linux/drivers/isdn/hisax/diva.c

1283 lines
34 KiB
C
Raw Normal View History

/* $Id: diva.c,v 1.33.2.6 2004/02/11 13:21:33 keil Exp $
*
* low level stuff for Eicon.Diehl Diva Family ISDN cards
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* For changes and modifications please read
* Documentation/isdn/HiSax.cert
*
* Thanks to Eicon Technology for documents and information
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "isac.h"
#include "hscx.h"
#include "ipac.h"
#include "ipacx.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/isapnp.h>
static const char *Diva_revision = "$Revision: 1.33.2.6 $";
#define byteout(addr, val) outb(val, addr)
#define bytein(addr) inb(addr)
#define DIVA_HSCX_DATA 0
#define DIVA_HSCX_ADR 4
#define DIVA_ISA_ISAC_DATA 2
#define DIVA_ISA_ISAC_ADR 6
#define DIVA_ISA_CTRL 7
#define DIVA_IPAC_ADR 0
#define DIVA_IPAC_DATA 1
#define DIVA_PCI_ISAC_DATA 8
#define DIVA_PCI_ISAC_ADR 0xc
#define DIVA_PCI_CTRL 0x10
/* SUB Types */
#define DIVA_ISA 1
#define DIVA_PCI 2
#define DIVA_IPAC_ISA 3
#define DIVA_IPAC_PCI 4
#define DIVA_IPACX_PCI 5
/* CTRL (Read) */
#define DIVA_IRQ_STAT 0x01
#define DIVA_EEPROM_SDA 0x02
/* CTRL (Write) */
#define DIVA_IRQ_REQ 0x01
#define DIVA_RESET 0x08
#define DIVA_EEPROM_CLK 0x40
#define DIVA_PCI_LED_A 0x10
#define DIVA_PCI_LED_B 0x20
#define DIVA_ISA_LED_A 0x20
#define DIVA_ISA_LED_B 0x40
#define DIVA_IRQ_CLR 0x80
/* Siemens PITA */
#define PITA_MISC_REG 0x1c
#ifdef __BIG_ENDIAN
#define PITA_PARA_SOFTRESET 0x00000001
#define PITA_SER_SOFTRESET 0x00000002
#define PITA_PARA_MPX_MODE 0x00000004
#define PITA_INT0_ENABLE 0x00000200
#else
#define PITA_PARA_SOFTRESET 0x01000000
#define PITA_SER_SOFTRESET 0x02000000
#define PITA_PARA_MPX_MODE 0x04000000
#define PITA_INT0_ENABLE 0x00020000
#endif
#define PITA_INT0_STATUS 0x02
static inline u_char
readreg(unsigned int ale, unsigned int adr, u_char off)
{
register u_char ret;
byteout(ale, off);
ret = bytein(adr);
return (ret);
}
static inline void
readfifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size)
{
byteout(ale, off);
insb(adr, data, size);
}
static inline void
writereg(unsigned int ale, unsigned int adr, u_char off, u_char data)
{
byteout(ale, off);
byteout(adr, data);
}
static inline void
writefifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size)
{
byteout(ale, off);
outsb(adr, data, size);
}
static inline u_char
memreadreg(unsigned long adr, u_char off)
{
return (*((unsigned char *)
(((unsigned int *)adr) + off)));
}
static inline void
memwritereg(unsigned long adr, u_char off, u_char data)
{
register u_char *p;
p = (unsigned char *)(((unsigned int *)adr) + off);
*p = data;
}
/* Interface functions */
static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
return (readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset));
}
static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset, value);
}
static void
ReadISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
readfifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0, data, size);
}
static void
WriteISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
writefifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0, data, size);
}
static u_char
ReadISAC_IPAC(struct IsdnCardState *cs, u_char offset)
{
return (readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset + 0x80));
}
static void
WriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset | 0x80, value);
}
static void
ReadISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
readfifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0x80, data, size);
}
static void
WriteISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
writefifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0x80, data, size);
}
static u_char
ReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
return (readreg(cs->hw.diva.hscx_adr,
cs->hw.diva.hscx, offset + (hscx ? 0x40 : 0)));
}
static void
WriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
writereg(cs->hw.diva.hscx_adr,
cs->hw.diva.hscx, offset + (hscx ? 0x40 : 0), value);
}
static u_char
MemReadISAC_IPAC(struct IsdnCardState *cs, u_char offset)
{
return (memreadreg(cs->hw.diva.cfg_reg, offset + 0x80));
}
static void
MemWriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
memwritereg(cs->hw.diva.cfg_reg, offset | 0x80, value);
}
static void
MemReadISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
while (size--)
*data++ = memreadreg(cs->hw.diva.cfg_reg, 0x80);
