linux/kernel/bpf/devmap.c

785 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
*/
/* Devmaps primary use is as a backend map for XDP BPF helper call
* bpf_redirect_map(). Because XDP is mostly concerned with performance we
* spent some effort to ensure the datapath with redirect maps does not use
* any locking. This is a quick note on the details.
*
* We have three possible paths to get into the devmap control plane bpf
* syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
* will invoke an update, delete, or lookup operation. To ensure updates and
* deletes appear atomic from the datapath side xchg() is used to modify the
* netdev_map array. Then because the datapath does a lookup into the netdev_map
* array (read-only) from an RCU critical section we use call_rcu() to wait for
* an rcu grace period before free'ing the old data structures. This ensures the
* datapath always has a valid copy. However, the datapath does a "flush"
* operation that pushes any pending packets in the driver outside the RCU
* critical section. Each bpf_dtab_netdev tracks these pending operations using
* a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
* this list is empty, indicating outstanding flush operations have completed.
*
* BPF syscalls may race with BPF program calls on any of the update, delete
* or lookup operations. As noted above the xchg() operation also keep the
* netdev_map consistent in this case. From the devmap side BPF programs
* calling into these operations are the same as multiple user space threads
* making system calls.
*
* Finally, any of the above may race with a netdev_unregister notifier. The
* unregister notifier must search for net devices in the map structure that
* contain a reference to the net device and remove them. This is a two step
* process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
* check to see if the ifindex is the same as the net_device being removed.
bpf: devmap fix mutex in rcu critical section Originally we used a mutex to protect concurrent devmap update and delete operations from racing with netdev unregister notifier callbacks. The notifier hook is needed because we increment the netdev ref count when a dev is added to the devmap. This ensures the netdev reference is valid in the datapath. However, we don't want to block unregister events, hence the initial mutex and notifier handler. The concern was in the notifier hook we search the map for dev entries that hold a refcnt on the net device being torn down. But, in order to do this we require two steps, (i) dereference the netdev: dev = rcu_dereference(map[i]) (ii) test ifindex: dev->ifindex == removing_ifindex and then finally we can swap in the NULL dev in the map via an xchg operation, xchg(map[i], NULL) The danger here is a concurrent update could run a different xchg op concurrently leading us to replace the new dev with a NULL dev incorrectly. CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) xchg(map[i], NULL) The above flow would create the incorrect state with the dev reference in the update path being lost. To resolve this the original code used a mutex around the above block. However, updates, deletes, and lookups occur inside rcu critical sections so we can't use a mutex in this context safely. Fortunately, by writing slightly better code we can avoid the mutex altogether. If CPU 1 in the above example uses a cmpxchg and _only_ replaces the dev reference in the map when it is in fact the expected dev the race is removed completely. The two cases being illustrated here, first the race condition, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) odev = cmpxchg(map[i], dev, NULL) Now we can test the cmpxchg return value, detect odev != dev and abort. Or in the good case, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) odev = cmpxchg(map[i], dev, NULL) [...] Now 'odev == dev' and we can do proper cleanup. And viola the original race we tried to solve with a mutex is corrected and the trace noted by Sasha below is resolved due to removal of the mutex. Note: When walking the devmap and removing dev references as needed we depend on the core to fail any calls to dev_get_by_index() using the ifindex of the device being removed. This way we do not race with the user while searching the devmap. Additionally, the mutex was also protecting list add/del/read on the list of maps in-use. This patch converts this to an RCU list and spinlock implementation. This protects the list from concurrent alloc/free operations. The notifier hook walks this list so it uses RCU read semantics. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:747 in_atomic(): 1, irqs_disabled(): 0, pid: 16315, name: syz-executor1 1 lock held by syz-executor1/16315: #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] map_delete_elem kernel/bpf/syscall.c:577 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SYSC_bpf kernel/bpf/syscall.c:1427 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SyS_bpf+0x1d32/0x4ba0 kernel/bpf/syscall.c:1388 Fixes: 2ddf71e23cc2 ("net: add notifier hooks for devmap bpf map") Reported-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-05 13:02:19 +08:00
* When removing the dev a cmpxchg() is used to ensure the correct dev is
* removed, in the case of a concurrent update or delete operation it is
* possible that the initially referenced dev is no longer in the map. As the
* notifier hook walks the map we know that new dev references can not be
* added by the user because core infrastructure ensures dev_get_by_index()
* calls will fail at this point.
*
* The devmap_hash type is a map type which interprets keys as ifindexes and
* indexes these using a hashmap. This allows maps that use ifindex as key to be
* densely packed instead of having holes in the lookup array for unused
* ifindexes. The setup and packet enqueue/send code is shared between the two
* types of devmap; only the lookup and insertion is different.
*/
#include <linux/bpf.h>
#include <net/xdp.h>
#include <linux/filter.h>
#include <trace/events/xdp.h>
#define DEV_CREATE_FLAG_MASK \
(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
#define DEV_MAP_BULK_SIZE 16
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
struct xdp_dev_bulk_queue {
struct xdp_frame *q[DEV_MAP_BULK_SIZE];
struct list_head flush_node;
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
struct net_device *dev;
struct net_device *dev_rx;
unsigned int count;
};
struct bpf_dtab_netdev {
struct net_device *dev; /* must be first member, due to tracepoint */
struct hlist_node index_hlist;
struct bpf_dtab *dtab;
struct rcu_head rcu;
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
unsigned int idx;
};
struct bpf_dtab {
struct bpf_map map;
struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
struct list_head list;
/* these are only used for DEVMAP_HASH type maps */
struct hlist_head *dev_index_head;
spinlock_t index_lock;
unsigned int items;
u32 n_buckets;
};
xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths Since the bulk queue used by XDP_REDIRECT now lives in struct net_device, we can re-use the bulking for the non-map version of the bpf_redirect() helper. This is a simple matter of having xdp_do_redirect_slow() queue the frame on the bulk queue instead of sending it out with __bpf_tx_xdp(). Unfortunately we can't make the bpf_redirect() helper return an error if the ifindex doesn't exit (as bpf_redirect_map() does), because we don't have a reference to the network namespace of the ingress device at the time the helper is called. So we have to leave it as-is and keep the device lookup in xdp_do_redirect_slow(). Since this leaves less reason to have the non-map redirect code in a separate function, so we get rid of the xdp_do_redirect_slow() function entirely. This does lose us the tracepoint disambiguation, but fortunately the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint entry structures. This means both can contain a map index, so we can just amend the tracepoint definitions so we always emit the xdp_redirect(_err) tracepoints, but with the map ID only populated if a map is present. This means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep the definitions around in case someone is still listening for them. With this change, the performance of the xdp_redirect sample program goes from 5Mpps to 8.4Mpps (a 68% increase). Since the flush functions are no longer map-specific, rename the flush() functions to drop _map from their names. One of the renamed functions is the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To keep from having to update all drivers, use a #define to keep the old name working, and only update the virtual drivers in this patch. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 23:14:45 +08:00
static DEFINE_PER_CPU(struct list_head, dev_flush_list);
