linux/sound/pci/echoaudio/echoaudio.h

567 lines
17 KiB
C
Raw Normal View History

/****************************************************************************
Copyright Echo Digital Audio Corporation (c) 1998 - 2004
All rights reserved
www.echoaudio.com
This file is part of Echo Digital Audio's generic driver library.
Echo Digital Audio's generic driver library is free software;
you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software
Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
****************************************************************************
Translation from C++ and adaptation for use in ALSA-Driver
were made by Giuliano Pochini <pochini@shiny.it>
****************************************************************************
Here's a block diagram of how most of the cards work:
+-----------+
record | |<-------------------- Inputs
<-------| | |
PCI | Transport | |
bus | engine | \|/
------->| | +-------+
play | |--->|monitor|-------> Outputs
+-----------+ | mixer |
+-------+
The lines going to and from the PCI bus represent "pipes". A pipe performs
audio transport - moving audio data to and from buffers on the host via
bus mastering.
The inputs and outputs on the right represent input and output "busses."
A bus is a physical, real connection to the outside world. An example
of a bus would be the 1/4" analog connectors on the back of Layla or
an RCA S/PDIF connector.
For most cards, there is a one-to-one correspondence between outputs
and busses; that is, each individual pipe is hard-wired to a single bus.
Cards that work this way are Darla20, Gina20, Layla20, Darla24, Gina24,
Layla24, Mona, and Indigo.
Mia has a feature called "virtual outputs."
+-----------+
record | |<----------------------------- Inputs
<-------| | |
PCI | Transport | |
bus | engine | \|/
------->| | +------+ +-------+
play | |-->|vmixer|-->|monitor|-------> Outputs
+-----------+ +------+ | mixer |
+-------+
Obviously, the difference here is the box labeled "vmixer." Vmixer is
short for "virtual output mixer." For Mia, pipes are *not* hard-wired
to a single bus; the vmixer lets you mix any pipe to any bus in any
combination.
Note, however, that the left-hand side of the diagram is unchanged.
Transport works exactly the same way - the difference is in the mixer stage.
Pipes and busses are numbered starting at zero.
Pipe index
==========
A number of calls in CEchoGals refer to a "pipe index". A pipe index is
a unique number for a pipe that unambiguously refers to a playback or record
pipe. Pipe indices are numbered starting with analog outputs, followed by
digital outputs, then analog inputs, then digital inputs.
Take Gina24 as an example:
Pipe index
0-7 Analog outputs (0 .. FirstDigitalBusOut-1)
8-15 Digital outputs (FirstDigitalBusOut .. NumBussesOut-1)
16-17 Analog inputs
18-25 Digital inputs
You get the pipe index by calling CEchoGals::OpenAudio; the other transport
functions take the pipe index as a parameter. If you need a pipe index for
some other reason, use the handy Makepipe_index method.
Some calls take a CChannelMask parameter; CChannelMask is a handy way to
group pipe indices.
Digital mode switch
===================
Some cards (right now, Gina24, Layla24, and Mona) have a Digital Mode Switch
or DMS. Cards with a DMS can be set to one of three mutually exclusive
digital modes: S/PDIF RCA, S/PDIF optical, or ADAT optical.
This may create some confusion since ADAT optical is 8 channels wide and
S/PDIF is only two channels wide. Gina24, Layla24, and Mona handle this
by acting as if they always have 8 digital outs and ins. If you are in
either S/PDIF mode, the last 6 channels don't do anything - data sent
out these channels is thrown away and you will always record zeros.
Note that with Gina24, Layla24, and Mona, sample rates above 50 kHz are
only available if you have the card configured for S/PDIF optical or S/PDIF
RCA.
Double speed mode
=================
Some of the cards support 88.2 kHz and 96 kHz sampling (Darla24, Gina24,
Layla24, Mona, Mia, and Indigo). For these cards, the driver sometimes has
to worry about "double speed mode"; double speed mode applies whenever the
sampling rate is above 50 kHz.
For instance, Mona and Layla24 support word clock sync. However, they
actually support two different word clock modes - single speed (below
50 kHz) and double speed (above 50 kHz). The hardware detects if a single
or double speed word clock signal is present; the generic code uses that
information to determine which mode to use.
The generic code takes care of all this for you.
