linux/drivers/infiniband/hw/cxgb3/iwch_provider.c

1468 lines
38 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/rtnetlink.h>
#include <linux/inetdevice.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <rdma/iw_cm.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_smi.h>
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
#include <rdma/ib_umem.h>
#include <rdma/ib_user_verbs.h>
#include "cxio_hal.h"
#include "iwch.h"
#include "iwch_provider.h"
#include "iwch_cm.h"
#include "iwch_user.h"
#include "common.h"
static struct ib_ah *iwch_ah_create(struct ib_pd *pd,
struct ib_ah_attr *ah_attr)
{
return ERR_PTR(-ENOSYS);
}
static int iwch_ah_destroy(struct ib_ah *ah)
{
return -ENOSYS;
}
static int iwch_multicast_attach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid)
{
return -ENOSYS;
}
static int iwch_multicast_detach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid)
{
return -ENOSYS;
}
static int iwch_process_mad(struct ib_device *ibdev,
int mad_flags,
u8 port_num,
struct ib_wc *in_wc,
struct ib_grh *in_grh,
struct ib_mad *in_mad, struct ib_mad *out_mad)
{
return -ENOSYS;
}
static int iwch_dealloc_ucontext(struct ib_ucontext *context)
{
struct iwch_dev *rhp = to_iwch_dev(context->device);
struct iwch_ucontext *ucontext = to_iwch_ucontext(context);
struct iwch_mm_entry *mm, *tmp;
PDBG("%s context %p\n", __func__, context);
list_for_each_entry_safe(mm, tmp, &ucontext->mmaps, entry)
kfree(mm);
cxio_release_ucontext(&rhp->rdev, &ucontext->uctx);
kfree(ucontext);
return 0;
}
static struct ib_ucontext *iwch_alloc_ucontext(struct ib_device *ibdev,
struct ib_udata *udata)
{
struct iwch_ucontext *context;
struct iwch_dev *rhp = to_iwch_dev(ibdev);
PDBG("%s ibdev %p\n", __func__, ibdev);
context = kzalloc(sizeof(*context), GFP_KERNEL);
if (!context)
return ERR_PTR(-ENOMEM);
cxio_init_ucontext(&rhp->rdev, &context->uctx);
INIT_LIST_HEAD(&context->mmaps);
spin_lock_init(&context->mmap_lock);
return &context->ibucontext;
}
static int iwch_destroy_cq(struct ib_cq *ib_cq)
{
struct iwch_cq *chp;
PDBG("%s ib_cq %p\n", __func__, ib_cq);
chp = to_iwch_cq(ib_cq);
remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid);
atomic_dec(&chp->refcnt);
wait_event(chp->wait, !atomic_read(&chp->refcnt));
cxio_destroy_cq(&chp->rhp->rdev, &chp->cq);
kfree(chp);
return 0;
}
static struct ib_cq *iwch_create_cq(struct ib_device *ibdev, int entries, int vector,
struct ib_ucontext *ib_context,
struct ib_udata *udata)
{
struct iwch_dev *rhp;
struct iwch_cq *chp;
struct iwch_create_cq_resp uresp;
struct iwch_create_cq_req ureq;
struct iwch_ucontext *ucontext = NULL;
static int warned;
size_t resplen;
PDBG("%s ib_dev %p entries %d\n", __func__, ibdev, entries);
rhp = to_iwch_dev(ibdev);
chp = kzalloc(sizeof(*chp), GFP_KERNEL);
if (!chp)
return ERR_PTR(-ENOMEM);
if (ib_context) {
ucontext = to_iwch_ucontext(ib_context);
if (!t3a_device(rhp)) {
if (ib_copy_from_udata(&ureq, udata, sizeof (ureq))) {
kfree(chp);
return ERR_PTR(-EFAULT);
}
chp->user_rptr_addr = (u32 __user *)(unsigned long)ureq.user_rptr_addr;
}
}
if (t3a_device(rhp)) {
/*
* T3A: Add some fluff to handle extra CQEs inserted
* for various errors.
* Additional CQE possibilities:
* TERMINATE,
* incoming RDMA WRITE Failures
* incoming RDMA READ REQUEST FAILUREs
* NOTE: We cannot ensure the CQ won't overflow.
*/
entries += 16;
}
entries = roundup_pow_of_two(entries);
chp->cq.size_log2 = ilog2(entries);
if (cxio_create_cq(&rhp->rdev, &chp->cq, !ucontext)) {
kfree(chp);
return ERR_PTR(-ENOMEM);
}
chp->rhp = rhp;
chp->ibcq.cqe = 1 << chp->cq.size_log2;
spin_lock_init(&chp->lock);
spin_lock_init(&chp->comp_handler_lock);
atomic_set(&chp->refcnt, 1);
init_waitqueue_head(&chp->wait);
if (insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid)) {
cxio_destroy_cq(&chp->rhp->rdev, &chp->cq);
kfree(chp);
return ERR_PTR(-ENOMEM);
}
if (ucontext) {
struct iwch_mm_entry *mm;
mm = kmalloc(sizeof *mm, GFP_KERNEL);
if (!mm) {
iwch_destroy_cq(&chp->ibcq);
return ERR_PTR(-ENOMEM);
}
uresp.cqid = chp->cq.cqid;
uresp.size_log2 = chp->cq.size_log2;
spin_lock(&ucontext->mmap_lock);
uresp.key = ucontext->key;
ucontext->key += PAGE_SIZE;
spin_unlock(&ucontext->mmap_lock);
mm->key = uresp.key;
mm->addr = virt_to_phys(chp->cq.queue);
if (udata->outlen < sizeof uresp) {
if (!warned++)
printk(KERN_WARNING MOD "Warning - "
"downlevel libcxgb3 (non-fatal).\n");
mm->len = PAGE_ALIGN((1UL << uresp.size_log2) *
sizeof(struct t3_cqe));
resplen = sizeof(struct iwch_create_cq_resp_v0);
} else {
mm->len = PAGE_ALIGN(((1UL << uresp.size_log2) + 1) *
sizeof(struct t3_cqe));
uresp.memsize = mm->len;
uresp.reserved = 0;
resplen = sizeof uresp;
}
if (ib_copy_to_udata(udata, &uresp, resplen)) {
kfree(mm);
iwch_destroy_cq(&chp->ibcq);
return ERR_PTR(-EFAULT);
}
insert_mmap(ucontext, mm);
}
PDBG("created cqid 0x%0x chp %p size 0x%0x, dma_addr 0x%0llx\n",
chp->cq.cqid, chp, (1 << chp->cq.size_log2),
(unsigned long long) chp->cq.dma_addr);
return &chp->ibcq;
}
static int iwch_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata)
{