}
static void
MemWriteISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
while (size--)
memwritereg(cs->hw.diva.cfg_reg, 0x80, *data++);
}
static u_char
MemReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
return (memreadreg(cs->hw.diva.cfg_reg, offset + (hscx ? 0x40 : 0)));
}
static void
MemWriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
memwritereg(cs->hw.diva.cfg_reg, offset + (hscx ? 0x40 : 0), value);
}
/* IO-Functions for IPACX type cards */
static u_char
MemReadISAC_IPACX(struct IsdnCardState *cs, u_char offset)
{
return (memreadreg(cs->hw.diva.cfg_reg, offset));
}
static void
MemWriteISAC_IPACX(struct IsdnCardState *cs, u_char offset, u_char value)
{
memwritereg(cs->hw.diva.cfg_reg, offset, value);
}
static void
MemReadISACfifo_IPACX(struct IsdnCardState *cs, u_char *data, int size)
{
while (size--)
*data++ = memreadreg(cs->hw.diva.cfg_reg, 0);
}
static void
MemWriteISACfifo_IPACX(struct IsdnCardState *cs, u_char *data, int size)
{
while (size--)
memwritereg(cs->hw.diva.cfg_reg, 0, *data++);
}
static u_char
MemReadHSCX_IPACX(struct IsdnCardState *cs, int hscx, u_char offset)
{
return (memreadreg(cs->hw.diva.cfg_reg, offset +
(hscx ? IPACX_OFF_B2 : IPACX_OFF_B1)));
}
static void
MemWriteHSCX_IPACX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
memwritereg(cs->hw.diva.cfg_reg, offset +
(hscx ? IPACX_OFF_B2 : IPACX_OFF_B1), value);
}
/*
* fast interrupt HSCX stuff goes here
*/
#define READHSCX(cs, nr, reg) readreg(cs->hw.diva.hscx_adr, \
cs->hw.diva.hscx, reg + (nr ? 0x40 : 0))
#define WRITEHSCX(cs, nr, reg, data) writereg(cs->hw.diva.hscx_adr, \
cs->hw.diva.hscx, reg + (nr ? 0x40 : 0), data)
#define READHSCXFIFO(cs, nr, ptr, cnt) readfifo(cs->hw.diva.hscx_adr, \
cs->hw.diva.hscx, (nr ? 0x40 : 0), ptr, cnt)
#define WRITEHSCXFIFO(cs, nr, ptr, cnt) writefifo(cs->hw.diva.hscx_adr, \
cs->hw.diva.hscx, (nr ? 0x40 : 0), ptr, cnt)
#include "hscx_irq.c"
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
diva_interrupt(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char val, sval;
u_long flags;
int cnt = 5;
spin_lock_irqsave(&cs->lock, flags);
while (((sval = bytein(cs->hw.diva.ctrl)) & DIVA_IRQ_REQ) && cnt) {
val = readreg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_ISTA + 0x40);
if (val)
hscx_int_main(cs, val);
val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_ISTA);
if (val)
isac_interrupt(cs, val);
cnt--;
}
if (!cnt)
printk(KERN_WARNING "Diva: IRQ LOOP\n");
writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK, 0xFF);
writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK + 0x40, 0xFF);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_MASK, 0xFF);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_MASK, 0x0);
writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK, 0x0);
writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK + 0x40, 0x0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
diva_irq_ipac_isa(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char ista, val;
u_long flags;
int icnt = 5;
spin_lock_irqsave(&cs->lock, flags);
ista = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ISTA);
Start_IPACISA:
if (cs->debug & L1_DEB_IPAC)
debugl1(cs, "IPAC ISTA %02X", ista);
if (ista & 0x0f) {
val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, HSCX_ISTA + 0x40);
if (ista & 0x01)
val |= 0x01;
if (ista & 0x04)
val |= 0x02;
if (ista & 0x08)
val |= 0x04;
if (val)
hscx_int_main(cs, val);
}
if (ista & 0x20) {
val = 0xfe & readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_ISTA + 0x80);
if (val) {
isac_interrupt(cs, val);
}
}
if (ista & 0x10) {
val = 0x01;
isac_interrupt(cs, val);
}
ista = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ISTA);
if ((ista & 0x3f) && icnt) {
icnt--;
goto Start_IPACISA;
}
if (!icnt)
printk(KERN_WARNING "DIVA IPAC IRQ LOOP\n");
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xFF);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xC0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static inline void
MemwaitforCEC(struct IsdnCardState *cs, int hscx)
{
int to = 50;
while ((MemReadHSCX(cs, hscx, HSCX_STAR) & 0x04) && to) {
udelay(1);
to--;
}
if (!to)
printk(KERN_WARNING "HiSax: waitforCEC timeout\n");
}
static inline void
MemwaitforXFW(struct IsdnCardState *cs, int hscx)
{
int to = 50;
while (((MemReadHSCX(cs, hscx, HSCX_STAR) & 0x44) != 0x40) && to) {
udelay(1);
to--;
}
if (!to)
printk(KERN_WARNING "HiSax: waitforXFW timeout\n");
}