*/
#ifndef _ECHOAUDIO_H_
#define _ECHOAUDIO_H_
#include "echoaudio_dsp.h"
/***********************************************************************
PCI configuration space
***********************************************************************/
/*
* PCI vendor ID and device IDs for the hardware
*/
#define VENDOR_ID 0x1057
#define DEVICE_ID_56301 0x1801
#define DEVICE_ID_56361 0x3410
#define SUBVENDOR_ID 0xECC0
/*
* Valid Echo PCI subsystem card IDs
*/
#define DARLA20 0x0010
#define GINA20 0x0020
#define LAYLA20 0x0030
#define DARLA24 0x0040
#define GINA24 0x0050
#define LAYLA24 0x0060
#define MONA 0x0070
#define MIA 0x0080
#define INDIGO 0x0090
#define INDIGO_IO 0x00a0
#define INDIGO_DJ 0x00b0
#define DC8 0x00c0
#define INDIGO_IOX 0x00d0
#define INDIGO_DJX 0x00e0
#define ECHO3G 0x0100
/************************************************************************
Array sizes and so forth
***********************************************************************/
/*
* Sizes
*/
#define ECHO_MAXAUDIOINPUTS 32 /* Max audio input channels */
#define ECHO_MAXAUDIOOUTPUTS 32 /* Max audio output channels */
#define ECHO_MAXAUDIOPIPES 32 /* Max number of input and output
* pipes */
#define E3G_MAX_OUTPUTS 16
#define ECHO_MAXMIDIJACKS 1 /* Max MIDI ports */
#define ECHO_MIDI_QUEUE_SZ 512 /* Max MIDI input queue entries */
#define ECHO_MTC_QUEUE_SZ 32 /* Max MIDI time code input queue
* entries */
/*
* MIDI activity indicator timeout
*/
#define MIDI_ACTIVITY_TIMEOUT_USEC 200000
/****************************************************************************
Clocks
*****************************************************************************/
/*
* Clock numbers
*/
#define ECHO_CLOCK_INTERNAL 0
#define ECHO_CLOCK_WORD 1
#define ECHO_CLOCK_SUPER 2
#define ECHO_CLOCK_SPDIF 3
#define ECHO_CLOCK_ADAT 4
#define ECHO_CLOCK_ESYNC 5
#define ECHO_CLOCK_ESYNC96 6
#define ECHO_CLOCK_MTC 7
#define ECHO_CLOCK_NUMBER 8
#define ECHO_CLOCKS 0xffff
/*
* Clock bit numbers - used to report capabilities and whatever clocks
* are being detected dynamically.
*/
#define ECHO_CLOCK_BIT_INTERNAL (1 << ECHO_CLOCK_INTERNAL)
#define ECHO_CLOCK_BIT_WORD (1 << ECHO_CLOCK_WORD)
#define ECHO_CLOCK_BIT_SUPER (1 << ECHO_CLOCK_SUPER)
#define ECHO_CLOCK_BIT_SPDIF (1 << ECHO_CLOCK_SPDIF)
#define ECHO_CLOCK_BIT_ADAT (1 << ECHO_CLOCK_ADAT)
#define ECHO_CLOCK_BIT_ESYNC (1 << ECHO_CLOCK_ESYNC)
#define ECHO_CLOCK_BIT_ESYNC96 (1 << ECHO_CLOCK_ESYNC96)
#define ECHO_CLOCK_BIT_MTC (1<<ECHO_CLOCK_MTC)
/***************************************************************************
Digital modes
****************************************************************************/
/*
* Digital modes for Mona, Layla24, and Gina24
*/
#define DIGITAL_MODE_NONE 0xFF
#define DIGITAL_MODE_SPDIF_RCA 0
#define DIGITAL_MODE_SPDIF_OPTICAL 1
#define DIGITAL_MODE_ADAT 2
#define DIGITAL_MODE_SPDIF_CDROM 3
#define DIGITAL_MODES 4
/*
* Digital mode capability masks
*/
#define ECHOCAPS_HAS_DIGITAL_MODE_SPDIF_RCA (1 << DIGITAL_MODE_SPDIF_RCA)
#define ECHOCAPS_HAS_DIGITAL_MODE_SPDIF_OPTICAL (1 << DIGITAL_MODE_SPDIF_OPTICAL)
#define ECHOCAPS_HAS_DIGITAL_MODE_ADAT (1 << DIGITAL_MODE_ADAT)
#define ECHOCAPS_HAS_DIGITAL_MODE_SPDIF_CDROM (1 << DIGITAL_MODE_SPDIF_CDROM)
#define EXT_3GBOX_NC 0x01 /* 3G box not connected */
#define EXT_3GBOX_NOT_SET 0x02 /* 3G box not detected yet */
#define ECHOGAIN_MUTED (-128) /* Minimum possible gain */