#ifdef notyet
struct iwch_cq *chp = to_iwch_cq(cq);
struct t3_cq oldcq, newcq;
int ret;
PDBG("%s ib_cq %p cqe %d\n", __func__, cq, cqe);
/* We don't downsize... */
if (cqe <= cq->cqe)
return 0;
/* create new t3_cq with new size */
cqe = roundup_pow_of_two(cqe+1);
newcq.size_log2 = ilog2(cqe);
/* Dont allow resize to less than the current wce count */
if (cqe < Q_COUNT(chp->cq.rptr, chp->cq.wptr)) {
return -ENOMEM;
}
/* Quiesce all QPs using this CQ */
ret = iwch_quiesce_qps(chp);
if (ret) {
return ret;
}
ret = cxio_create_cq(&chp->rhp->rdev, &newcq);
if (ret) {
return ret;
}
/* copy CQEs */
memcpy(newcq.queue, chp->cq.queue, (1 << chp->cq.size_log2) *
sizeof(struct t3_cqe));
/* old iwch_qp gets new t3_cq but keeps old cqid */
oldcq = chp->cq;
chp->cq = newcq;
chp->cq.cqid = oldcq.cqid;
/* resize new t3_cq to update the HW context */
ret = cxio_resize_cq(&chp->rhp->rdev, &chp->cq);
if (ret) {
chp->cq = oldcq;
return ret;
}
chp->ibcq.cqe = (1<<chp->cq.size_log2) - 1;
/* destroy old t3_cq */
oldcq.cqid = newcq.cqid;
ret = cxio_destroy_cq(&chp->rhp->rdev, &oldcq);
if (ret) {
printk(KERN_ERR MOD "%s - cxio_destroy_cq failed %d\n",
__func__, ret);
}
/* add user hooks here */
/* resume qps */
ret = iwch_resume_qps(chp);
return ret;
#else
return -ENOSYS;
#endif
}
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 12:02:48 +08:00
static int iwch_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
{
struct iwch_dev *rhp;
struct iwch_cq *chp;
enum t3_cq_opcode cq_op;
int err;
unsigned long flag;
u32 rptr;
chp = to_iwch_cq(ibcq);
rhp = chp->rhp;
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 12:02:48 +08:00
if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
cq_op = CQ_ARM_SE;
else
cq_op = CQ_ARM_AN;
if (chp->user_rptr_addr) {
if (get_user(rptr, chp->user_rptr_addr))
return -EFAULT;
spin_lock_irqsave(&chp->lock, flag);
chp->cq.rptr = rptr;
} else
spin_lock_irqsave(&chp->lock, flag);
PDBG("%s rptr 0x%x\n", __func__, chp->cq.rptr);
err = cxio_hal_cq_op(&rhp->rdev, &chp->cq, cq_op, 0);
spin_unlock_irqrestore(&chp->lock, flag);
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 12:02:48 +08:00
if (err < 0)
printk(KERN_ERR MOD "Error %d rearming CQID 0x%x\n", err,
chp->cq.cqid);
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 12:02:48 +08:00
if (err > 0 && !(flags & IB_CQ_REPORT_MISSED_EVENTS))
err = 0;
return err;
}
static int iwch_mmap(struct ib_ucontext *context, struct vm_area_struct *vma)
{
int len = vma->vm_end - vma->vm_start;
u32 key = vma->vm_pgoff << PAGE_SHIFT;
struct cxio_rdev *rdev_p;
int ret = 0;
struct iwch_mm_entry *mm;
struct iwch_ucontext *ucontext;
u64 addr;
PDBG("%s pgoff 0x%lx key 0x%x len %d\n", __func__, vma->vm_pgoff,
key, len);
if (vma->vm_start & (PAGE_SIZE-1)) {
return -EINVAL;
}
rdev_p = &(to_iwch_dev(context->device)->rdev);
ucontext = to_iwch_ucontext(context);
mm = remove_mmap(ucontext, key, len);
if (!mm)
return -EINVAL;
addr = mm->addr;
kfree(mm);
if ((addr >= rdev_p->rnic_info.udbell_physbase) &&
(addr < (rdev_p->rnic_info.udbell_physbase +
rdev_p->rnic_info.udbell_len))) {
/*
* Map T3 DB register.
*/
if (vma->vm_flags & VM_READ) {
return -EPERM;
}
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
vma->vm_flags &= ~VM_MAYREAD;
ret = io_remap_pfn_range(vma, vma->vm_start,
addr >> PAGE_SHIFT,
len, vma->vm_page_prot);
} else {
/*
* Map WQ or CQ contig dma memory...
*/
ret = remap_pfn_range(vma, vma->vm_start,
addr >> PAGE_SHIFT,
len, vma->vm_page_prot);
}
return ret;
}
static int iwch_deallocate_pd(struct ib_pd *pd)
{
struct iwch_dev *rhp;
struct iwch_pd *php;
php = to_iwch_pd(pd);
rhp = php->rhp;
PDBG("%s ibpd %p pdid 0x%x\n", __func__, pd, php->pdid);
cxio_hal_put_pdid(rhp->rdev.rscp, php->pdid);
kfree(php);
return 0;
}
static struct ib_pd *iwch_allocate_pd(struct ib_device *ibdev,
struct ib_ucontext *context,
struct ib_udata *udata)
{
struct iwch_pd *php;
u32 pdid;
struct iwch_dev *rhp;
PDBG("%s ibdev %p\n", __func__, ibdev);
rhp = (struct iwch_dev *) ibdev;
pdid = cxio_hal_get_pdid(rhp->rdev.rscp);
if (!pdid)
return ERR_PTR(-EINVAL);
php = kzalloc(sizeof(*php), GFP_KERNEL);
if (!php) {
cxio_hal_put_pdid(rhp->rdev.rscp, pdid);
return ERR_PTR(-ENOMEM);
}
php->pdid = pdid;
php->rhp = rhp;
if (context) {
if (ib_copy_to_udata(udata, &php->pdid, sizeof (__u32))) {
iwch_deallocate_pd(&php->ibpd);
return ERR_PTR(-EFAULT);
}
}
PDBG("%s pdid 0x%0x ptr 0x%p\n", __func__, pdid, php);
return &php->ibpd;
}
static int iwch_dereg_mr(struct ib_mr *ib_mr)
{
struct iwch_dev *rhp;
struct iwch_mr *mhp;
u32 mmid;
PDBG("%s ib_mr %p\n", __func__, ib_mr);
/* There can be no memory windows */
if (atomic_read(&ib_mr->usecnt))
return -EINVAL;
mhp = to_iwch_mr(ib_mr);
rhp = mhp->rhp;
mmid = mhp->attr.stag >> 8;
cxio_dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
iwch_free_pbl(mhp);
remove_handle(rhp, &rhp->mmidr, mmid);
if (mhp->kva)
kfree((void *) (unsigned long) mhp->kva);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
if (mhp->umem)
ib_umem_release(mhp->umem);
PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