static inline void
MemWriteHSCXCMDR(struct IsdnCardState *cs, int hscx, u_char data)
{
MemwaitforCEC(cs, hscx);
MemWriteHSCX(cs, hscx, HSCX_CMDR, data);
}
static void
Memhscx_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr;
struct IsdnCardState *cs = bcs->cs;
int cnt;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hscx_empty_fifo");
if (bcs->hw.hscx.rcvidx + count > HSCX_BUFMAX) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hscx_empty_fifo: incoming packet too large");
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x80);
bcs->hw.hscx.rcvidx = 0;
return;
}
ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
cnt = count;
while (cnt--)
*ptr++ = memreadreg(cs->hw.diva.cfg_reg, bcs->hw.hscx.hscx ? 0x40 : 0);
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x80);
ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
bcs->hw.hscx.rcvidx += count;
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "hscx_empty_fifo %c cnt %d",
bcs->hw.hscx.hscx ? 'B' : 'A', count);
QuickHex(t, ptr, count);
debugl1(cs, "%s", bcs->blog);
}
}
static void
Memhscx_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int more, count, cnt;
int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags) ? 64 : 32;
u_char *ptr, *p;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hscx_fill_fifo");
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
more = (bcs->mode == L1_MODE_TRANS) ? 1 : 0;
if (bcs->tx_skb->len > fifo_size) {
more = !0;
count = fifo_size;
} else
count = bcs->tx_skb->len;
cnt = count;
MemwaitforXFW(cs, bcs->hw.hscx.hscx);
p = ptr = bcs->tx_skb->data;
skb_pull(bcs->tx_skb, count);
bcs->tx_cnt -= count;
bcs->hw.hscx.count += count;
while (cnt--)
memwritereg(cs->hw.diva.cfg_reg, bcs->hw.hscx.hscx ? 0x40 : 0,
*p++);
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, more ? 0x8 : 0xa);
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "hscx_fill_fifo %c cnt %d",
bcs->hw.hscx.hscx ? 'B' : 'A', count);
QuickHex(t, ptr, count);
debugl1(cs, "%s", bcs->blog);
}
}
static void
Memhscx_interrupt(struct IsdnCardState *cs, u_char val, u_char hscx)
{
u_char r;
struct BCState *bcs = cs->bcs + hscx;
struct sk_buff *skb;
int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags) ? 64 : 32;
int count;
if (!test_bit(BC_FLG_INIT, &bcs->Flag))
return;
if (val & 0x80) { /* RME */
r = MemReadHSCX(cs, hscx, HSCX_RSTA);
if ((r & 0xf0) != 0xa0) {
if (!(r & 0x80))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX invalid frame");
if ((r & 0x40) && bcs->mode)
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX RDO mode=%d",
bcs->mode);
if (!(r & 0x20))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX CRC error");
MemWriteHSCXCMDR(cs, hscx, 0x80);
} else {
count = MemReadHSCX(cs, hscx, HSCX_RBCL) & (
test_bit(HW_IPAC, &cs->HW_Flags) ? 0x3f : 0x1f);
if (count == 0)
count = fifo_size;
Memhscx_empty_fifo(bcs, count);
if ((count = bcs->hw.hscx.rcvidx - 1) > 0) {
if (cs->debug & L1_DEB_HSCX_FIFO)
debugl1(cs, "HX Frame %d", count);
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "HSCX: receive out of memory\n");
else {
skb_put_data(skb, bcs->hw.hscx.rcvbuf,
count);
skb_queue_tail(&bcs->rqueue, skb);
}
}
}
bcs->hw.hscx.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
if (val & 0x40) { /* RPF */
Memhscx_empty_fifo(bcs, fifo_size);
if (bcs->mode == L1_MODE_TRANS) {
/* receive audio data */
if (!(skb = dev_alloc_skb(fifo_size)))
printk(KERN_WARNING "HiSax: receive out of memory\n");
else {
skb_put_data(skb, bcs->hw.hscx.rcvbuf,
fifo_size);
skb_queue_tail(&bcs->rqueue, skb);
}
bcs->hw.hscx.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
}
if (val & 0x10) { /* XPR */
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
Memhscx_fill_fifo(bcs);
return;
} else {
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->hw.hscx.count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_irq(bcs->tx_skb);
bcs->hw.hscx.count = 0;
bcs->tx_skb = NULL;
}
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.hscx.count = 0;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
Memhscx_fill_fifo(bcs);
} else {
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
static inline void
Memhscx_int_main(struct IsdnCardState *cs, u_char val)
{
u_char exval;
struct BCState *bcs;
if (val & 0x01) { // EXB
bcs = cs->bcs + 1;
exval = MemReadHSCX(cs, 1, HSCX_EXIR);
if (exval & 0x40) {
if (bcs->mode == 1)
Memhscx_fill_fifo(bcs);
else {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame.
