftroxgpx@protonmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Emanuel Czirai <xftroxgpx@protonmail.com> Tested-by: Ashok Raj <ashok.raj@intel.com> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lkml.kernel.org/r/20180314183615.17629-2-bp@alien8.de
2018-03-15 02:36:15 +08:00
atomic_set(&late_cpus_in, 0);
atomic_set(&late_cpus_out, 0);
ret = stop_machine_cpuslocked(__reload_late, NULL, cpu_online_mask);
if (ret == 0)
microcode_check();
pr_info("Reload completed, microcode revision: 0x%x\n", boot_cpu_data.microcode);
return ret;
}
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
static ssize_t reload_store(struct device *dev,
struct device_attribute *attr,
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
const char *buf, size_t size)
{
enum ucode_state tmp_ret = UCODE_OK;
int bsp = boot_cpu_data.cpu_index;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
unsigned long val;
ssize_t ret = 0;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
if (val != 1)
return size;
tmp_ret = microcode_ops->request_microcode_fw(bsp, &microcode_pdev->dev, true);
if (tmp_ret != UCODE_NEW)
return size;
get_online_cpus();
ret = check_online_cpus();
if (ret)
goto put;
mutex_lock(&microcode_mutex);
ret = microcode_reload_late();
mutex_unlock(&microcode_mutex);
put:
put_online_cpus();
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
if (ret == 0)
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
ret = size;
return ret;
}
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
static ssize_t version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
}
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
static ssize_t pf_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
}
static DEVICE_ATTR_WO(reload);
static DEVICE_ATTR(version, 0444, version_show, NULL);
static DEVICE_ATTR(processor_flags, 0444, pf_show, NULL);
static struct attribute *mc_default_attrs[] = {
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
&dev_attr_version.attr,
&dev_attr_processor_flags.attr,
NULL
};
static const struct attribute_group mc_attr_group = {
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
.attrs = mc_default_attrs,
.name = "microcode",
};
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
static void microcode_fini_cpu(int cpu)
{
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 17:55:21 +08:00
if (microcode_ops->microcode_fini_cpu)
microcode_ops->microcode_fini_cpu(cpu);
x86: fix resume (S2R) broken by Intel microcode module, on A110L Impact: fix deadlock This is in response to the following bug report: Bug-Entry : http://bugzilla.kernel.org/show_bug.cgi?id=12100 Subject : resume (S2R) broken by Intel microcode module, on A110L Submitter : Andreas Mohr <andi@lisas.de> Date : 2008-11-25 08:48 (19 days old) Handled-By : Dmitry Adamushko <dmitry.adamushko@gmail.com> [ The deadlock scenario has been discovered by Andreas Mohr ] I think I might have a logical explanation why the system: (http://bugzilla.kernel.org/show_bug.cgi?id=12100) might hang upon resuming, OTOH it should have likely hanged each and every time. (1) possible deadlock in microcode_resume_cpu() if either 'if' section is taken; (2) now, I don't see it in spec. and can't experimentally verify it (newer ucodes don't seem to be available for my Core2duo)... but logically-wise, I'd think that when read upon resuming, the 'microcode revision' (MSR 0x8B) should be back to its original one (we need to reload ucode anyway so it doesn't seem logical if a cpu doesn't drop the version)... if so, the comparison with memcmp() for the full 'struct cpu_signature' is wrong... and that's how one of the aforementioned 'if' sections might have been triggered - leading to a deadlock. Obviously, in my tests I simulated loading/resuming with the ucode of the same version (just to see that the file is loaded/re-loaded upon resuming) so this issue has never popped up. I'd appreciate if someone with an appropriate system might give a try to the 2nd patch (titled "fix a comparison && deadlock..."). In any case, the deadlock situation is a must-have fix. Reported-by: Andreas Mohr <andi@lisas.de> Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Tested-by: Andreas Mohr <andi@lisas.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-20 07:15:24 +08:00
}
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
static enum ucode_state microcode_resume_cpu(int cpu)
{
if (apply_microcode_on_target(cpu))
return UCODE_ERROR;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
pr_debug("CPU%d updated upon resume\n", cpu);
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
return UCODE_OK;
}
static enum ucode_state microcode_init_cpu(int cpu, bool refresh_fw)
{
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
enum ucode_state ustate;
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
if (uci->valid)
return UCODE_OK;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
if (collect_cpu_info(cpu))
return UCODE_ERROR;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
/* --dimm. Trigger a delayed update? */
if (system_state != SYSTEM_RUNNING)
return UCODE_NFOUND;
ustate = microcode_ops->request_microcode_fw(cpu, &microcode_pdev->dev, refresh_fw);
if (ustate == UCODE_NEW) {
pr_debug("CPU%d updated upon init\n", cpu);
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
apply_microcode_on_target(cpu);
}
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
return ustate;
}
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
static enum ucode_state microcode_update_cpu(int cpu)
{
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
/* Refresh CPU microcode revision after resume. */
collect_cpu_info(cpu);
if (uci->valid)
return microcode_resume_cpu(cpu);
return microcode_init_cpu(cpu, false);
}
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
static int mc_device_add(struct device *dev, struct subsys_interface *sif)
{
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
int err, cpu = dev->id;
if (!cpu_online(cpu))
return 0;
pr_debug("CPU%d added\n", cpu);
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
err = sysfs_create_group(&dev->kobj, &mc_attr_group);
if (err)
return err;
if (microcode_init_cpu(cpu, true) == UCODE_ERROR)
return -EINVAL;
return err;
}
static void mc_device_remove(struct device *dev, struct subsys_interface *sif)
{
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
int cpu = dev->id;
if (!cpu_online(cpu))
return;
pr_debug("CPU%d removed\n", cpu);
microcode_fini_cpu(cpu);
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
sysfs_remove_group(&dev->kobj, &mc_attr_group);
}
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
static struct subsys_interface mc_cpu_interface = {
.name = "microcode",
.subsys = &cpu_subsys,
.add_dev = mc_device_add,
.remove_dev = mc_device_remove,
};
/**
* mc_bp_resume - Update boot CPU microcode during resume.