kfree(mhp);
return 0;
}
static struct ib_mr *iwch_register_phys_mem(struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf,
int acc,
u64 *iova_start)
{
__be64 *page_list;
int shift;
u64 total_size;
int npages;
struct iwch_dev *rhp;
struct iwch_pd *php;
struct iwch_mr *mhp;
int ret;
PDBG("%s ib_pd %p\n", __func__, pd);
php = to_iwch_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
mhp->rhp = rhp;
/* First check that we have enough alignment */
if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
ret = -EINVAL;
goto err;
}
if (num_phys_buf > 1 &&
((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
ret = -EINVAL;
goto err;
}
ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
&total_size, &npages, &shift, &page_list);
if (ret)
goto err;
ret = iwch_alloc_pbl(mhp, npages);
if (ret) {
kfree(page_list);
goto err_pbl;
}
ret = iwch_write_pbl(mhp, page_list, npages, 0);
kfree(page_list);
if (ret)
goto err_pbl;
mhp->attr.pdid = php->pdid;
mhp->attr.zbva = 0;
mhp->attr.perms = iwch_ib_to_tpt_access(acc);
mhp->attr.va_fbo = *iova_start;
mhp->attr.page_size = shift - 12;
mhp->attr.len = (u32) total_size;
mhp->attr.pbl_size = npages;
ret = iwch_register_mem(rhp, php, mhp, shift);
if (ret)
goto err_pbl;
return &mhp->ibmr;
err_pbl:
iwch_free_pbl(mhp);
err:
kfree(mhp);
return ERR_PTR(ret);
}
static int iwch_reregister_phys_mem(struct ib_mr *mr,
int mr_rereg_mask,
struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf,
int acc, u64 * iova_start)
{
struct iwch_mr mh, *mhp;
struct iwch_pd *php;
struct iwch_dev *rhp;
__be64 *page_list = NULL;
int shift = 0;
u64 total_size;
int npages = 0;
int ret;
PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
/* There can be no memory windows */
if (atomic_read(&mr->usecnt))
return -EINVAL;
mhp = to_iwch_mr(mr);
rhp = mhp->rhp;
php = to_iwch_pd(mr->pd);
/* make sure we are on the same adapter */
if (rhp != php->rhp)
return -EINVAL;
memcpy(&mh, mhp, sizeof *mhp);
if (mr_rereg_mask & IB_MR_REREG_PD)
php = to_iwch_pd(pd);
if (mr_rereg_mask & IB_MR_REREG_ACCESS)
mh.attr.perms = iwch_ib_to_tpt_access(acc);
if (mr_rereg_mask & IB_MR_REREG_TRANS) {
ret = build_phys_page_list(buffer_list, num_phys_buf,
iova_start,
&total_size, &npages,
&shift, &page_list);
if (ret)
return ret;
}
ret = iwch_reregister_mem(rhp, php, &mh, shift, npages);
kfree(page_list);
if (ret) {
return ret;
}
if (mr_rereg_mask & IB_MR_REREG_PD)
mhp->attr.pdid = php->pdid;
if (mr_rereg_mask & IB_MR_REREG_ACCESS)
mhp->attr.perms = iwch_ib_to_tpt_access(acc);
if (mr_rereg_mask & IB_MR_REREG_TRANS) {
mhp->attr.zbva = 0;
mhp->attr.va_fbo = *iova_start;
mhp->attr.page_size = shift - 12;
mhp->attr.len = (u32) total_size;
mhp->attr.pbl_size = npages;
}
return 0;
}
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
static struct ib_mr *iwch_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt, int acc, struct ib_udata *udata)
{
__be64 *pages;
int shift, n, len;
int i, k, entry;
int err = 0;
struct iwch_dev *rhp;
struct iwch_pd *php;
struct iwch_mr *mhp;
struct iwch_reg_user_mr_resp uresp;
struct scatterlist *sg;
PDBG("%s ib_pd %p\n", __func__, pd);
php = to_iwch_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
mhp->rhp = rhp;
mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
if (IS_ERR(mhp->umem)) {
err = PTR_ERR(mhp->umem);
kfree(mhp);
return ERR_PTR(err);
}
shift = ffs(mhp->umem->page_size) - 1;
n = mhp->umem->nmap;
err = iwch_alloc_pbl(mhp, n);
if (err)
goto err;
pages = (__be64 *) __get_free_page(GFP_KERNEL);
if (!pages) {
err = -ENOMEM;
goto err_pbl;
}
i = n = 0;
for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
len = sg_dma_len(sg) >> shift;
for (k = 0; k < len; ++k) {
pages[i++] = cpu_to_be64(sg_dma_address(sg) +
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
mhp->umem->page_size * k);
if (i == PAGE_SIZE / sizeof *pages) {
err = iwch_write_pbl(mhp, pages, i, n);
if (err)
goto pbl_done;
n += i;
i = 0;
}
}
}
if (i)
err = iwch_write_pbl(mhp, pages, i, n);
pbl_done:
free_page((unsigned long) pages);
if (err)
goto err_pbl;
mhp->attr.pdid = php->pdid;
mhp->attr.zbva = 0;
mhp->attr.perms = iwch_ib_to_tpt_access(acc);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
mhp->attr.va_fbo = virt;
mhp->attr.page_size = shift - 12;
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
mhp->attr.len = (u32) length;
err = iwch_register_mem(rhp, php, mhp, shift);
if (err)
goto err_pbl;
if (udata && !t3a_device(rhp)) {
uresp.pbl_addr = (mhp->attr.pbl_addr -
rhp->rdev.rnic_info.pbl_base) >> 3;
PDBG("%s user resp pbl_addr 0x%x\n", __func__,
uresp.pbl_addr);
if (ib_copy_to_udata(udata, &uresp, sizeof (uresp))) {
iwch_dereg_mr(&mhp->ibmr);
err = -EFAULT;
goto err;
}
}
return &mhp->ibmr;
err_pbl:
iwch_free_pbl(mhp);
err:
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
ib_umem_release(mhp->umem);
kfree(mhp);
return ERR_PTR(err);
}
static struct ib_mr *iwch_get_dma_mr(struct ib_pd *pd, int acc)
{
struct ib_phys_buf bl;
u64 kva;
struct ib_mr *ibmr;
PDBG("%s ib_pd %p\n", __func__, pd);
/*
* T3 only supports 32 bits of size.