bpf: devmap fix mutex in rcu critical section Originally we used a mutex to protect concurrent devmap update and delete operations from racing with netdev unregister notifier callbacks. The notifier hook is needed because we increment the netdev ref count when a dev is added to the devmap. This ensures the netdev reference is valid in the datapath. However, we don't want to block unregister events, hence the initial mutex and notifier handler. The concern was in the notifier hook we search the map for dev entries that hold a refcnt on the net device being torn down. But, in order to do this we require two steps, (i) dereference the netdev: dev = rcu_dereference(map[i]) (ii) test ifindex: dev->ifindex == removing_ifindex and then finally we can swap in the NULL dev in the map via an xchg operation, xchg(map[i], NULL) The danger here is a concurrent update could run a different xchg op concurrently leading us to replace the new dev with a NULL dev incorrectly. CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) xchg(map[i], NULL) The above flow would create the incorrect state with the dev reference in the update path being lost. To resolve this the original code used a mutex around the above block. However, updates, deletes, and lookups occur inside rcu critical sections so we can't use a mutex in this context safely. Fortunately, by writing slightly better code we can avoid the mutex altogether. If CPU 1 in the above example uses a cmpxchg and _only_ replaces the dev reference in the map when it is in fact the expected dev the race is removed completely. The two cases being illustrated here, first the race condition, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) odev = cmpxchg(map[i], dev, NULL) Now we can test the cmpxchg return value, detect odev != dev and abort. Or in the good case, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) odev = cmpxchg(map[i], dev, NULL) [...] Now 'odev == dev' and we can do proper cleanup. And viola the original race we tried to solve with a mutex is corrected and the trace noted by Sasha below is resolved due to removal of the mutex. Note: When walking the devmap and removing dev references as needed we depend on the core to fail any calls to dev_get_by_index() using the ifindex of the device being removed. This way we do not race with the user while searching the devmap. Additionally, the mutex was also protecting list add/del/read on the list of maps in-use. This patch converts this to an RCU list and spinlock implementation. This protects the list from concurrent alloc/free operations. The notifier hook walks this list so it uses RCU read semantics. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:747 in_atomic(): 1, irqs_disabled(): 0, pid: 16315, name: syz-executor1 1 lock held by syz-executor1/16315: #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] map_delete_elem kernel/bpf/syscall.c:577 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SYSC_bpf kernel/bpf/syscall.c:1427 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SyS_bpf+0x1d32/0x4ba0 kernel/bpf/syscall.c:1388 Fixes: 2ddf71e23cc2 ("net: add notifier hooks for devmap bpf map") Reported-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-05 13:02:19 +08:00
static DEFINE_SPINLOCK(dev_map_lock);
static LIST_HEAD(dev_map_list);
static struct hlist_head *dev_map_create_hash(unsigned int entries)
{
int i;
struct hlist_head *hash;
hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL);
if (hash != NULL)
for (i = 0; i < entries; i++)
INIT_HLIST_HEAD(&hash[i]);
return hash;
}
static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
int idx)
{
return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
}
static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
{
u64 cost = 0;
int err;
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
return -EINVAL;
/* Lookup returns a pointer straight to dev->ifindex, so make sure the
* verifier prevents writes from the BPF side
*/
attr->map_flags |= BPF_F_RDONLY_PROG;
bpf_map_init_from_attr(&dtab->map, attr);
if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
if (!dtab->n_buckets) /* Overflow check */
return -EINVAL;
cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
} else {
cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
}
bpf: rework memlock-based memory accounting for maps In order to unify the existing memlock charging code with the memcg-based memory accounting, which will be added later, let's rework the current scheme. Currently the following design is used: 1) .alloc() callback optionally checks if the allocation will likely succeed using bpf_map_precharge_memlock() 2) .alloc() performs actual allocations 3) .alloc() callback calculates map cost and sets map.memory.pages 4) map_create() calls bpf_map_init_memlock() which sets map.memory.user and performs actual charging; in case of failure the map is destroyed <map is in use> 1) bpf_map_free_deferred() calls bpf_map_release_memlock(), which performs uncharge and releases the user 2) .map_free() callback releases the memory The scheme can be simplified and made more robust: 1) .alloc() calculates map cost and calls bpf_map_charge_init() 2) bpf_map_charge_init() sets map.memory.user and performs actual charge 3) .alloc() performs actual allocations <map is in use> 1) .map_free() callback releases the memory 2) bpf_map_charge_finish() performs uncharge and releases the user The new scheme also allows to reuse bpf_map_charge_init()/finish() functions for memcg-based accounting. Because charges are performed before actual allocations and uncharges after freeing the memory, no bogus memory pressure can be created. In cases when the map structure is not available (e.g. it's not created yet, or is already destroyed), on-stack bpf_map_memory structure is used. The charge can be transferred with the bpf_map_charge_move() function. Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-30 09:03:58 +08:00
/* if map size is larger than memlock limit, reject it */
err = bpf_map_charge_init(&dtab->map.memory, cost);
if (err)
return -EINVAL;
if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
if (!dtab->dev_index_head)
goto free_charge;
spin_lock_init(&dtab->index_lock);
} else {
dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
sizeof(struct bpf_dtab_netdev *),
dtab->map.numa_node);
if (!dtab->netdev_map)
goto free_charge;
}
return 0;
bpf: rework memlock-based memory accounting for maps In order to unify the existing memlock charging code with the memcg-based memory accounting, which will be added later, let's rework the current scheme. Currently the following design is used: 1) .alloc() callback optionally checks if the allocation will likely succeed using bpf_map_precharge_memlock() 2) .alloc() performs actual allocations 3) .alloc() callback calculates map cost and sets map.memory.pages 4) map_create() calls bpf_map_init_memlock() which sets map.memory.user and performs actual charging; in case of failure the map is destroyed <map is in use> 1) bpf_map_free_deferred() calls bpf_map_release_memlock(), which performs uncharge and releases the user 2) .map_free() callback releases the memory The scheme can be simplified and made more robust: 1) .alloc() calculates map cost and calls bpf_map_charge_init() 2) bpf_map_charge_init() sets map.memory.user and performs actual charge 3) .alloc() performs actual allocations <map is in use> 1) .map_free() callback releases the memory 2) bpf_map_charge_finish() performs uncharge and releases the user The new scheme also allows to reuse bpf_map_charge_init()/finish() functions for memcg-based accounting. Because charges are performed before actual allocations and uncharges after freeing the memory, no bogus memory pressure can be created. In cases when the map structure is not available (e.g. it's not created yet, or is already destroyed), on-stack bpf_map_memory structure is used. The charge can be transferred with the bpf_map_charge_move() function. Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-30 09:03:58 +08:00
free_charge:
bpf_map_charge_finish(&dtab->map.memory);
return -ENOMEM;
}
static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
{
struct bpf_dtab *dtab;
int err;
if (!capable(CAP_NET_ADMIN))
return ERR_PTR(-EPERM);
dtab = kzalloc(sizeof(*dtab), GFP_USER);
if (!dtab)
return ERR_PTR(-ENOMEM);
err = dev_map_init_map(dtab, attr);
if (err) {
kfree(dtab);
return ERR_PTR(err);
}
spin_lock(&dev_map_lock);
list_add_tail_rcu(&dtab->list, &dev_map_list);
spin_unlock(&dev_map_lock);
return &dtab->map;
}
static void dev_map_free(struct bpf_map *map)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
int i;
/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
* so the programs (can be more than one that used this map) were
* disconnected from events. The following synchronize_rcu() guarantees
* both rcu read critical sections complete and waits for
* preempt-disable regions (NAPI being the relevant context here) so we
* are certain there will be no further reads against the netdev_map and
* all flush operations are complete. Flush operations can only be done
* from NAPI context for this reason.