*/
if (bcs->tx_skb) {
skb_push(bcs->tx_skb, bcs->hw.hscx.count);
bcs->tx_cnt += bcs->hw.hscx.count;
bcs->hw.hscx.count = 0;
}
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x01);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX B EXIR %x Lost TX", exval);
}
} else if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX B EXIR %x", exval);
}
if (val & 0xf8) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX B interrupt %x", val);
Memhscx_interrupt(cs, val, 1);
}
if (val & 0x02) { // EXA
bcs = cs->bcs;
exval = MemReadHSCX(cs, 0, HSCX_EXIR);
if (exval & 0x40) {
if (bcs->mode == L1_MODE_TRANS)
Memhscx_fill_fifo(bcs);
else {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame.
*/
if (bcs->tx_skb) {
skb_push(bcs->tx_skb, bcs->hw.hscx.count);
bcs->tx_cnt += bcs->hw.hscx.count;
bcs->hw.hscx.count = 0;
}
MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x01);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "HSCX A EXIR %x Lost TX", exval);
}
} else if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX A EXIR %x", exval);
}
if (val & 0x04) { // ICA
exval = MemReadHSCX(cs, 0, HSCX_ISTA);
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX A interrupt %x", exval);
Memhscx_interrupt(cs, exval, 0);
}
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
diva_irq_ipac_pci(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char ista, val;
int icnt = 5;
u_char *cfg;
u_long flags;
spin_lock_irqsave(&cs->lock, flags);
cfg = (u_char *) cs->hw.diva.pci_cfg;
val = *cfg;
if (!(val & PITA_INT0_STATUS)) {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE; /* other shared IRQ */
}
*cfg = PITA_INT0_STATUS; /* Reset pending INT0 */
ista = memreadreg(cs->hw.diva.cfg_reg, IPAC_ISTA);
Start_IPACPCI:
if (cs->debug & L1_DEB_IPAC)
debugl1(cs, "IPAC ISTA %02X", ista);
if (ista & 0x0f) {
val = memreadreg(cs->hw.diva.cfg_reg, HSCX_ISTA + 0x40);
if (ista & 0x01)
val |= 0x01;
if (ista & 0x04)
val |= 0x02;
if (ista & 0x08)
val |= 0x04;
if (val)
Memhscx_int_main(cs, val);
}
if (ista & 0x20) {
val = 0xfe & memreadreg(cs->hw.diva.cfg_reg, ISAC_ISTA + 0x80);
if (val) {
isac_interrupt(cs, val);
}
}
if (ista & 0x10) {
val = 0x01;
isac_interrupt(cs, val);
}
ista = memreadreg(cs->hw.diva.cfg_reg, IPAC_ISTA);
if ((ista & 0x3f) && icnt) {
icnt--;
goto Start_IPACPCI;
}
if (!icnt)
printk(KERN_WARNING "DIVA IPAC PCI IRQ LOOP\n");
memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xFF);
memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xC0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
diva_irq_ipacx_pci(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char val;
u_char *cfg;
u_long flags;
spin_lock_irqsave(&cs->lock, flags);
cfg = (u_char *) cs->hw.diva.pci_cfg;
val = *cfg;
if (!(val & PITA_INT0_STATUS)) {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE; // other shared IRQ
}
interrupt_ipacx(cs); // handler for chip
*cfg = PITA_INT0_STATUS; // Reset PLX interrupt
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static void
release_io_diva(struct IsdnCardState *cs)
{
int bytecnt;
if ((cs->subtyp == DIVA_IPAC_PCI) ||
(cs->subtyp == DIVA_IPACX_PCI)) {
u_int *cfg = (unsigned int *)cs->hw.diva.pci_cfg;
*cfg = 0; /* disable INT0/1 */
*cfg = 2; /* reset pending INT0 */
if (cs->hw.diva.cfg_reg)
iounmap((void *)cs->hw.diva.cfg_reg);
if (cs->hw.diva.pci_cfg)
iounmap((void *)cs->hw.diva.pci_cfg);
return;
} else if (cs->subtyp != DIVA_IPAC_ISA) {
del_timer(&cs->hw.diva.tl);
if (cs->hw.diva.cfg_reg)
byteout(cs->hw.diva.ctrl, 0); /* LED off, Reset */
}
if ((cs->subtyp == DIVA_ISA) || (cs->subtyp == DIVA_IPAC_ISA))
bytecnt = 8;
else
bytecnt = 32;
if (cs->hw.diva.cfg_reg) {