*/
bl.size = 0xffffffff;
bl.addr = 0;
kva = 0;
ibmr = iwch_register_phys_mem(pd, &bl, 1, acc, &kva);
return ibmr;
}
IB/core: Add "type 2" memory windows support This patch enhances the IB core support for Memory Windows (MWs). MWs allow an application to have better/flexible control over remote access to memory. Two types of MWs are supported, with the second type having two flavors: Type 1 - associated with PD only Type 2A - associated with QPN only Type 2B - associated with PD and QPN Applications can allocate a MW once, and then repeatedly bind the MW to different ranges in MRs that are associated to the same PD. Type 1 windows are bound through a verb, while type 2 windows are bound by posting a work request. The 32-bit memory key is composed of a 24-bit index and an 8-bit key. The key is changed with each bind, thus allowing more control over the peer's use of the memory key. The changes introduced are the following: * add memory window type enum and a corresponding parameter to ib_alloc_mw. * type 2 memory window bind work request support. * create a struct that contains the common part of the bind verb struct ibv_mw_bind and the bind work request into a single struct. * add the ib_inc_rkey helper function to advance the tag part of an rkey. Consumer interface details: * new device capability flags IB_DEVICE_MEM_WINDOW_TYPE_2A and IB_DEVICE_MEM_WINDOW_TYPE_2B are added to indicate device support for these features. Devices can set either IB_DEVICE_MEM_WINDOW_TYPE_2A or IB_DEVICE_MEM_WINDOW_TYPE_2B if it supports type 2A or type 2B memory windows. It can set neither to indicate it doesn't support type 2 windows at all. * modify existing provides and consumers code to the new param of ib_alloc_mw and the ib_mw_bind_info structure Signed-off-by: Haggai Eran <haggaie@mellanox.com> Signed-off-by: Shani Michaeli <shanim@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-02-07 00:19:12 +08:00
static struct ib_mw *iwch_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
{
struct iwch_dev *rhp;
struct iwch_pd *php;
struct iwch_mw *mhp;
u32 mmid;
u32 stag = 0;
int ret;
IB/core: Add "type 2" memory windows support This patch enhances the IB core support for Memory Windows (MWs). MWs allow an application to have better/flexible control over remote access to memory. Two types of MWs are supported, with the second type having two flavors: Type 1 - associated with PD only Type 2A - associated with QPN only Type 2B - associated with PD and QPN Applications can allocate a MW once, and then repeatedly bind the MW to different ranges in MRs that are associated to the same PD. Type 1 windows are bound through a verb, while type 2 windows are bound by posting a work request. The 32-bit memory key is composed of a 24-bit index and an 8-bit key. The key is changed with each bind, thus allowing more control over the peer's use of the memory key. The changes introduced are the following: * add memory window type enum and a corresponding parameter to ib_alloc_mw. * type 2 memory window bind work request support. * create a struct that contains the common part of the bind verb struct ibv_mw_bind and the bind work request into a single struct. * add the ib_inc_rkey helper function to advance the tag part of an rkey. Consumer interface details: * new device capability flags IB_DEVICE_MEM_WINDOW_TYPE_2A and IB_DEVICE_MEM_WINDOW_TYPE_2B are added to indicate device support for these features. Devices can set either IB_DEVICE_MEM_WINDOW_TYPE_2A or IB_DEVICE_MEM_WINDOW_TYPE_2B if it supports type 2A or type 2B memory windows. It can set neither to indicate it doesn't support type 2 windows at all. * modify existing provides and consumers code to the new param of ib_alloc_mw and the ib_mw_bind_info structure Signed-off-by: Haggai Eran <haggaie@mellanox.com> Signed-off-by: Shani Michaeli <shanim@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-02-07 00:19:12 +08:00
if (type != IB_MW_TYPE_1)
return ERR_PTR(-EINVAL);
php = to_iwch_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
ret = cxio_allocate_window(&rhp->rdev, &stag, php->pdid);
if (ret) {
kfree(mhp);
return ERR_PTR(ret);
}
mhp->rhp = rhp;
mhp->attr.pdid = php->pdid;
mhp->attr.type = TPT_MW;
mhp->attr.stag = stag;
mmid = (stag) >> 8;
mhp->ibmw.rkey = stag;
if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
cxio_deallocate_window(&rhp->rdev, mhp->attr.stag);
kfree(mhp);
return ERR_PTR(-ENOMEM);
}
PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
return &(mhp->ibmw);
}
static int iwch_dealloc_mw(struct ib_mw *mw)
{
struct iwch_dev *rhp;
struct iwch_mw *mhp;
u32 mmid;
mhp = to_iwch_mw(mw);
rhp = mhp->rhp;
mmid = (mw->rkey) >> 8;
cxio_deallocate_window(&rhp->rdev, mhp->attr.stag);
remove_handle(rhp, &rhp->mmidr, mmid);
PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
kfree(mhp);
return 0;
}