*/
spin_lock(&dev_map_lock);
list_del_rcu(&dtab->list);
spin_unlock(&dev_map_lock);
bpf: fix redirect to map under tail calls Commits 109980b894e9 ("bpf: don't select potentially stale ri->map from buggy xdp progs") and 7c3001313396 ("bpf: fix ri->map_owner pointer on bpf_prog_realloc") tried to mitigate that buggy programs using bpf_redirect_map() helper call do not leave stale maps behind. Idea was to add a map_owner cookie into the per CPU struct redirect_info which was set to prog->aux by the prog making the helper call as a proof that the map is not stale since the prog is implicitly holding a reference to it. This owner cookie could later on get compared with the program calling into BPF whether they match and therefore the redirect could proceed with processing the map safely. In (obvious) hindsight, this approach breaks down when tail calls are involved since the original caller's prog->aux pointer does not have to match the one from one of the progs out of the tail call chain, and therefore the xdp buffer will be dropped instead of redirected. A way around that would be to fix the issue differently (which also allows to remove related work in fast path at the same time): once the life-time of a redirect map has come to its end we use it's map free callback where we need to wait on synchronize_rcu() for current outstanding xdp buffers and remove such a map pointer from the redirect info if found to be present. At that time no program is using this map anymore so we simply invalidate the map pointers to NULL iff they previously pointed to that instance while making sure that the redirect path only reads out the map once. Fixes: 97f91a7cf04f ("bpf: add bpf_redirect_map helper routine") Fixes: 109980b894e9 ("bpf: don't select potentially stale ri->map from buggy xdp progs") Reported-by: Sebastiano Miano <sebastiano.miano@polito.it> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-08-18 05:26:14 +08:00
bpf_clear_redirect_map(map);
synchronize_rcu();
bpf: devmap: fix use-after-free Read in __dev_map_entry_free synchronize_rcu() is fine when the rcu callbacks only need to free memory (kfree_rcu() or direct kfree() call rcu call backs) __dev_map_entry_free() is a bit more complex, so we need to make sure that call queued __dev_map_entry_free() callbacks have completed. sysbot report: BUG: KASAN: use-after-free in dev_map_flush_old kernel/bpf/devmap.c:365 [inline] BUG: KASAN: use-after-free in __dev_map_entry_free+0x2a8/0x300 kernel/bpf/devmap.c:379 Read of size 8 at addr ffff8801b8da38c8 by task ksoftirqd/1/18 CPU: 1 PID: 18 Comm: ksoftirqd/1 Not tainted 4.17.0+ #39 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b9/0x294 lib/dump_stack.c:113 print_address_description+0x6c/0x20b mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412 __asan_report_load8_noabort+0x14/0x20 mm/kasan/report.c:433 dev_map_flush_old kernel/bpf/devmap.c:365 [inline] __dev_map_entry_free+0x2a8/0x300 kernel/bpf/devmap.c:379 __rcu_reclaim kernel/rcu/rcu.h:178 [inline] rcu_do_batch kernel/rcu/tree.c:2558 [inline] invoke_rcu_callbacks kernel/rcu/tree.c:2818 [inline] __rcu_process_callbacks kernel/rcu/tree.c:2785 [inline] rcu_process_callbacks+0xe9d/0x1760 kernel/rcu/tree.c:2802 __do_softirq+0x2e0/0xaf5 kernel/softirq.c:284 run_ksoftirqd+0x86/0x100 kernel/softirq.c:645 smpboot_thread_fn+0x417/0x870 kernel/smpboot.c:164 kthread+0x345/0x410 kernel/kthread.c:240 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412 Allocated by task 6675: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] kasan_kmalloc+0xc4/0xe0 mm/kasan/kasan.c:553 kmem_cache_alloc_trace+0x152/0x780 mm/slab.c:3620 kmalloc include/linux/slab.h:513 [inline] kzalloc include/linux/slab.h:706 [inline] dev_map_alloc+0x208/0x7f0 kernel/bpf/devmap.c:102 find_and_alloc_map kernel/bpf/syscall.c:129 [inline] map_create+0x393/0x1010 kernel/bpf/syscall.c:453 __do_sys_bpf kernel/bpf/syscall.c:2351 [inline] __se_sys_bpf kernel/bpf/syscall.c:2328 [inline] __x64_sys_bpf+0x303/0x510 kernel/bpf/syscall.c:2328 do_syscall_64+0x1b1/0x800 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 26: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] __kasan_slab_free+0x11a/0x170 mm/kasan/kasan.c:521 kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528 __cache_free mm/slab.c:3498 [inline] kfree+0xd9/0x260 mm/slab.c:3813 dev_map_free+0x4fa/0x670 kernel/bpf/devmap.c:191 bpf_map_free_deferred+0xba/0xf0 kernel/bpf/syscall.c:262 process_one_work+0xc64/0x1b70 kernel/workqueue.c:2153 worker_thread+0x181/0x13a0 kernel/workqueue.c:2296 kthread+0x345/0x410 kernel/kthread.c:240 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412 The buggy address belongs to the object at ffff8801b8da37c0 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 264 bytes inside of 512-byte region [ffff8801b8da37c0, ffff8801b8da39c0) The buggy address belongs to the page: page:ffffea0006e368c0 count:1 mapcount:0 mapping:ffff8801da800940 index:0xffff8801b8da3540 flags: 0x2fffc0000000100(slab) raw: 02fffc0000000100 ffffea0007217b88 ffffea0006e30cc8 ffff8801da800940 raw: ffff8801b8da3540 ffff8801b8da3040 0000000100000004 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8801b8da3780: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ffff8801b8da3800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb > ffff8801b8da3880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8801b8da3900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8801b8da3980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot+457d3e2ffbcf31aee5c0@syzkaller.appspotmail.com Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-05-14 00:59:16 +08:00
/* Make sure prior __dev_map_entry_free() have completed. */
rcu_barrier();
if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
for (i = 0; i < dtab->n_buckets; i++) {
struct bpf_dtab_netdev *dev;
struct hlist_head *head;
struct hlist_node *next;
head = dev_map_index_hash(dtab, i);
hlist_for_each_entry_safe(dev, next, head, index_hlist) {
hlist_del_rcu(&dev->index_hlist);
dev_put(dev->dev);
kfree(dev);
}
}
kfree(dtab->dev_index_head);
} else {
for (i = 0; i < dtab->map.max_entries; i++) {
struct bpf_dtab_netdev *dev;
dev = dtab->netdev_map[i];
if (!dev)
continue;
dev_put(dev->dev);
kfree(dev);
}
bpf_map_area_free(dtab->netdev_map);
}
kfree(dtab);
}
static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
u32 index = key ? *(u32 *)key : U32_MAX;
u32 *next = next_key;
if (index >= dtab->map.max_entries) {
*next = 0;
return 0;
}
if (index == dtab->map.max_entries - 1)
return -ENOENT;
*next = index + 1;
return 0;
}
struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
struct hlist_head *head = dev_map_index_hash(dtab, key);
struct bpf_dtab_netdev *dev;
hlist_for_each_entry_rcu(dev, head, index_hlist,
lockdep_is_held(&dtab->index_lock))
if (dev->idx == key)
return dev;
return NULL;
}
static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
void *next_key)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
u32 idx, *next = next_key;
struct bpf_dtab_netdev *dev, *next_dev;
struct hlist_head *head;
int i = 0;
if (!key)
goto find_first;
idx = *(u32 *)key;
dev = __dev_map_hash_lookup_elem(map, idx);
if (!dev)
goto find_first;
next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
struct bpf_dtab_netdev, index_hlist);
if (next_dev) {
*next = next_dev->idx;
return 0;
}
i = idx & (dtab->n_buckets - 1);
i++;
find_first:
for (; i < dtab->n_buckets; i++) {
head = dev_map_index_hash(dtab, i);
next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
struct bpf_dtab_netdev,
index_hlist);
if (next_dev) {
*next = next_dev->idx;
return 0;
}
}
return -ENOENT;
}
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
{
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
struct net_device *dev = bq->dev;
int sent = 0, drops = 0, err = 0;
int i;
if (unlikely(!bq->count))
return 0;
for (i = 0; i < bq->count; i++) {
struct xdp_frame *xdpf = bq->q[i];
prefetch(xdpf);
}
sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
if (sent < 0) {
err = sent;
sent = 0;
goto error;
}
drops = bq->count - sent;
out:
bq->count = 0;
trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
bq->dev_rx = NULL;
__list_del_clearprev(&bq->flush_node);
return 0;
error:
/* If ndo_xdp_xmit fails with an errno, no frames have been
* xmit'ed and it's our responsibility to them free all.