release_region(cs->hw.diva.cfg_reg, bytecnt);
}
}
static void
iounmap_diva(struct IsdnCardState *cs)
{
if ((cs->subtyp == DIVA_IPAC_PCI) || (cs->subtyp == DIVA_IPACX_PCI)) {
if (cs->hw.diva.cfg_reg) {
iounmap((void *)cs->hw.diva.cfg_reg);
cs->hw.diva.cfg_reg = 0;
}
if (cs->hw.diva.pci_cfg) {
iounmap((void *)cs->hw.diva.pci_cfg);
cs->hw.diva.pci_cfg = 0;
}
}
return;
}
static void
reset_diva(struct IsdnCardState *cs)
{
if (cs->subtyp == DIVA_IPAC_ISA) {
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_POTA2, 0x20);
mdelay(10);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_POTA2, 0x00);
mdelay(10);
writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xc0);
} else if (cs->subtyp == DIVA_IPAC_PCI) {
unsigned int *ireg = (unsigned int *)(cs->hw.diva.pci_cfg +
PITA_MISC_REG);
*ireg = PITA_PARA_SOFTRESET | PITA_PARA_MPX_MODE;
mdelay(10);
*ireg = PITA_PARA_MPX_MODE;
mdelay(10);
memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xc0);
} else if (cs->subtyp == DIVA_IPACX_PCI) {
unsigned int *ireg = (unsigned int *)(cs->hw.diva.pci_cfg +
PITA_MISC_REG);
*ireg = PITA_PARA_SOFTRESET | PITA_PARA_MPX_MODE;
mdelay(10);
*ireg = PITA_PARA_MPX_MODE | PITA_SER_SOFTRESET;
mdelay(10);
MemWriteISAC_IPACX(cs, IPACX_MASK, 0xff); // Interrupts off
} else { /* DIVA 2.0 */
cs->hw.diva.ctrl_reg = 0; /* Reset On */
byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
mdelay(10);
cs->hw.diva.ctrl_reg |= DIVA_RESET; /* Reset Off */
byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
mdelay(10);
if (cs->subtyp == DIVA_ISA)
cs->hw.diva.ctrl_reg |= DIVA_ISA_LED_A;
else {
/* Workaround PCI9060 */
byteout(cs->hw.diva.pci_cfg + 0x69, 9);
cs->hw.diva.ctrl_reg |= DIVA_PCI_LED_A;
}
byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
}
}
#define DIVA_ASSIGN 1
static void
diva_led_handler(struct timer_list *t)
{
struct IsdnCardState *cs = from_timer(cs, t, hw.diva.tl);
int blink = 0;
if ((cs->subtyp == DIVA_IPAC_ISA) ||
(cs->subtyp == DIVA_IPAC_PCI) ||
(cs->subtyp == DIVA_IPACX_PCI))
return;
del_timer(&cs->hw.diva.tl);
if (cs->hw.diva.status & DIVA_ASSIGN)
cs->hw.diva.ctrl_reg |= (DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_A : DIVA_PCI_LED_A;
else {
cs->hw.diva.ctrl_reg ^= (DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_A : DIVA_PCI_LED_A;
blink = 250;
}
if (cs->hw.diva.status & 0xf000)
cs->hw.diva.ctrl_reg |= (DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_B : DIVA_PCI_LED_B;
else if (cs->hw.diva.status & 0x0f00) {
cs->hw.diva.ctrl_reg ^= (DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_B : DIVA_PCI_LED_B;
blink = 500;
} else
cs->hw.diva.ctrl_reg &= ~((DIVA_ISA == cs->subtyp) ?
DIVA_ISA_LED_B : DIVA_PCI_LED_B);
byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg);
if (blink) {
cs->hw.diva.tl.expires = jiffies + ((blink * HZ) / 1000);
add_timer(&cs->hw.diva.tl);
}
}
static int
Diva_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_int *ireg;
u_long flags;
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_diva(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_RELEASE:
release_io_diva(cs);
return (0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
reset_diva(cs);
if (cs->subtyp == DIVA_IPACX_PCI) {
ireg = (unsigned int *)cs->hw.diva.pci_cfg;
*ireg = PITA_INT0_ENABLE;
init_ipacx(cs, 3); // init chip and enable interrupts
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
}
if (cs->subtyp == DIVA_IPAC_PCI) {
ireg = (unsigned int *)cs->hw.diva.pci_cfg;
*ireg = PITA_INT0_ENABLE;
}
inithscxisac(cs, 3);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_TEST:
return (0);
case (MDL_REMOVE | REQUEST):