static struct ib_mr *iwch_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth)
{
struct iwch_dev *rhp;
struct iwch_pd *php;
struct iwch_mr *mhp;
u32 mmid;
u32 stag = 0;
int ret = 0;
php = to_iwch_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
goto err;
mhp->rhp = rhp;
ret = iwch_alloc_pbl(mhp, pbl_depth);
if (ret)
goto err1;
mhp->attr.pbl_size = pbl_depth;
ret = cxio_allocate_stag(&rhp->rdev, &stag, php->pdid,
mhp->attr.pbl_size, mhp->attr.pbl_addr);
if (ret)
goto err2;
mhp->attr.pdid = php->pdid;
mhp->attr.type = TPT_NON_SHARED_MR;
mhp->attr.stag = stag;
mhp->attr.state = 1;
mmid = (stag) >> 8;
mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
if (insert_handle(rhp, &rhp->mmidr, mhp, mmid))
goto err3;
PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
return &(mhp->ibmr);
err3:
cxio_dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
err2:
iwch_free_pbl(mhp);
err1:
kfree(mhp);
err:
return ERR_PTR(ret);
}
static struct ib_fast_reg_page_list *iwch_alloc_fastreg_pbl(
struct ib_device *device,
int page_list_len)
{
struct ib_fast_reg_page_list *page_list;
page_list = kmalloc(sizeof *page_list + page_list_len * sizeof(u64),
GFP_KERNEL);
if (!page_list)
return ERR_PTR(-ENOMEM);
page_list->page_list = (u64 *)(page_list + 1);
page_list->max_page_list_len = page_list_len;
return page_list;
}
static void iwch_free_fastreg_pbl(struct ib_fast_reg_page_list *page_list)
{
kfree(page_list);
}
static int iwch_destroy_qp(struct ib_qp *ib_qp)
{
struct iwch_dev *rhp;
struct iwch_qp *qhp;
struct iwch_qp_attributes attrs;
struct iwch_ucontext *ucontext;
qhp = to_iwch_qp(ib_qp);
rhp = qhp->rhp;
attrs.next_state = IWCH_QP_STATE_ERROR;
iwch_modify_qp(rhp, qhp, IWCH_QP_ATTR_NEXT_STATE, &attrs, 0);
wait_event(qhp->wait, !qhp->ep);
remove_handle(rhp, &rhp->qpidr, qhp->wq.qpid);
atomic_dec(&qhp->refcnt);
wait_event(qhp->wait, !atomic_read(&qhp->refcnt));
ucontext = ib_qp->uobject ? to_iwch_ucontext(ib_qp->uobject->context)
: NULL;
cxio_destroy_qp(&rhp->rdev, &qhp->wq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
PDBG("%s ib_qp %p qpid 0x%0x qhp %p\n", __func__,
ib_qp, qhp->wq.qpid, qhp);
kfree(qhp);
return 0;
}
static struct ib_qp *iwch_create_qp(struct ib_pd *pd,
struct ib_qp_init_attr *attrs,
struct ib_udata *udata)
{
struct iwch_dev *rhp;
struct iwch_qp *qhp;
struct iwch_pd *php;
struct iwch_cq *schp;
struct iwch_cq *rchp;
struct iwch_create_qp_resp uresp;
int wqsize, sqsize, rqsize;
struct iwch_ucontext *ucontext;
PDBG("%s ib_pd %p\n", __func__, pd);
if (attrs->qp_type != IB_QPT_RC)
return ERR_PTR(-EINVAL);
php = to_iwch_pd(pd);
rhp = php->rhp;
schp = get_chp(rhp, ((struct iwch_cq *) attrs->send_cq)->cq.cqid);
rchp = get_chp(rhp, ((struct iwch_cq *) attrs->recv_cq)->cq.cqid);
if (!schp || !rchp)
return ERR_PTR(-EINVAL);
/* The RQT size must be # of entries + 1 rounded up to a power of two */
rqsize = roundup_pow_of_two(attrs->cap.max_recv_wr);
if (rqsize == attrs->cap.max_recv_wr)
rqsize = roundup_pow_of_two(attrs->cap.max_recv_wr+1);
/* T3 doesn't support RQT depth < 16 */
if (rqsize < 16)
rqsize = 16;
if (rqsize > T3_MAX_RQ_SIZE)
return ERR_PTR(-EINVAL);
if (attrs->cap.max_inline_data > T3_MAX_INLINE)
return ERR_PTR(-EINVAL);
/*
* NOTE: The SQ and total WQ sizes don't need to be
* a power of two. However, all the code assumes
* they are. EG: Q_FREECNT() and friends.
*/
sqsize = roundup_pow_of_two(attrs->cap.max_send_wr);
wqsize = roundup_pow_of_two(rqsize + sqsize);
/*
* Kernel users need more wq space for fastreg WRs which can take
* 2 WR fragments.
*/
ucontext = pd->uobject ? to_iwch_ucontext(pd->uobject->context) : NULL;
if (!ucontext && wqsize < (rqsize + (2 * sqsize)))
wqsize = roundup_pow_of_two(rqsize +
roundup_pow_of_two(attrs->cap.max_send_wr * 2));
PDBG("%s wqsize %d sqsize %d rqsize %d\n", __func__,
wqsize, sqsize, rqsize);
qhp = kzalloc(sizeof(*qhp), GFP_KERNEL);
if (!qhp)
return ERR_PTR(-ENOMEM);
qhp->wq.size_log2 = ilog2(wqsize);
qhp->wq.rq_size_log2 = ilog2(rqsize);
qhp->wq.sq_size_log2 = ilog2(sqsize);
if (cxio_create_qp(&rhp->rdev, !udata, &qhp->wq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx)) {
kfree(qhp);
return ERR_PTR(-ENOMEM);
}
attrs->cap.max_recv_wr = rqsize - 1;
attrs->cap.max_send_wr = sqsize;
attrs->cap.max_inline_data = T3_MAX_INLINE;
qhp->rhp = rhp;
qhp->attr.pd = php->pdid;
qhp->attr.scq = ((struct iwch_cq *) attrs->send_cq)->cq.cqid;
qhp->attr.rcq = ((struct iwch_cq *) attrs->recv_cq)->cq.cqid;
qhp->attr.sq_num_entries = attrs->cap.max_send_wr;
qhp->attr.rq_num_entries = attrs->cap.max_recv_wr;
qhp->attr.sq_max_sges = attrs->cap.max_send_sge;
qhp->attr.sq_max_sges_rdma_write = attrs->cap.max_send_sge;
qhp->attr.rq_max_sges = attrs->cap.max_recv_sge;
qhp->attr.state = IWCH_QP_STATE_IDLE;
qhp->attr.next_state = IWCH_QP_STATE_IDLE;
/*
* XXX - These don't get passed in from the openib user
* at create time. The CM sets them via a QP modify.