*/
for (i = 0; i < bq->count; i++) {
struct xdp_frame *xdpf = bq->q[i];
xdp_return_frame_rx_napi(xdpf);
drops++;
}
goto out;
}
xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths Since the bulk queue used by XDP_REDIRECT now lives in struct net_device, we can re-use the bulking for the non-map version of the bpf_redirect() helper. This is a simple matter of having xdp_do_redirect_slow() queue the frame on the bulk queue instead of sending it out with __bpf_tx_xdp(). Unfortunately we can't make the bpf_redirect() helper return an error if the ifindex doesn't exit (as bpf_redirect_map() does), because we don't have a reference to the network namespace of the ingress device at the time the helper is called. So we have to leave it as-is and keep the device lookup in xdp_do_redirect_slow(). Since this leaves less reason to have the non-map redirect code in a separate function, so we get rid of the xdp_do_redirect_slow() function entirely. This does lose us the tracepoint disambiguation, but fortunately the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint entry structures. This means both can contain a map index, so we can just amend the tracepoint definitions so we always emit the xdp_redirect(_err) tracepoints, but with the map ID only populated if a map is present. This means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep the definitions around in case someone is still listening for them. With this change, the performance of the xdp_redirect sample program goes from 5Mpps to 8.4Mpps (a 68% increase). Since the flush functions are no longer map-specific, rename the flush() functions to drop _map from their names. One of the renamed functions is the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To keep from having to update all drivers, use a #define to keep the old name working, and only update the virtual drivers in this patch. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 23:14:45 +08:00
/* __dev_flush is called from xdp_do_flush() which _must_ be signaled
* from the driver before returning from its napi->poll() routine. The poll()
* routine is called either from busy_poll context or net_rx_action signaled
* from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
* net device can be torn down. On devmap tear down we ensure the flush list
* is empty before completing to ensure all flush operations have completed.
bpf, xdp: Remove no longer required rcu_read_{un}lock() Now that we depend on rcu_call() and synchronize_rcu() to also wait for preempt_disabled region to complete the rcu read critical section in __dev_map_flush() is no longer required. Except in a few special cases in drivers that need it for other reasons. These originally ensured the map reference was safe while a map was also being free'd. And additionally that bpf program updates via ndo_bpf did not happen while flush updates were in flight. But flush by new rules can only be called from preempt-disabled NAPI context. The synchronize_rcu from the map free path and the rcu_call from the delete path will ensure the reference there is safe. So lets remove the rcu_read_lock and rcu_read_unlock pair to avoid any confusion around how this is being protected. If the rcu_read_lock was required it would mean errors in the above logic and the original patch would also be wrong. Now that we have done above we put the rcu_read_lock in the driver code where it is needed in a driver dependent way. I think this helps readability of the code so we know where and why we are taking read locks. Most drivers will not need rcu_read_locks here and further XDP drivers already have rcu_read_locks in their code paths for reading xdp programs on RX side so this makes it symmetric where we don't have half of rcu critical sections define in driver and the other half in devmap. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Link: https://lore.kernel.org/bpf/1580084042-11598-4-git-send-email-john.fastabend@gmail.com
2020-01-27 08:14:02 +08:00
* When drivers update the bpf program they may need to ensure any flush ops
* are also complete. Using synchronize_rcu or call_rcu will suffice for this
* because both wait for napi context to exit.
*/
xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths Since the bulk queue used by XDP_REDIRECT now lives in struct net_device, we can re-use the bulking for the non-map version of the bpf_redirect() helper. This is a simple matter of having xdp_do_redirect_slow() queue the frame on the bulk queue instead of sending it out with __bpf_tx_xdp(). Unfortunately we can't make the bpf_redirect() helper return an error if the ifindex doesn't exit (as bpf_redirect_map() does), because we don't have a reference to the network namespace of the ingress device at the time the helper is called. So we have to leave it as-is and keep the device lookup in xdp_do_redirect_slow(). Since this leaves less reason to have the non-map redirect code in a separate function, so we get rid of the xdp_do_redirect_slow() function entirely. This does lose us the tracepoint disambiguation, but fortunately the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint entry structures. This means both can contain a map index, so we can just amend the tracepoint definitions so we always emit the xdp_redirect(_err) tracepoints, but with the map ID only populated if a map is present. This means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep the definitions around in case someone is still listening for them. With this change, the performance of the xdp_redirect sample program goes from 5Mpps to 8.4Mpps (a 68% increase). Since the flush functions are no longer map-specific, rename the flush() functions to drop _map from their names. One of the renamed functions is the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To keep from having to update all drivers, use a #define to keep the old name working, and only update the virtual drivers in this patch. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 23:14:45 +08:00
void __dev_flush(void)
{
xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths Since the bulk queue used by XDP_REDIRECT now lives in struct net_device, we can re-use the bulking for the non-map version of the bpf_redirect() helper. This is a simple matter of having xdp_do_redirect_slow() queue the frame on the bulk queue instead of sending it out with __bpf_tx_xdp(). Unfortunately we can't make the bpf_redirect() helper return an error if the ifindex doesn't exit (as bpf_redirect_map() does), because we don't have a reference to the network namespace of the ingress device at the time the helper is called. So we have to leave it as-is and keep the device lookup in xdp_do_redirect_slow(). Since this leaves less reason to have the non-map redirect code in a separate function, so we get rid of the xdp_do_redirect_slow() function entirely. This does lose us the tracepoint disambiguation, but fortunately the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint entry structures. This means both can contain a map index, so we can just amend the tracepoint definitions so we always emit the xdp_redirect(_err) tracepoints, but with the map ID only populated if a map is present. This means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep the definitions around in case someone is still listening for them. With this change, the performance of the xdp_redirect sample program goes from 5Mpps to 8.4Mpps (a 68% increase). Since the flush functions are no longer map-specific, rename the flush() functions to drop _map from their names. One of the renamed functions is the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To keep from having to update all drivers, use a #define to keep the old name working, and only update the virtual drivers in this patch. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 23:14:45 +08:00
struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
struct xdp_dev_bulk_queue *bq, *tmp;
list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
bq_xmit_all(bq, XDP_XMIT_FLUSH);
}
/* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
* update happens in parallel here a dev_put wont happen until after reading the
* ifindex.
*/
struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
struct bpf_dtab_netdev *obj;
if (key >= map->max_entries)
return NULL;
obj = READ_ONCE(dtab->netdev_map[key]);
return obj;
}
/* Runs under RCU-read-side, plus in softirq under NAPI protection.