cs->hw.diva.status = 0;
break;
case (MDL_ASSIGN | REQUEST):
cs->hw.diva.status |= DIVA_ASSIGN;
break;
case MDL_INFO_SETUP:
if ((long)arg)
cs->hw.diva.status |= 0x0200;
else
cs->hw.diva.status |= 0x0100;
break;
case MDL_INFO_CONN:
if ((long)arg)
cs->hw.diva.status |= 0x2000;
else
cs->hw.diva.status |= 0x1000;
break;
case MDL_INFO_REL:
if ((long)arg) {
cs->hw.diva.status &= ~0x2000;
cs->hw.diva.status &= ~0x0200;
} else {
cs->hw.diva.status &= ~0x1000;
cs->hw.diva.status &= ~0x0100;
}
break;
}
if ((cs->subtyp != DIVA_IPAC_ISA) &&
(cs->subtyp != DIVA_IPAC_PCI) &&
(cs->subtyp != DIVA_IPACX_PCI)) {
spin_lock_irqsave(&cs->lock, flags);
diva_led_handler(&cs->hw.diva.tl);
spin_unlock_irqrestore(&cs->lock, flags);
}
return (0);
}
static int setup_diva_common(struct IsdnCardState *cs)
{
int bytecnt;
u_char val;
if ((cs->subtyp == DIVA_ISA) || (cs->subtyp == DIVA_IPAC_ISA))
bytecnt = 8;
else
bytecnt = 32;
printk(KERN_INFO
"Diva: %s card configured at %#lx IRQ %d\n",
(cs->subtyp == DIVA_PCI) ? "PCI" :
(cs->subtyp == DIVA_ISA) ? "ISA" :
(cs->subtyp == DIVA_IPAC_ISA) ? "IPAC ISA" :
(cs->subtyp == DIVA_IPAC_PCI) ? "IPAC PCI" : "IPACX PCI",
cs->hw.diva.cfg_reg, cs->irq);
if ((cs->subtyp == DIVA_IPAC_PCI) ||
(cs->subtyp == DIVA_IPACX_PCI) ||
(cs->subtyp == DIVA_PCI))
printk(KERN_INFO "Diva: %s space at %#lx\n",
(cs->subtyp == DIVA_PCI) ? "PCI" :
(cs->subtyp == DIVA_IPAC_PCI) ? "IPAC PCI" : "IPACX PCI",
cs->hw.diva.pci_cfg);
if ((cs->subtyp != DIVA_IPAC_PCI) &&
(cs->subtyp != DIVA_IPACX_PCI)) {
if (!request_region(cs->hw.diva.cfg_reg, bytecnt, "diva isdn")) {
printk(KERN_WARNING
"HiSax: %s config port %lx-%lx already in use\n",
"diva",
cs->hw.diva.cfg_reg,
cs->hw.diva.cfg_reg + bytecnt);
iounmap_diva(cs);
return (0);
}
}
cs->BC_Read_Reg = &ReadHSCX;
cs->BC_Write_Reg = &WriteHSCX;
cs->BC_Send_Data = &hscx_fill_fifo;
cs->cardmsg = &Diva_card_msg;
setup_isac(cs);
if (cs->subtyp == DIVA_IPAC_ISA) {
cs->readisac = &ReadISAC_IPAC;
cs->writeisac = &WriteISAC_IPAC;
cs->readisacfifo = &ReadISACfifo_IPAC;
cs->writeisacfifo = &WriteISACfifo_IPAC;
cs->irq_func = &diva_irq_ipac_isa;
val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ID);
printk(KERN_INFO "Diva: IPAC version %x\n", val);
} else if (cs->subtyp == DIVA_IPAC_PCI) {
cs->readisac = &MemReadISAC_IPAC;
cs->writeisac = &MemWriteISAC_IPAC;
cs->readisacfifo = &MemReadISACfifo_IPAC;
cs->writeisacfifo = &MemWriteISACfifo_IPAC;
cs->BC_Read_Reg = &MemReadHSCX;
cs->BC_Write_Reg = &MemWriteHSCX;
cs->BC_Send_Data = &Memhscx_fill_fifo;
cs->irq_func = &diva_irq_ipac_pci;
val = memreadreg(cs->hw.diva.cfg_reg, IPAC_ID);
printk(KERN_INFO "Diva: IPAC version %x\n", val);
} else if (cs->subtyp == DIVA_IPACX_PCI) {
cs->readisac = &MemReadISAC_IPACX;
cs->writeisac = &MemWriteISAC_IPACX;
cs->readisacfifo = &MemReadISACfifo_IPACX;
cs->writeisacfifo = &MemWriteISACfifo_IPACX;
cs->BC_Read_Reg = &MemReadHSCX_IPACX;
cs->BC_Write_Reg = &MemWriteHSCX_IPACX;
cs->BC_Send_Data = NULL; // function located in ipacx module
cs->irq_func = &diva_irq_ipacx_pci;
printk(KERN_INFO "Diva: IPACX Design Id: %x\n",
MemReadISAC_IPACX(cs, IPACX_ID) & 0x3F);
} else { /* DIVA 2.0 */
timer_setup(&cs->hw.diva.tl, diva_led_handler, 0);
cs->readisac = &ReadISAC;
cs->writeisac = &WriteISAC;
cs->readisacfifo = &ReadISACfifo;
cs->writeisacfifo = &WriteISACfifo;
cs->irq_func = &diva_interrupt;
ISACVersion(cs, "Diva:");
if (HscxVersion(cs, "Diva:")) {
printk(KERN_WARNING
"Diva: wrong HSCX versions check IO address\n");
release_io_diva(cs);
return (0);
}
}
return (1);
}
#ifdef CONFIG_ISA
static int setup_diva_isa(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
u_char val;
if (!card->para[1])