#define ECHOGAIN_MINOUT (-128) /* Min output gain (dB) */
#define ECHOGAIN_MAXOUT (6) /* Max output gain (dB) */
#define ECHOGAIN_MININP (-50) /* Min input gain (0.5 dB) */
#define ECHOGAIN_MAXINP (50) /* Max input gain (0.5 dB) */
#define PIPE_STATE_STOPPED 0 /* Pipe has been reset */
#define PIPE_STATE_PAUSED 1 /* Pipe has been stopped */
#define PIPE_STATE_STARTED 2 /* Pipe has been started */
#define PIPE_STATE_PENDING 3 /* Pipe has pending start */
struct audiopipe {
volatile __le32 *dma_counter; /* Commpage register that contains
* the current dma position
* (lower 32 bits only)
*/
ALSA: echoaudio: Address bugs in the interrupt handling Distorted audio appears occasionally, affecting either playback or capture and requiring the affected substream to be closed by all applications and re-opened. The best way I have found to reproduce the bug is to use dmix in combination with Chromium, which opens the audio device multiple times in threads. Anecdotally, the problems appear to have increased with faster CPUs. I ruled out 32-bit counter wrapping; it often happens much earlier. Since applying this patch I have not had problems, where previously they would occur several times a day. The patch targets the following issues: * Check for progress using the counter from the hardware, not after it has been truncated to the buffer. This is a clean way to address a possible bug where if a whole ringbuffer advances between interrupts, it goes unnoticed. * Move last_period state from chip to pipe This more logically belongs as part of pipe, and code is reasier to read if it is "counter position last time a period elapsed". Now the code has no references to period count. A period is just when the regular counter crosses a threshold. This increases readability and reduces scope for bugs. * Treat period notification and buffer advance independently: This helps to clarify what is the responsibility of the interrupt handler, and what is pcm_pointer(). Removing shared state between these operations means race conditions are fixed without introducing locks. Synchronisation is only around the read of pipe->dma_counter. There may be cache line contention around "struct audiopipe" but I did not have cause to profile this. Pay attention to be robust where dma_counter wrapping is not a multiple of period_size or buffer_size. This is a revised patch based on feedback from Takashi and Giuliano. Signed-off-by: Mark Hills <mark@xwax.org> Link: https://lore.kernel.org/r/20200708101848.3457-5-mark@xwax.org Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-07-08 18:18:48 +08:00
u32 last_period; /* Counter position last time a
* period elapsed
*/
u32 last_counter; /* Used exclusively by pcm_pointer
* under PCM core locks.
* The last position, which is used
* to compute...
*/
u32 position; /* ...the number of bytes tranferred
* by the DMA engine, modulo the
* buffer size
*/
short index; /* Index of the first channel or <0
* if hw is not configured yet
*/
short interleave;
struct snd_dma_buffer sgpage; /* Room for the scatter-gather list */
struct snd_pcm_hardware hw;
struct snd_pcm_hw_constraint_list constr;
short sglist_head;
char state; /* pipe state */
};
struct audioformat {
u8 interleave; /* How the data is arranged in memory:
* mono = 1, stereo = 2, ...
*/
u8 bits_per_sample; /* 8, 16, 24, 32 (24 bits left aligned) */
char mono_to_stereo; /* Only used if interleave is 1 and
* if this is an output pipe.