* Thus, safe percpu variable access.
*/
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
struct net_device *dev_rx)
{
xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths Since the bulk queue used by XDP_REDIRECT now lives in struct net_device, we can re-use the bulking for the non-map version of the bpf_redirect() helper. This is a simple matter of having xdp_do_redirect_slow() queue the frame on the bulk queue instead of sending it out with __bpf_tx_xdp(). Unfortunately we can't make the bpf_redirect() helper return an error if the ifindex doesn't exit (as bpf_redirect_map() does), because we don't have a reference to the network namespace of the ingress device at the time the helper is called. So we have to leave it as-is and keep the device lookup in xdp_do_redirect_slow(). Since this leaves less reason to have the non-map redirect code in a separate function, so we get rid of the xdp_do_redirect_slow() function entirely. This does lose us the tracepoint disambiguation, but fortunately the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint entry structures. This means both can contain a map index, so we can just amend the tracepoint definitions so we always emit the xdp_redirect(_err) tracepoints, but with the map ID only populated if a map is present. This means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep the definitions around in case someone is still listening for them. With this change, the performance of the xdp_redirect sample program goes from 5Mpps to 8.4Mpps (a 68% increase). Since the flush functions are no longer map-specific, rename the flush() functions to drop _map from their names. One of the renamed functions is the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To keep from having to update all drivers, use a #define to keep the old name working, and only update the virtual drivers in this patch. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 23:14:45 +08:00
struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
bq_xmit_all(bq, 0);
/* Ingress dev_rx will be the same for all xdp_frame's in
* bulk_queue, because bq stored per-CPU and must be flushed
* from net_device drivers NAPI func end.
*/
if (!bq->dev_rx)
bq->dev_rx = dev_rx;
bq->q[bq->count++] = xdpf;
if (!bq->flush_node.prev)
list_add(&bq->flush_node, flush_list);
return 0;
}
xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths Since the bulk queue used by XDP_REDIRECT now lives in struct net_device, we can re-use the bulking for the non-map version of the bpf_redirect() helper. This is a simple matter of having xdp_do_redirect_slow() queue the frame on the bulk queue instead of sending it out with __bpf_tx_xdp(). Unfortunately we can't make the bpf_redirect() helper return an error if the ifindex doesn't exit (as bpf_redirect_map() does), because we don't have a reference to the network namespace of the ingress device at the time the helper is called. So we have to leave it as-is and keep the device lookup in xdp_do_redirect_slow(). Since this leaves less reason to have the non-map redirect code in a separate function, so we get rid of the xdp_do_redirect_slow() function entirely. This does lose us the tracepoint disambiguation, but fortunately the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint entry structures. This means both can contain a map index, so we can just amend the tracepoint definitions so we always emit the xdp_redirect(_err) tracepoints, but with the map ID only populated if a map is present. This means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep the definitions around in case someone is still listening for them. With this change, the performance of the xdp_redirect sample program goes from 5Mpps to 8.4Mpps (a 68% increase). Since the flush functions are no longer map-specific, rename the flush() functions to drop _map from their names. One of the renamed functions is the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To keep from having to update all drivers, use a #define to keep the old name working, and only update the virtual drivers in this patch. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 23:14:45 +08:00
static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
struct net_device *dev_rx)
{
struct xdp_frame *xdpf;
int err;
if (!dev->netdev_ops->ndo_xdp_xmit)
return -EOPNOTSUPP;
err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
if (unlikely(err))
return err;
xdpf = convert_to_xdp_frame(xdp);
if (unlikely(!xdpf))
return -EOVERFLOW;
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
return bq_enqueue(dev, xdpf, dev_rx);
}
xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths Since the bulk queue used by XDP_REDIRECT now lives in struct net_device, we can re-use the bulking for the non-map version of the bpf_redirect() helper. This is a simple matter of having xdp_do_redirect_slow() queue the frame on the bulk queue instead of sending it out with __bpf_tx_xdp(). Unfortunately we can't make the bpf_redirect() helper return an error if the ifindex doesn't exit (as bpf_redirect_map() does), because we don't have a reference to the network namespace of the ingress device at the time the helper is called. So we have to leave it as-is and keep the device lookup in xdp_do_redirect_slow(). Since this leaves less reason to have the non-map redirect code in a separate function, so we get rid of the xdp_do_redirect_slow() function entirely. This does lose us the tracepoint disambiguation, but fortunately the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint entry structures. This means both can contain a map index, so we can just amend the tracepoint definitions so we always emit the xdp_redirect(_err) tracepoints, but with the map ID only populated if a map is present. This means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep the definitions around in case someone is still listening for them. With this change, the performance of the xdp_redirect sample program goes from 5Mpps to 8.4Mpps (a 68% increase). Since the flush functions are no longer map-specific, rename the flush() functions to drop _map from their names. One of the renamed functions is the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To keep from having to update all drivers, use a #define to keep the old name working, and only update the virtual drivers in this patch. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 23:14:45 +08:00
int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
struct net_device *dev_rx)
{
return __xdp_enqueue(dev, xdp, dev_rx);
}
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
struct net_device *dev_rx)
{
struct net_device *dev = dst->dev;
return __xdp_enqueue(dev, xdp, dev_rx);
}
int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
struct bpf_prog *xdp_prog)
{
int err;
err = xdp_ok_fwd_dev(dst->dev, skb->len);
if (unlikely(err))
return err;
skb->dev = dst->dev;
generic_xdp_tx(skb, xdp_prog);
return 0;
}
static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
struct net_device *dev = obj ? obj->dev : NULL;
return dev ? &dev->ifindex : NULL;
}
static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
*(u32 *)key);
struct net_device *dev = obj ? obj->dev : NULL;
return dev ? &dev->ifindex : NULL;
}
static void __dev_map_entry_free(struct rcu_head *rcu)
{
struct bpf_dtab_netdev *dev;
dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
dev_put(dev->dev);
kfree(dev);
}
static int dev_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
struct bpf_dtab_netdev *old_dev;
int k = *(u32 *)key;
if (k >= map->max_entries)
return -EINVAL;
/* Use call_rcu() here to ensure any rcu critical sections have
* completed as well as any flush operations because call_rcu
* will wait for preempt-disable region to complete, NAPI in this
* context. And additionally, the driver tear down ensures all
* soft irqs are complete before removing the net device in the
* case of dev_put equals zero.
*/
old_dev = xchg(&dtab->netdev_map[k], NULL);
if (old_dev)
call_rcu(&old_dev->rcu, __dev_map_entry_free);
return 0;
}
static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
struct bpf_dtab_netdev *old_dev;
int k = *(u32 *)key;
unsigned long flags;
int ret = -ENOENT;
spin_lock_irqsave(&dtab->index_lock, flags);
old_dev = __dev_map_hash_lookup_elem(map, k);
if (old_dev) {
dtab->items--;
hlist_del_init_rcu(&old_dev->index_hlist);
call_rcu(&old_dev->rcu, __dev_map_entry_free);
ret = 0;
}
spin_unlock_irqrestore(&dtab->index_lock, flags);
return ret;
}
static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
struct bpf_dtab *dtab,
u32 ifindex,
unsigned int idx)
{
struct bpf_dtab_netdev *dev;
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
dtab->map.numa_node);
if (!dev)
return ERR_PTR(-ENOMEM);
dev->dev = dev_get_by_index(net, ifindex);
if (!dev->dev) {
kfree(dev);
return ERR_PTR(-EINVAL);
}
dev->idx = idx;
dev->dtab = dtab;
return dev;
}
static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
void *key, void *value, u64 map_flags)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
struct bpf_dtab_netdev *dev, *old_dev;
u32 ifindex = *(u32 *)value;
u32 i = *(u32 *)key;
if (unlikely(map_flags > BPF_EXIST))
return -EINVAL;
if (unlikely(i >= dtab->map.max_entries))
return -E2BIG;
if (unlikely(map_flags == BPF_NOEXIST))
return -EEXIST;
if (!ifindex) {
dev = NULL;
} else {
dev = __dev_map_alloc_node(net, dtab, ifindex, i);
if (IS_ERR(dev))
return PTR_ERR(dev);
}
/* Use call_rcu() here to ensure rcu critical sections have completed
* Remembering the driver side flush operation will happen before the
* net device is removed.