return (-1); /* card not found; continue search */
cs->hw.diva.ctrl_reg = 0;
cs->hw.diva.cfg_reg = card->para[1];
val = readreg(cs->hw.diva.cfg_reg + DIVA_IPAC_ADR,
cs->hw.diva.cfg_reg + DIVA_IPAC_DATA, IPAC_ID);
printk(KERN_INFO "Diva: IPAC version %x\n", val);
if ((val == 1) || (val == 2)) {
cs->subtyp = DIVA_IPAC_ISA;
cs->hw.diva.ctrl = 0;
cs->hw.diva.isac = card->para[1] + DIVA_IPAC_DATA;
cs->hw.diva.hscx = card->para[1] + DIVA_IPAC_DATA;
cs->hw.diva.isac_adr = card->para[1] + DIVA_IPAC_ADR;
cs->hw.diva.hscx_adr = card->para[1] + DIVA_IPAC_ADR;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
} else {
cs->subtyp = DIVA_ISA;
cs->hw.diva.ctrl = card->para[1] + DIVA_ISA_CTRL;
cs->hw.diva.isac = card->para[1] + DIVA_ISA_ISAC_DATA;
cs->hw.diva.hscx = card->para[1] + DIVA_HSCX_DATA;
cs->hw.diva.isac_adr = card->para[1] + DIVA_ISA_ISAC_ADR;
cs->hw.diva.hscx_adr = card->para[1] + DIVA_HSCX_ADR;
}
cs->irq = card->para[0];
return (1); /* card found */
}
#else /* if !CONFIG_ISA */
static int setup_diva_isa(struct IsdnCard *card)
{
return (-1); /* card not found; continue search */
}
#endif /* CONFIG_ISA */
#ifdef __ISAPNP__
static struct isapnp_device_id diva_ids[] = {
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
(unsigned long) "Diva picola" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51),
ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0x51),
(unsigned long) "Diva picola" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
(unsigned long) "Diva 2.0" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71),
ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0x71),
(unsigned long) "Diva 2.0" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
(unsigned long) "Diva 2.01" },
{ ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1),
ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0xA1),
(unsigned long) "Diva 2.01" },
{ 0, }
};
static struct isapnp_device_id *ipid = &diva_ids[0];
static struct pnp_card *pnp_c = NULL;
static int setup_diva_isapnp(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
struct pnp_dev *pnp_d;
if (!isapnp_present())
return (-1); /* card not found; continue search */
while (ipid->card_vendor) {
if ((pnp_c = pnp_find_card(ipid->card_vendor,
ipid->card_device, pnp_c))) {
pnp_d = NULL;
if ((pnp_d = pnp_find_dev(pnp_c,
ipid->vendor, ipid->function, pnp_d))) {
int err;
printk(KERN_INFO "HiSax: %s detected\n",
(char *)ipid->driver_data);
pnp_disable_dev(pnp_d);
err = pnp_activate_dev(pnp_d);
if (err < 0) {
printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
__func__, err);
return (0);
}
card->para[1] = pnp_port_start(pnp_d, 0);
card->para[0] = pnp_irq(pnp_d, 0);
if (card->para[0] == -1 || !card->para[1]) {
printk(KERN_ERR "Diva PnP:some resources are missing %ld/%lx\n",
card->para[0], card->para[1]);
pnp_disable_dev(pnp_d);
return (0);
}
cs->hw.diva.cfg_reg = card->para[1];
cs->irq = card->para[0];
if (ipid->function == ISAPNP_FUNCTION(0xA1)) {
cs->subtyp = DIVA_IPAC_ISA;
cs->hw.diva.ctrl = 0;
cs->hw.diva.isac =
card->para[1] + DIVA_IPAC_DATA;
cs->hw.diva.hscx =
card->para[1] + DIVA_IPAC_DATA;
cs->hw.diva.isac_adr =
card->para[1] + DIVA_IPAC_ADR;
cs->hw.diva.hscx_adr =
card->para[1] + DIVA_IPAC_ADR;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
} else {
cs->subtyp = DIVA_ISA;
cs->hw.diva.ctrl =
card->para[1] + DIVA_ISA_CTRL;
cs->hw.diva.isac =
card->para[1] + DIVA_ISA_ISAC_DATA;
cs->hw.diva.hscx =
card->para[1] + DIVA_HSCX_DATA;
cs->hw.diva.isac_adr =
card->para[1] + DIVA_ISA_ISAC_ADR;
cs->hw.diva.hscx_adr =
card->para[1] + DIVA_HSCX_ADR;
}
return (1); /* card found */
} else {