*/
static void mc_bp_resume(void)
{
int cpu = smp_processor_id();
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
if (uci->valid && uci->mc)
microcode_ops->apply_microcode(cpu);
else if (!uci->mc)
reload_early_microcode();
}
static struct syscore_ops mc_syscore_ops = {
.resume = mc_bp_resume,
};
static int mc_cpu_starting(unsigned int cpu)
{
microcode_update_cpu(cpu);
pr_debug("CPU%d added\n", cpu);
return 0;
}
static int mc_cpu_online(unsigned int cpu)
{
struct device *dev = get_cpu_device(cpu);
if (sysfs_create_group(&dev->kobj, &mc_attr_group))
pr_err("Failed to create group for CPU%d\n", cpu);
return 0;
}
static int mc_cpu_down_prep(unsigned int cpu)
{
struct device *dev;
dev = get_cpu_device(cpu);
/* Suspend is in progress, only remove the interface */
sysfs_remove_group(&dev->kobj, &mc_attr_group);
pr_debug("CPU%d removed\n", cpu);
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 17:55:21 +08:00
return 0;
}
static struct attribute *cpu_root_microcode_attrs[] = {
&dev_attr_reload.attr,
NULL
};
static const struct attribute_group cpu_root_microcode_group = {
.name = "microcode",
.attrs = cpu_root_microcode_attrs,
};
int __init microcode_init(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
int error;
if (dis_ucode_ldr)
return -EINVAL;
if (c->x86_vendor == X86_VENDOR_INTEL)
microcode_ops = init_intel_microcode();
else if (c->x86_vendor == X86_VENDOR_AMD)
microcode_ops = init_amd_microcode();
else
pr_err("no support for this CPU vendor\n");
if (!microcode_ops)
return -ENODEV;
microcode_pdev = platform_device_register_simple("microcode", -1,
NULL, 0);
if (IS_ERR(microcode_pdev))
return PTR_ERR(microcode_pdev);
get_online_cpus();
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
mutex_lock(&microcode_mutex);
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
error = subsys_interface_register(&mc_cpu_interface);
if (!error)
perf_check_microcode();
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
mutex_unlock(&microcode_mutex);
put_online_cpus();
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
if (error)
goto out_pdev;
error = sysfs_create_group(&cpu_subsys.dev_root->kobj,
&cpu_root_microcode_group);
if (error) {
pr_err("Error creating microcode group!\n");
goto out_driver;
}
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
error = microcode_dev_init();
if (error)
goto out_ucode_group;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-12 05:48:27 +08:00
register_syscore_ops(&mc_syscore_ops);
cpuhp_setup_state_nocalls(CPUHP_AP_MICROCODE_LOADER, "x86/microcode:starting",
mc_cpu_starting, NULL);
cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
mc_cpu_online, mc_cpu_down_prep);
pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION);
return 0;
out_ucode_group:
sysfs_remove_group(&cpu_subsys.dev_root->kobj,
&cpu_root_microcode_group);
out_driver:
get_online_cpus();
mutex_lock(&microcode_mutex);
subsys_interface_unregister(&mc_cpu_interface);
mutex_unlock(&microcode_mutex);
put_online_cpus();
out_pdev:
platform_device_unregister(microcode_pdev);
return error;
}
fs_initcall(save_microcode_in_initrd);
late_initcall(microcode_init);