*/
old_dev = xchg(&dtab->netdev_map[i], dev);
if (old_dev)
call_rcu(&old_dev->rcu, __dev_map_entry_free);
return 0;
}
static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
return __dev_map_update_elem(current->nsproxy->net_ns,
map, key, value, map_flags);
}
static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
void *key, void *value, u64 map_flags)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
struct bpf_dtab_netdev *dev, *old_dev;
u32 ifindex = *(u32 *)value;
u32 idx = *(u32 *)key;
unsigned long flags;
int err = -EEXIST;
if (unlikely(map_flags > BPF_EXIST || !ifindex))
return -EINVAL;
spin_lock_irqsave(&dtab->index_lock, flags);
old_dev = __dev_map_hash_lookup_elem(map, idx);
if (old_dev && (map_flags & BPF_NOEXIST))
goto out_err;
dev = __dev_map_alloc_node(net, dtab, ifindex, idx);
if (IS_ERR(dev)) {
err = PTR_ERR(dev);
goto out_err;
}
if (old_dev) {
hlist_del_rcu(&old_dev->index_hlist);
} else {
if (dtab->items >= dtab->map.max_entries) {
spin_unlock_irqrestore(&dtab->index_lock, flags);
call_rcu(&dev->rcu, __dev_map_entry_free);
return -E2BIG;
}
dtab->items++;
}
hlist_add_head_rcu(&dev->index_hlist,
dev_map_index_hash(dtab, idx));
spin_unlock_irqrestore(&dtab->index_lock, flags);
if (old_dev)
call_rcu(&old_dev->rcu, __dev_map_entry_free);
return 0;
out_err:
spin_unlock_irqrestore(&dtab->index_lock, flags);
return err;
}
static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
return __dev_map_hash_update_elem(current->nsproxy->net_ns,
map, key, value, map_flags);
}
const struct bpf_map_ops dev_map_ops = {
.map_alloc = dev_map_alloc,
.map_free = dev_map_free,
.map_get_next_key = dev_map_get_next_key,
.map_lookup_elem = dev_map_lookup_elem,
.map_update_elem = dev_map_update_elem,
.map_delete_elem = dev_map_delete_elem,
.map_check_btf = map_check_no_btf,
};
const struct bpf_map_ops dev_map_hash_ops = {
.map_alloc = dev_map_alloc,
.map_free = dev_map_free,
.map_get_next_key = dev_map_hash_get_next_key,
.map_lookup_elem = dev_map_hash_lookup_elem,
.map_update_elem = dev_map_hash_update_elem,
.map_delete_elem = dev_map_hash_delete_elem,
.map_check_btf = map_check_no_btf,
};
static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
struct net_device *netdev)
{
unsigned long flags;
u32 i;
spin_lock_irqsave(&dtab->index_lock, flags);
for (i = 0; i < dtab->n_buckets; i++) {
struct bpf_dtab_netdev *dev;
struct hlist_head *head;
struct hlist_node *next;
head = dev_map_index_hash(dtab, i);
hlist_for_each_entry_safe(dev, next, head, index_hlist) {
if (netdev != dev->dev)
continue;
dtab->items--;
hlist_del_rcu(&dev->index_hlist);
call_rcu(&dev->rcu, __dev_map_entry_free);
}
}
spin_unlock_irqrestore(&dtab->index_lock, flags);
}
static int dev_map_notification(struct notifier_block *notifier,
ulong event, void *ptr)
{
struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
struct bpf_dtab *dtab;
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
int i, cpu;
switch (event) {
xdp: Move devmap bulk queue into struct net_device Commit 96360004b862 ("xdp: Make devmap flush_list common for all map instances"), changed devmap flushing to be a global operation instead of a per-map operation. However, the queue structure used for bulking was still allocated as part of the containing map. This patch moves the devmap bulk queue into struct net_device. The motivation for this is reusing it for the non-map variant of XDP_REDIRECT, which will be changed in a subsequent commit. To avoid other fields of struct net_device moving to different cache lines, we also move a couple of other members around. We defer the actual allocation of the bulk queue structure until the NETDEV_REGISTER notification devmap.c. This makes it possible to check for ndo_xdp_xmit support before allocating the structure, which is not possible at the time struct net_device is allocated. However, we keep the freeing in free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER. Because of this change, we lose the reference back to the map that originated the redirect, so change the tracepoint to always return 0 as the map ID and index. Otherwise no functional change is intended with this patch. After this patch, the relevant part of struct net_device looks like this, according to pahole: /* --- cacheline 14 boundary (896 bytes) --- */ struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */ unsigned int num_tx_queues; /* 904 4 */ unsigned int real_num_tx_queues; /* 908 4 */ struct Qdisc * qdisc; /* 912 8 */ unsigned int tx_queue_len; /* 920 4 */ spinlock_t tx_global_lock; /* 924 4 */ struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */ struct xps_dev_maps * xps_cpus_map; /* 936 8 */ struct xps_dev_maps * xps_rxqs_map; /* 944 8 */ struct mini_Qdisc * miniq_egress; /* 952 8 */ /* --- cacheline 15 boundary (960 bytes) --- */ struct hlist_head qdisc_hash[16]; /* 960 128 */ /* --- cacheline 17 boundary (1088 bytes) --- */ struct timer_list watchdog_timer; /* 1088 40 */ /* XXX last struct has 4 bytes of padding */ int watchdog_timeo; /* 1128 4 */ /* XXX 4 bytes hole, try to pack */ struct list_head todo_list; /* 1136 16 */ /* --- cacheline 18 boundary (1152 bytes) --- */ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@intel.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
2020-01-16 23:14:44 +08:00
case NETDEV_REGISTER:
if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
break;
/* will be freed in free_netdev() */
netdev->xdp_bulkq =
__alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
sizeof(void *), GFP_ATOMIC);
if (!netdev->xdp_bulkq)
return NOTIFY_BAD;
for_each_possible_cpu(cpu)
per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
break;
case NETDEV_UNREGISTER:
bpf: devmap fix mutex in rcu critical section Originally we used a mutex to protect concurrent devmap update and delete operations from racing with netdev unregister notifier callbacks. The notifier hook is needed because we increment the netdev ref count when a dev is added to the devmap. This ensures the netdev reference is valid in the datapath. However, we don't want to block unregister events, hence the initial mutex and notifier handler. The concern was in the notifier hook we search the map for dev entries that hold a refcnt on the net device being torn down. But, in order to do this we require two steps, (i) dereference the netdev: dev = rcu_dereference(map[i]) (ii) test ifindex: dev->ifindex == removing_ifindex and then finally we can swap in the NULL dev in the map via an xchg operation, xchg(map[i], NULL) The danger here is a concurrent update could run a different xchg op concurrently leading us to replace the new dev with a NULL dev incorrectly. CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) xchg(map[i], NULL) The above flow would create the incorrect state with the dev reference in the update path being lost. To resolve this the original code used a mutex around the above block. However, updates, deletes, and lookups occur inside rcu critical sections so we can't use a mutex in this context safely. Fortunately, by writing slightly better code we can avoid the mutex altogether. If CPU 1 in the above example uses a cmpxchg and _only_ replaces the dev reference in the map when it is in fact the expected dev the race is removed completely. The two cases being illustrated here, first the race condition, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) odev = cmpxchg(map[i], dev, NULL) Now we can test the cmpxchg return value, detect odev != dev and abort. Or in the good case, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) odev = cmpxchg(map[i], dev, NULL) [...] Now 'odev == dev' and we can do proper cleanup. And viola the original race we tried to solve with a mutex is corrected and the trace noted by Sasha below is resolved due to removal of the mutex. Note: When walking the devmap and removing dev references as needed we depend on the core to fail any calls to dev_get_by_index() using the ifindex of the device being removed. This way we do not race with the user while searching the devmap. Additionally, the mutex was also protecting list add/del/read on the list of maps in-use. This patch converts this to an RCU list and spinlock implementation. This protects the list from concurrent alloc/free operations. The notifier hook walks this list so it uses RCU read semantics. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:747 in_atomic(): 1, irqs_disabled(): 0, pid: 16315, name: syz-executor1 1 lock held by syz-executor1/16315: #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] map_delete_elem kernel/bpf/syscall.c:577 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SYSC_bpf kernel/bpf/syscall.c:1427 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SyS_bpf+0x1d32/0x4ba0 kernel/bpf/syscall.c:1388 Fixes: 2ddf71e23cc2 ("net: add notifier hooks for devmap bpf map") Reported-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-05 13:02:19 +08:00
/* This rcu_read_lock/unlock pair is needed because
* dev_map_list is an RCU list AND to ensure a delete
* operation does not free a netdev_map entry while we
* are comparing it against the netdev being unregistered.