printk(KERN_ERR "Diva PnP: PnP error card found, no device\n");
return (0);
}
}
ipid++;
pnp_c = NULL;
}
return (-1); /* card not found; continue search */
}
#else /* if !ISAPNP */
static int setup_diva_isapnp(struct IsdnCard *card)
{
return (-1); /* card not found; continue search */
}
#endif /* ISAPNP */
#ifdef CONFIG_PCI
static struct pci_dev *dev_diva = NULL;
static struct pci_dev *dev_diva_u = NULL;
static struct pci_dev *dev_diva201 = NULL;
static struct pci_dev *dev_diva202 = NULL;
static int setup_diva_pci(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
cs->subtyp = 0;
if ((dev_diva = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
PCI_DEVICE_ID_EICON_DIVA20, dev_diva))) {
if (pci_enable_device(dev_diva))
return (0);
cs->subtyp = DIVA_PCI;
cs->irq = dev_diva->irq;
cs->hw.diva.cfg_reg = pci_resource_start(dev_diva, 2);
} else if ((dev_diva_u = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
PCI_DEVICE_ID_EICON_DIVA20_U, dev_diva_u))) {
if (pci_enable_device(dev_diva_u))
return (0);
cs->subtyp = DIVA_PCI;
cs->irq = dev_diva_u->irq;
cs->hw.diva.cfg_reg = pci_resource_start(dev_diva_u, 2);
} else if ((dev_diva201 = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
PCI_DEVICE_ID_EICON_DIVA201, dev_diva201))) {
if (pci_enable_device(dev_diva201))
return (0);
cs->subtyp = DIVA_IPAC_PCI;
cs->irq = dev_diva201->irq;
cs->hw.diva.pci_cfg =
(ulong) ioremap(pci_resource_start(dev_diva201, 0), 4096);
cs->hw.diva.cfg_reg =
(ulong) ioremap(pci_resource_start(dev_diva201, 1), 4096);
} else if ((dev_diva202 = hisax_find_pci_device(PCI_VENDOR_ID_EICON,
PCI_DEVICE_ID_EICON_DIVA202, dev_diva202))) {
if (pci_enable_device(dev_diva202))
return (0);
cs->subtyp = DIVA_IPACX_PCI;
cs->irq = dev_diva202->irq;
cs->hw.diva.pci_cfg =
(ulong) ioremap(pci_resource_start(dev_diva202, 0), 4096);
cs->hw.diva.cfg_reg =
(ulong) ioremap(pci_resource_start(dev_diva202, 1), 4096);
} else {
return (-1); /* card not found; continue search */
}
if (!cs->irq) {
printk(KERN_WARNING "Diva: No IRQ for PCI card found\n");
iounmap_diva(cs);
return (0);
}
if (!cs->hw.diva.cfg_reg) {
printk(KERN_WARNING "Diva: No IO-Adr for PCI card found\n");
iounmap_diva(cs);
return (0);
}
cs->irq_flags |= IRQF_SHARED;
if ((cs->subtyp == DIVA_IPAC_PCI) ||
(cs->subtyp == DIVA_IPACX_PCI)) {
cs->hw.diva.ctrl = 0;
cs->hw.diva.isac = 0;
cs->hw.diva.hscx = 0;
cs->hw.diva.isac_adr = 0;
cs->hw.diva.hscx_adr = 0;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
} else {
cs->hw.diva.ctrl = cs->hw.diva.cfg_reg + DIVA_PCI_CTRL;
cs->hw.diva.isac = cs->hw.diva.cfg_reg + DIVA_PCI_ISAC_DATA;
cs->hw.diva.hscx = cs->hw.diva.cfg_reg + DIVA_HSCX_DATA;
cs->hw.diva.isac_adr = cs->hw.diva.cfg_reg + DIVA_PCI_ISAC_ADR;
cs->hw.diva.hscx_adr = cs->hw.diva.cfg_reg + DIVA_HSCX_ADR;
}
return (1); /* card found */
}
#else /* if !CONFIG_PCI */
static int setup_diva_pci(struct IsdnCard *card)
{
return (-1); /* card not found; continue search */
}
#endif /* CONFIG_PCI */
int setup_diva(struct IsdnCard *card)
{
int rc, have_card = 0;
struct IsdnCardState *cs = card->cs;
char tmp[64];
strcpy(tmp, Diva_revision);
printk(KERN_INFO "HiSax: Eicon.Diehl Diva driver Rev. %s\n", HiSax_getrev(tmp));
if (cs->typ != ISDN_CTYPE_DIEHLDIVA)
return (0);
cs->hw.diva.status = 0;
rc = setup_diva_isa(card);
if (!rc)
return rc;
if (rc > 0) {
have_card = 1;
goto ready;
}
rc = setup_diva_isapnp(card);
if (!rc)
return rc;
if (rc > 0) {
have_card = 1;
goto ready;
}
rc = setup_diva_pci(card);
if (!rc)
return rc;
if (rc > 0)
have_card = 1;
ready:
if (!have_card) {
printk(KERN_WARNING "Diva: No ISA, ISAPNP or PCI card found\n");
return (0);
}
return setup_diva_common(card->cs);
}