* Need to fix... I think the CM should
*/
qhp->attr.enable_rdma_read = 1;
qhp->attr.enable_rdma_write = 1;
qhp->attr.enable_bind = 1;
qhp->attr.max_ord = 1;
qhp->attr.max_ird = 1;
spin_lock_init(&qhp->lock);
init_waitqueue_head(&qhp->wait);
atomic_set(&qhp->refcnt, 1);
if (insert_handle(rhp, &rhp->qpidr, qhp, qhp->wq.qpid)) {
cxio_destroy_qp(&rhp->rdev, &qhp->wq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
kfree(qhp);
return ERR_PTR(-ENOMEM);
}
if (udata) {
struct iwch_mm_entry *mm1, *mm2;
mm1 = kmalloc(sizeof *mm1, GFP_KERNEL);
if (!mm1) {
iwch_destroy_qp(&qhp->ibqp);
return ERR_PTR(-ENOMEM);
}
mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
if (!mm2) {
kfree(mm1);
iwch_destroy_qp(&qhp->ibqp);
return ERR_PTR(-ENOMEM);
}
uresp.qpid = qhp->wq.qpid;
uresp.size_log2 = qhp->wq.size_log2;
uresp.sq_size_log2 = qhp->wq.sq_size_log2;
uresp.rq_size_log2 = qhp->wq.rq_size_log2;
spin_lock(&ucontext->mmap_lock);
uresp.key = ucontext->key;
ucontext->key += PAGE_SIZE;
uresp.db_key = ucontext->key;
ucontext->key += PAGE_SIZE;
spin_unlock(&ucontext->mmap_lock);
if (ib_copy_to_udata(udata, &uresp, sizeof (uresp))) {
kfree(mm1);
kfree(mm2);
iwch_destroy_qp(&qhp->ibqp);
return ERR_PTR(-EFAULT);
}
mm1->key = uresp.key;
mm1->addr = virt_to_phys(qhp->wq.queue);
mm1->len = PAGE_ALIGN(wqsize * sizeof (union t3_wr));
insert_mmap(ucontext, mm1);
mm2->key = uresp.db_key;
mm2->addr = qhp->wq.udb & PAGE_MASK;
mm2->len = PAGE_SIZE;
insert_mmap(ucontext, mm2);
}
qhp->ibqp.qp_num = qhp->wq.qpid;
init_timer(&(qhp->timer));
PDBG("%s sq_num_entries %d, rq_num_entries %d "
"qpid 0x%0x qhp %p dma_addr 0x%llx size %d rq_addr 0x%x\n",
__func__, qhp->attr.sq_num_entries, qhp->attr.rq_num_entries,
qhp->wq.qpid, qhp, (unsigned long long) qhp->wq.dma_addr,
1 << qhp->wq.size_log2, qhp->wq.rq_addr);
return &qhp->ibqp;
}
static int iwch_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct iwch_dev *rhp;
struct iwch_qp *qhp;
enum iwch_qp_attr_mask mask = 0;
struct iwch_qp_attributes attrs;
PDBG("%s ib_qp %p\n", __func__, ibqp);
/* iwarp does not support the RTR state */
if ((attr_mask & IB_QP_STATE) && (attr->qp_state == IB_QPS_RTR))
attr_mask &= ~IB_QP_STATE;
/* Make sure we still have something left to do */
if (!attr_mask)
return 0;
memset(&attrs, 0, sizeof attrs);
qhp = to_iwch_qp(ibqp);
rhp = qhp->rhp;
attrs.next_state = iwch_convert_state(attr->qp_state);
attrs.enable_rdma_read = (attr->qp_access_flags &
IB_ACCESS_REMOTE_READ) ? 1 : 0;
attrs.enable_rdma_write = (attr->qp_access_flags &
IB_ACCESS_REMOTE_WRITE) ? 1 : 0;
attrs.enable_bind = (attr->qp_access_flags & IB_ACCESS_MW_BIND) ? 1 : 0;
mask |= (attr_mask & IB_QP_STATE) ? IWCH_QP_ATTR_NEXT_STATE : 0;
mask |= (attr_mask & IB_QP_ACCESS_FLAGS) ?
(IWCH_QP_ATTR_ENABLE_RDMA_READ |
IWCH_QP_ATTR_ENABLE_RDMA_WRITE |
IWCH_QP_ATTR_ENABLE_RDMA_BIND) : 0;
return iwch_modify_qp(rhp, qhp, mask, &attrs, 0);
}
void iwch_qp_add_ref(struct ib_qp *qp)
{
PDBG("%s ib_qp %p\n", __func__, qp);
atomic_inc(&(to_iwch_qp(qp)->refcnt));
}
void iwch_qp_rem_ref(struct ib_qp *qp)
{
PDBG("%s ib_qp %p\n", __func__, qp);
if (atomic_dec_and_test(&(to_iwch_qp(qp)->refcnt)))
wake_up(&(to_iwch_qp(qp)->wait));
}
static struct ib_qp *iwch_get_qp(struct ib_device *dev, int qpn)
{
PDBG("%s ib_dev %p qpn 0x%x\n", __func__, dev, qpn);
return (struct ib_qp *)get_qhp(to_iwch_dev(dev), qpn);
}
static int iwch_query_pkey(struct ib_device *ibdev,
u8 port, u16 index, u16 * pkey)
{
PDBG("%s ibdev %p\n", __func__, ibdev);
*pkey = 0;
return 0;
}
static int iwch_query_gid(struct ib_device *ibdev, u8 port,
int index, union ib_gid *gid)
{
struct iwch_dev *dev;
PDBG("%s ibdev %p, port %d, index %d, gid %p\n",
__func__, ibdev, port, index, gid);
dev = to_iwch_dev(ibdev);
BUG_ON(port == 0 || port > 2);
memset(&(gid->raw[0]), 0, sizeof(gid->raw));
memcpy(&(gid->raw[0]), dev->rdev.port_info.lldevs[port-1]->dev_addr, 6);
return 0;
}
static u64 fw_vers_string_to_u64(struct iwch_dev *iwch_dev)
{
struct ethtool_drvinfo info;
struct net_device *lldev = iwch_dev->rdev.t3cdev_p->lldev;
char *cp, *next;
unsigned fw_maj, fw_min, fw_mic;
lldev->ethtool_ops->get_drvinfo(lldev, &info);
next = info.fw_version + 1;
cp = strsep(&next, ".");
sscanf(cp, "%i", &fw_maj);
cp = strsep(&next, ".");
sscanf(cp, "%i", &fw_min);
cp = strsep(&next, ".");
sscanf(cp, "%i", &fw_mic);
return (((u64)fw_maj & 0xffff) << 32) | ((fw_min & 0xffff) << 16) |
(fw_mic & 0xffff);
}
static int iwch_query_device(struct ib_device *ibdev,
struct ib_device_attr *props)
{
struct iwch_dev *dev;
PDBG("%s ibdev %p\n", __func__, ibdev);
dev = to_iwch_dev(ibdev);
memset(props, 0, sizeof *props);
memcpy(&props->sys_image_guid, dev->rdev.t3cdev_p->lldev->dev_addr, 6);
props->hw_ver = dev->rdev.t3cdev_p->type;
props->fw_ver = fw_vers_string_to_u64(dev);
props->device_cap_flags = dev->device_cap_flags;
props->page_size_cap = dev->attr.mem_pgsizes_bitmask;