*/
rcu_read_lock();
list_for_each_entry_rcu(dtab, &dev_map_list, list) {
if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
dev_map_hash_remove_netdev(dtab, netdev);
continue;
}
for (i = 0; i < dtab->map.max_entries; i++) {
bpf: devmap fix mutex in rcu critical section Originally we used a mutex to protect concurrent devmap update and delete operations from racing with netdev unregister notifier callbacks. The notifier hook is needed because we increment the netdev ref count when a dev is added to the devmap. This ensures the netdev reference is valid in the datapath. However, we don't want to block unregister events, hence the initial mutex and notifier handler. The concern was in the notifier hook we search the map for dev entries that hold a refcnt on the net device being torn down. But, in order to do this we require two steps, (i) dereference the netdev: dev = rcu_dereference(map[i]) (ii) test ifindex: dev->ifindex == removing_ifindex and then finally we can swap in the NULL dev in the map via an xchg operation, xchg(map[i], NULL) The danger here is a concurrent update could run a different xchg op concurrently leading us to replace the new dev with a NULL dev incorrectly. CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) xchg(map[i], NULL) The above flow would create the incorrect state with the dev reference in the update path being lost. To resolve this the original code used a mutex around the above block. However, updates, deletes, and lookups occur inside rcu critical sections so we can't use a mutex in this context safely. Fortunately, by writing slightly better code we can avoid the mutex altogether. If CPU 1 in the above example uses a cmpxchg and _only_ replaces the dev reference in the map when it is in fact the expected dev the race is removed completely. The two cases being illustrated here, first the race condition, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) odev = cmpxchg(map[i], dev, NULL) Now we can test the cmpxchg return value, detect odev != dev and abort. Or in the good case, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) odev = cmpxchg(map[i], dev, NULL) [...] Now 'odev == dev' and we can do proper cleanup. And viola the original race we tried to solve with a mutex is corrected and the trace noted by Sasha below is resolved due to removal of the mutex. Note: When walking the devmap and removing dev references as needed we depend on the core to fail any calls to dev_get_by_index() using the ifindex of the device being removed. This way we do not race with the user while searching the devmap. Additionally, the mutex was also protecting list add/del/read on the list of maps in-use. This patch converts this to an RCU list and spinlock implementation. This protects the list from concurrent alloc/free operations. The notifier hook walks this list so it uses RCU read semantics. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:747 in_atomic(): 1, irqs_disabled(): 0, pid: 16315, name: syz-executor1 1 lock held by syz-executor1/16315: #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] map_delete_elem kernel/bpf/syscall.c:577 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SYSC_bpf kernel/bpf/syscall.c:1427 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SyS_bpf+0x1d32/0x4ba0 kernel/bpf/syscall.c:1388 Fixes: 2ddf71e23cc2 ("net: add notifier hooks for devmap bpf map") Reported-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-05 13:02:19 +08:00
struct bpf_dtab_netdev *dev, *odev;
bpf: devmap fix mutex in rcu critical section Originally we used a mutex to protect concurrent devmap update and delete operations from racing with netdev unregister notifier callbacks. The notifier hook is needed because we increment the netdev ref count when a dev is added to the devmap. This ensures the netdev reference is valid in the datapath. However, we don't want to block unregister events, hence the initial mutex and notifier handler. The concern was in the notifier hook we search the map for dev entries that hold a refcnt on the net device being torn down. But, in order to do this we require two steps, (i) dereference the netdev: dev = rcu_dereference(map[i]) (ii) test ifindex: dev->ifindex == removing_ifindex and then finally we can swap in the NULL dev in the map via an xchg operation, xchg(map[i], NULL) The danger here is a concurrent update could run a different xchg op concurrently leading us to replace the new dev with a NULL dev incorrectly. CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) xchg(map[i], NULL) The above flow would create the incorrect state with the dev reference in the update path being lost. To resolve this the original code used a mutex around the above block. However, updates, deletes, and lookups occur inside rcu critical sections so we can't use a mutex in this context safely. Fortunately, by writing slightly better code we can avoid the mutex altogether. If CPU 1 in the above example uses a cmpxchg and _only_ replaces the dev reference in the map when it is in fact the expected dev the race is removed completely. The two cases being illustrated here, first the race condition, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) odev = cmpxchg(map[i], dev, NULL) Now we can test the cmpxchg return value, detect odev != dev and abort. Or in the good case, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) odev = cmpxchg(map[i], dev, NULL) [...] Now 'odev == dev' and we can do proper cleanup. And viola the original race we tried to solve with a mutex is corrected and the trace noted by Sasha below is resolved due to removal of the mutex. Note: When walking the devmap and removing dev references as needed we depend on the core to fail any calls to dev_get_by_index() using the ifindex of the device being removed. This way we do not race with the user while searching the devmap. Additionally, the mutex was also protecting list add/del/read on the list of maps in-use. This patch converts this to an RCU list and spinlock implementation. This protects the list from concurrent alloc/free operations. The notifier hook walks this list so it uses RCU read semantics. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:747 in_atomic(): 1, irqs_disabled(): 0, pid: 16315, name: syz-executor1 1 lock held by syz-executor1/16315: #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] map_delete_elem kernel/bpf/syscall.c:577 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SYSC_bpf kernel/bpf/syscall.c:1427 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SyS_bpf+0x1d32/0x4ba0 kernel/bpf/syscall.c:1388 Fixes: 2ddf71e23cc2 ("net: add notifier hooks for devmap bpf map") Reported-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-05 13:02:19 +08:00
dev = READ_ONCE(dtab->netdev_map[i]);
if (!dev || netdev != dev->dev)
continue;
bpf: devmap fix mutex in rcu critical section Originally we used a mutex to protect concurrent devmap update and delete operations from racing with netdev unregister notifier callbacks. The notifier hook is needed because we increment the netdev ref count when a dev is added to the devmap. This ensures the netdev reference is valid in the datapath. However, we don't want to block unregister events, hence the initial mutex and notifier handler. The concern was in the notifier hook we search the map for dev entries that hold a refcnt on the net device being torn down. But, in order to do this we require two steps, (i) dereference the netdev: dev = rcu_dereference(map[i]) (ii) test ifindex: dev->ifindex == removing_ifindex and then finally we can swap in the NULL dev in the map via an xchg operation, xchg(map[i], NULL) The danger here is a concurrent update could run a different xchg op concurrently leading us to replace the new dev with a NULL dev incorrectly. CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) xchg(map[i], NULL) The above flow would create the incorrect state with the dev reference in the update path being lost. To resolve this the original code used a mutex around the above block. However, updates, deletes, and lookups occur inside rcu critical sections so we can't use a mutex in this context safely. Fortunately, by writing slightly better code we can avoid the mutex altogether. If CPU 1 in the above example uses a cmpxchg and _only_ replaces the dev reference in the map when it is in fact the expected dev the race is removed completely. The two cases being illustrated here, first the race condition, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) odev = cmpxchg(map[i], dev, NULL) Now we can test the cmpxchg return value, detect odev != dev and abort. Or in the good case, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) odev = cmpxchg(map[i], dev, NULL) [...] Now 'odev == dev' and we can do proper cleanup. And viola the original race we tried to solve with a mutex is corrected and the trace noted by Sasha below is resolved due to removal of the mutex. Note: When walking the devmap and removing dev references as needed we depend on the core to fail any calls to dev_get_by_index() using the ifindex of the device being removed. This way we do not race with the user while searching the devmap. Additionally, the mutex was also protecting list add/del/read on the list of maps in-use. This patch converts this to an RCU list and spinlock implementation. This protects the list from concurrent alloc/free operations. The notifier hook walks this list so it uses RCU read semantics. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:747 in_atomic(): 1, irqs_disabled(): 0, pid: 16315, name: syz-executor1 1 lock held by syz-executor1/16315: #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] map_delete_elem kernel/bpf/syscall.c:577 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SYSC_bpf kernel/bpf/syscall.c:1427 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SyS_bpf+0x1d32/0x4ba0 kernel/bpf/syscall.c:1388 Fixes: 2ddf71e23cc2 ("net: add notifier hooks for devmap bpf map") Reported-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-05 13:02:19 +08:00
odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
if (dev == odev)
call_rcu(&dev->rcu,
__dev_map_entry_free);
}
}
bpf: devmap fix mutex in rcu critical section Originally we used a mutex to protect concurrent devmap update and delete operations from racing with netdev unregister notifier callbacks. The notifier hook is needed because we increment the netdev ref count when a dev is added to the devmap. This ensures the netdev reference is valid in the datapath. However, we don't want to block unregister events, hence the initial mutex and notifier handler. The concern was in the notifier hook we search the map for dev entries that hold a refcnt on the net device being torn down. But, in order to do this we require two steps, (i) dereference the netdev: dev = rcu_dereference(map[i]) (ii) test ifindex: dev->ifindex == removing_ifindex and then finally we can swap in the NULL dev in the map via an xchg operation, xchg(map[i], NULL) The danger here is a concurrent update could run a different xchg op concurrently leading us to replace the new dev with a NULL dev incorrectly. CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) xchg(map[i], NULL) The above flow would create the incorrect state with the dev reference in the update path being lost. To resolve this the original code used a mutex around the above block. However, updates, deletes, and lookups occur inside rcu critical sections so we can't use a mutex in this context safely. Fortunately, by writing slightly better code we can avoid the mutex altogether. If CPU 1 in the above example uses a cmpxchg and _only_ replaces the dev reference in the map when it is in fact the expected dev the race is removed completely. The two cases being illustrated here, first the race condition, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) dev = rcu_dereference(map[i]) xchg(map[i]), new_dev); rcu_call(dev,...) odev = cmpxchg(map[i], dev, NULL) Now we can test the cmpxchg return value, detect odev != dev and abort. Or in the good case, CPU 1 CPU 2 notifier hook bpf devmap update dev = rcu_dereference(map[i]) odev = cmpxchg(map[i], dev, NULL) [...] Now 'odev == dev' and we can do proper cleanup. And viola the original race we tried to solve with a mutex is corrected and the trace noted by Sasha below is resolved due to removal of the mutex. Note: When walking the devmap and removing dev references as needed we depend on the core to fail any calls to dev_get_by_index() using the ifindex of the device being removed. This way we do not race with the user while searching the devmap. Additionally, the mutex was also protecting list add/del/read on the list of maps in-use. This patch converts this to an RCU list and spinlock implementation. This protects the list from concurrent alloc/free operations. The notifier hook walks this list so it uses RCU read semantics. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:747 in_atomic(): 1, irqs_disabled(): 0, pid: 16315, name: syz-executor1 1 lock held by syz-executor1/16315: #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] map_delete_elem kernel/bpf/syscall.c:577 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SYSC_bpf kernel/bpf/syscall.c:1427 [inline] #0: (rcu_read_lock){......}, at: [<ffffffff8c363bc2>] SyS_bpf+0x1d32/0x4ba0 kernel/bpf/syscall.c:1388 Fixes: 2ddf71e23cc2 ("net: add notifier hooks for devmap bpf map") Reported-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-05 13:02:19 +08:00
rcu_read_unlock();
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block dev_map_notifier = {
.notifier_call = dev_map_notification,
};
static int __init dev_map_init(void)
{
int cpu;
/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
offsetof(struct _bpf_dtab_netdev, dev));
register_netdevice_notifier(&dev_map_notifier);
for_each_possible_cpu(cpu)
xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths Since the bulk queue used by XDP_REDIRECT now lives in struct net_device, we can re-use the bulking for the non-map version of the bpf_redirect() helper. This is a simple matter of having xdp_do_redirect_slow() queue the frame on the bulk queue instead of sending it out with __bpf_tx_xdp(). Unfortunately we can't make the bpf_redirect() helper return an error if the ifindex doesn't exit (as bpf_redirect_map() does), because we don't have a reference to the network namespace of the ingress device at the time the helper is called. So we have to leave it as-is and keep the device lookup in xdp_do_redirect_slow(). Since this leaves less reason to have the non-map redirect code in a separate function, so we get rid of the xdp_do_redirect_slow() function entirely. This does lose us the tracepoint disambiguation, but fortunately the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint entry structures. This means both can contain a map index, so we can just amend the tracepoint definitions so we always emit the xdp_redirect(_err) tracepoints, but with the map ID only populated if a map is present. This means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep the definitions around in case someone is still listening for them. With this change, the performance of the xdp_redirect sample program goes from 5Mpps to 8.4Mpps (a 68% increase). Since the flush functions are no longer map-specific, rename the flush() functions to drop _map from their names. One of the renamed functions is the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To keep from having to update all drivers, use a #define to keep the old name working, and only update the virtual drivers in this patch. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 23:14:45 +08:00
INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
return 0;
}
subsys_initcall(dev_map_init);