props->vendor_id = (u32)dev->rdev.rnic_info.pdev->vendor;
props->vendor_part_id = (u32)dev->rdev.rnic_info.pdev->device;
props->max_mr_size = dev->attr.max_mr_size;
props->max_qp = dev->attr.max_qps;
props->max_qp_wr = dev->attr.max_wrs;
props->max_sge = dev->attr.max_sge_per_wr;
props->max_sge_rd = 1;
props->max_qp_rd_atom = dev->attr.max_rdma_reads_per_qp;
props->max_qp_init_rd_atom = dev->attr.max_rdma_reads_per_qp;
props->max_cq = dev->attr.max_cqs;
props->max_cqe = dev->attr.max_cqes_per_cq;
props->max_mr = dev->attr.max_mem_regs;
props->max_pd = dev->attr.max_pds;
props->local_ca_ack_delay = 0;
props->max_fast_reg_page_list_len = T3_MAX_FASTREG_DEPTH;
return 0;
}
static int iwch_query_port(struct ib_device *ibdev,
u8 port, struct ib_port_attr *props)
{
struct iwch_dev *dev;
struct net_device *netdev;
struct in_device *inetdev;
PDBG("%s ibdev %p\n", __func__, ibdev);
dev = to_iwch_dev(ibdev);
netdev = dev->rdev.port_info.lldevs[port-1];
memset(props, 0, sizeof(struct ib_port_attr));
props->max_mtu = IB_MTU_4096;
if (netdev->mtu >= 4096)
props->active_mtu = IB_MTU_4096;
else if (netdev->mtu >= 2048)
props->active_mtu = IB_MTU_2048;
else if (netdev->mtu >= 1024)
props->active_mtu = IB_MTU_1024;
else if (netdev->mtu >= 512)
props->active_mtu = IB_MTU_512;
else
props->active_mtu = IB_MTU_256;
if (!netif_carrier_ok(netdev))
props->state = IB_PORT_DOWN;
else {
inetdev = in_dev_get(netdev);
if (inetdev) {
if (inetdev->ifa_list)
props->state = IB_PORT_ACTIVE;
else
props->state = IB_PORT_INIT;
in_dev_put(inetdev);
} else
props->state = IB_PORT_INIT;
}
props->port_cap_flags =
IB_PORT_CM_SUP |
IB_PORT_SNMP_TUNNEL_SUP |
IB_PORT_REINIT_SUP |
IB_PORT_DEVICE_MGMT_SUP |
IB_PORT_VENDOR_CLASS_SUP | IB_PORT_BOOT_MGMT_SUP;
props->gid_tbl_len = 1;
props->pkey_tbl_len = 1;
props->active_width = 2;
props->active_speed = IB_SPEED_DDR;
props->max_msg_sz = -1;
return 0;
}
static ssize_t show_rev(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iwch_dev *iwch_dev = container_of(dev, struct iwch_dev,
ibdev.dev);
PDBG("%s dev 0x%p\n", __func__, dev);
return sprintf(buf, "%d\n", iwch_dev->rdev.t3cdev_p->type);
}
static ssize_t show_fw_ver(struct device *dev, struct device_attribute *attr, char *buf)
{
struct iwch_dev *iwch_dev = container_of(dev, struct iwch_dev,
ibdev.dev);
struct ethtool_drvinfo info;
struct net_device *lldev = iwch_dev->rdev.t3cdev_p->lldev;
PDBG("%s dev 0x%p\n", __func__, dev);
lldev->ethtool_ops->get_drvinfo(lldev, &info);
return sprintf(buf, "%s\n", info.fw_version);
}
static ssize_t show_hca(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iwch_dev *iwch_dev = container_of(dev, struct iwch_dev,
ibdev.dev);
struct ethtool_drvinfo info;
struct net_device *lldev = iwch_dev->rdev.t3cdev_p->lldev;
PDBG("%s dev 0x%p\n", __func__, dev);
lldev->ethtool_ops->get_drvinfo(lldev, &info);
return sprintf(buf, "%s\n", info.driver);
}
static ssize_t show_board(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iwch_dev *iwch_dev = container_of(dev, struct iwch_dev,
ibdev.dev);
PDBG("%s dev 0x%p\n", __func__, dev);
return sprintf(buf, "%x.%x\n", iwch_dev->rdev.rnic_info.pdev->vendor,
iwch_dev->rdev.rnic_info.pdev->device);
}
static int iwch_get_mib(struct ib_device *ibdev,
union rdma_protocol_stats *stats)
{
struct iwch_dev *dev;
struct tp_mib_stats m;
int ret;
PDBG("%s ibdev %p\n", __func__, ibdev);
dev = to_iwch_dev(ibdev);
ret = dev->rdev.t3cdev_p->ctl(dev->rdev.t3cdev_p, RDMA_GET_MIB, &m);
if (ret)
return -ENOSYS;
memset(stats, 0, sizeof *stats);
stats->iw.ipInReceives = ((u64) m.ipInReceive_hi << 32) +
m.ipInReceive_lo;
stats->iw.ipInHdrErrors = ((u64) m.ipInHdrErrors_hi << 32) +
m.ipInHdrErrors_lo;
stats->iw.ipInAddrErrors = ((u64) m.ipInAddrErrors_hi << 32) +
m.ipInAddrErrors_lo;
stats->iw.ipInUnknownProtos = ((u64) m.ipInUnknownProtos_hi << 32) +
m.ipInUnknownProtos_lo;
stats->iw.ipInDiscards = ((u64) m.ipInDiscards_hi << 32) +
m.ipInDiscards_lo;
stats->iw.ipInDelivers = ((u64) m.ipInDelivers_hi << 32) +
m.ipInDelivers_lo;
stats->iw.ipOutRequests = ((u64) m.ipOutRequests_hi << 32) +
m.ipOutRequests_lo;
stats->iw.ipOutDiscards = ((u64) m.ipOutDiscards_hi << 32) +
m.ipOutDiscards_lo;
stats->iw.ipOutNoRoutes = ((u64) m.ipOutNoRoutes_hi << 32) +
m.ipOutNoRoutes_lo;
stats->iw.ipReasmTimeout = (u64) m.ipReasmTimeout;
stats->iw.ipReasmReqds = (u64) m.ipReasmReqds;
stats->iw.ipReasmOKs = (u64) m.ipReasmOKs;
stats->iw.ipReasmFails = (u64) m.ipReasmFails;
stats->iw.tcpActiveOpens = (u64) m.tcpActiveOpens;
stats->iw.tcpPassiveOpens = (u64) m.tcpPassiveOpens;
stats->iw.tcpAttemptFails = (u64) m.tcpAttemptFails;
stats->iw.tcpEstabResets = (u64) m.tcpEstabResets;
stats->iw.tcpOutRsts = (u64) m.tcpOutRsts;
stats->iw.tcpCurrEstab = (u64) m.tcpCurrEstab;
stats->iw.tcpInSegs = ((u64) m.tcpInSegs_hi << 32) +
m.tcpInSegs_lo;
stats->iw.tcpOutSegs = ((u64) m.tcpOutSegs_hi << 32) +
m.tcpOutSegs_lo;
stats->iw.tcpRetransSegs = ((u64) m.tcpRetransSeg_hi << 32) +
m.tcpRetransSeg_lo;
stats->iw.tcpInErrs = ((u64) m.tcpInErrs_hi << 32) +
m.tcpInErrs_lo;
stats->iw.tcpRtoMin = (u64) m.tcpRtoMin;
stats->iw.tcpRtoMax = (u64) m.tcpRtoMax;
return 0;
}
static DEVICE_ATTR(hw_rev, S_IRUGO, show_rev, NULL);
static DEVICE_ATTR(fw_ver, S_IRUGO, show_fw_ver, NULL);
static DEVICE_ATTR(hca_type, S_IRUGO, show_hca, NULL);
static DEVICE_ATTR(board_id, S_IRUGO, show_board, NULL);
static struct device_attribute *iwch_class_attributes[] = {
&dev_attr_hw_rev,
&dev_attr_fw_ver,
&dev_attr_hca_type,
&dev_attr_board_id,
};
int iwch_register_device(struct iwch_dev *dev)
{
int ret;
int i;
PDBG("%s iwch_dev %p\n", __func__, dev);
strlcpy(dev->ibdev.name, "cxgb3_%d", IB_DEVICE_NAME_MAX);
memset(&dev->ibdev.node_guid, 0, sizeof(dev->ibdev.node_guid));
memcpy(&dev->ibdev.node_guid, dev->rdev.t3cdev_p->lldev->dev_addr, 6);
dev->ibdev.owner = THIS_MODULE;
dev->device_cap_flags = IB_DEVICE_LOCAL_DMA_LKEY |
IB_DEVICE_MEM_WINDOW |
IB_DEVICE_MEM_MGT_EXTENSIONS;
/* cxgb3 supports STag 0. */
dev->ibdev.local_dma_lkey = 0;
dev->ibdev.uverbs_cmd_mask =
(1ull << IB_USER_VERBS_CMD_GET_CONTEXT) |
(1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) |
(1ull << IB_USER_VERBS_CMD_QUERY_PORT) |
(1ull << IB_USER_VERBS_CMD_ALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_DEALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_REG_MR) |
(1ull << IB_USER_VERBS_CMD_DEREG_MR) |
(1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
(1ull << IB_USER_VERBS_CMD_CREATE_CQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_CQ) |
(1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ) |
(1ull << IB_USER_VERBS_CMD_CREATE_QP) |
(1ull << IB_USER_VERBS_CMD_MODIFY_QP) |
(1ull << IB_USER_VERBS_CMD_POLL_CQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_QP) |
(1ull << IB_USER_VERBS_CMD_POST_SEND) |
(1ull << IB_USER_VERBS_CMD_POST_RECV);
dev->ibdev.node_type = RDMA_NODE_RNIC;
memcpy(dev->ibdev.node_desc, IWCH_NODE_DESC, sizeof(IWCH_NODE_DESC));
dev->ibdev.phys_port_cnt = dev->rdev.port_info.nports;
dev->ibdev.num_comp_vectors = 1;
dev->ibdev.dma_device = &(dev->rdev.rnic_info.pdev->dev);
dev->ibdev.query_device = iwch_query_device;
dev->ibdev.query_port = iwch_query_port;
dev->ibdev.query_pkey = iwch_query_pkey;
dev->ibdev.query_gid = iwch_query_gid;
dev->ibdev.alloc_ucontext = iwch_alloc_ucontext;
dev->ibdev.dealloc_ucontext = iwch_dealloc_ucontext;
dev->ibdev.mmap = iwch_mmap;
dev->ibdev.alloc_pd = iwch_allocate_pd;
dev->ibdev.dealloc_pd = iwch_deallocate_pd;
dev->ibdev.create_ah = iwch_ah_create;
dev->ibdev.destroy_ah = iwch_ah_destroy;
dev->ibdev.create_qp = iwch_create_qp;
dev->ibdev.modify_qp = iwch_ib_modify_qp;
dev->ibdev.destroy_qp = iwch_destroy_qp;
dev->ibdev.create_cq = iwch_create_cq;
dev->ibdev.destroy_cq = iwch_destroy_cq;
dev->ibdev.resize_cq = iwch_resize_cq;
dev->ibdev.poll_cq = iwch_poll_cq;
dev->ibdev.get_dma_mr = iwch_get_dma_mr;
dev->ibdev.reg_phys_mr = iwch_register_phys_mem;
dev->ibdev.rereg_phys_mr = iwch_reregister_phys_mem;
dev->ibdev.reg_user_mr = iwch_reg_user_mr;
dev->ibdev.dereg_mr = iwch_dereg_mr;
dev->ibdev.alloc_mw = iwch_alloc_mw;
dev->ibdev.bind_mw = iwch_bind_mw;
dev->ibdev.dealloc_mw = iwch_dealloc_mw;
dev->ibdev.alloc_fast_reg_mr = iwch_alloc_fast_reg_mr;
dev->ibdev.alloc_fast_reg_page_list = iwch_alloc_fastreg_pbl;
dev->ibdev.free_fast_reg_page_list = iwch_free_fastreg_pbl;
dev->ibdev.attach_mcast = iwch_multicast_attach;
dev->ibdev.detach_mcast = iwch_multicast_detach;
dev->ibdev.process_mad = iwch_process_mad;
dev->ibdev.req_notify_cq = iwch_arm_cq;
dev->ibdev.post_send = iwch_post_send;
dev->ibdev.post_recv = iwch_post_receive;
dev->ibdev.get_protocol_stats = iwch_get_mib;
dev->ibdev.uverbs_abi_ver = IWCH_UVERBS_ABI_VERSION;
dev->ibdev.iwcm = kmalloc(sizeof(struct iw_cm_verbs), GFP_KERNEL);
if (!dev->ibdev.iwcm)
return -ENOMEM;
dev->ibdev.iwcm->connect = iwch_connect;
dev->ibdev.iwcm->accept = iwch_accept_cr;
dev->ibdev.iwcm->reject = iwch_reject_cr;
dev->ibdev.iwcm->create_listen = iwch_create_listen;
dev->ibdev.iwcm->destroy_listen = iwch_destroy_listen;
dev->ibdev.iwcm->add_ref = iwch_qp_add_ref;
dev->ibdev.iwcm->rem_ref = iwch_qp_rem_ref;
dev->ibdev.iwcm->get_qp = iwch_get_qp;
ret = ib_register_device(&dev->ibdev, NULL);
if (ret)
goto bail1;
for (i = 0; i < ARRAY_SIZE(iwch_class_attributes); ++i) {
ret = device_create_file(&dev->ibdev.dev,
iwch_class_attributes[i]);
if (ret) {
goto bail2;
}
}
return 0;
bail2:
ib_unregister_device(&dev->ibdev);
bail1:
kfree(dev->ibdev.iwcm);
return ret;
}
void iwch_unregister_device(struct iwch_dev *dev)
{
int i;
PDBG("%s iwch_dev %p\n", __func__, dev);
for (i = 0; i < ARRAY_SIZE(iwch_class_attributes); ++i)
device_remove_file(&dev->ibdev.dev,
iwch_class_attributes[i]);
ib_unregister_device(&dev->ibdev);
kfree(dev->ibdev.iwcm);
return;
}