*/
char data_are_bigendian; /* 1 = big endian, 0 = little endian */
};
struct echoaudio {
spinlock_t lock;
struct snd_pcm_substream *substream[DSP_MAXPIPES];
struct mutex mode_mutex;
u16 num_digital_modes, digital_mode_list[6];
u16 num_clock_sources, clock_source_list[10];
unsigned int opencount; /* protected by mode_mutex */
struct snd_kcontrol *clock_src_ctl;
struct snd_pcm *analog_pcm, *digital_pcm;
struct snd_card *card;
const char *card_name;
struct pci_dev *pci;
unsigned long dsp_registers_phys;
struct resource *iores;
struct snd_dma_buffer commpage_dma_buf;
int irq;
#ifdef ECHOCARD_HAS_MIDI
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *midi_in, *midi_out;
#endif
struct timer_list timer;
char tinuse; /* Timer in use */
char midi_full; /* MIDI output buffer is full */
char can_set_rate; /* protected by mode_mutex */
char rate_set; /* protected by mode_mutex */
/* This stuff is used mainly by the lowlevel code */
struct comm_page *comm_page; /* Virtual address of the memory
* seen by DSP
*/
u32 pipe_alloc_mask; /* Bitmask of allocated pipes */
u32 pipe_cyclic_mask; /* Bitmask of pipes with cyclic
* buffers
*/
u32 sample_rate; /* Card sample rate in Hz */
u8 digital_mode; /* Current digital mode
* (see DIGITAL_MODE_*)
*/
u8 spdif_status; /* Gina20, Darla20, Darla24 - only */
u8 clock_state; /* Gina20, Darla20, Darla24 - only */
u8 input_clock; /* Currently selected sample clock
* source
*/
u8 output_clock; /* Layla20 only */
char meters_enabled; /* VU-meters status */
char asic_loaded; /* Set true when ASIC loaded */
char bad_board; /* Set true if DSP won't load */
char professional_spdif; /* 0 = consumer; 1 = professional */
char non_audio_spdif; /* 3G - only */
char digital_in_automute; /* Gina24, Layla24, Mona - only */
char has_phantom_power;
char hasnt_input_nominal_level; /* Gina3G */
char phantom_power; /* Gina3G - only */
char has_midi;
char midi_input_enabled;
#ifdef ECHOCARD_ECHO3G
/* External module -dependent pipe and bus indexes */
char px_digital_out, px_analog_in, px_digital_in, px_num;
char bx_digital_out, bx_analog_in, bx_digital_in, bx_num;
#endif
char nominal_level[ECHO_MAXAUDIOPIPES]; /* True == -10dBV
* False == +4dBu */
s8 input_gain[ECHO_MAXAUDIOINPUTS]; /* Input level -50..+50
* unit is 0.5dB */
s8 output_gain[ECHO_MAXAUDIOOUTPUTS]; /* Output level -128..+6 dB
* (-128=muted) */
s8 monitor_gain[ECHO_MAXAUDIOOUTPUTS][ECHO_MAXAUDIOINPUTS];
/* -128..+6 dB */
s8 vmixer_gain[ECHO_MAXAUDIOOUTPUTS][ECHO_MAXAUDIOOUTPUTS];
/* -128..+6 dB */
u16 digital_modes; /* Bitmask of supported modes
* (see ECHOCAPS_HAS_DIGITAL_MODE_*) */
u16 input_clock_types; /* Suppoted input clock types */
u16 output_clock_types; /* Suppoted output clock types -
* Layla20 only */
u16 device_id, subdevice_id;
u16 *dsp_code; /* Current DSP code loaded,
* NULL if nothing loaded */
short dsp_code_to_load; /* DSP code to load */
short asic_code; /* Current ASIC code */
u32 comm_page_phys; /* Physical address of the
* memory seen by DSP */
u32 __iomem *dsp_registers; /* DSP's register base */
u32 active_mask; /* Chs. active mask or
* punks out */
#ifdef CONFIG_PM_SLEEP
const struct firmware *fw_cache[8]; /* Cached firmwares */
#endif
#ifdef ECHOCARD_HAS_MIDI
u16 mtc_state; /* State for MIDI input parsing state machine */
u8 midi_buffer[MIDI_IN_BUFFER_SIZE];
#endif
};
static int init_dsp_comm_page(struct echoaudio *chip);
static int init_line_levels(struct echoaudio *chip);
static int free_pipes(struct echoaudio *chip, struct audiopipe *pipe);
static int load_firmware(struct echoaudio *chip);
static int wait_handshake(struct echoaudio *chip);
static int send_vector(struct echoaudio *chip, u32 command);
static int get_firmware(const struct firmware **fw_entry,
struct echoaudio *chip, const short fw_index);
static void free_firmware(const struct firmware *fw_entry,
struct echoaudio *chip);
#ifdef ECHOCARD_HAS_MIDI
static int enable_midi_input(struct echoaudio *chip, char enable);
static void snd_echo_midi_output_trigger(
struct snd_rawmidi_substream *substream, int up);
static int midi_service_irq(struct echoaudio *chip);
static int snd_echo_midi_create(struct snd_card *card,
struct echoaudio *chip);
#endif
static inline void clear_handshake(struct echoaudio *chip)
{
chip->comm_page->handshake = 0;
}
static inline u32 get_dsp_register(struct echoaudio *chip, u32 index)
{
return readl(&chip->dsp_registers[index]);
}
static inline void set_dsp_register(struct echoaudio *chip, u32 index,
u32 value)
{
writel(value, &chip->dsp_registers[index]);
}
/* Pipe and bus indexes. PX_* and BX_* are defined as chip->px_* and chip->bx_*
for 3G cards because they depend on the external box. They are integer
constants for all other cards.
Never use those defines directly, use the following functions instead. */
static inline int px_digital_out(const struct echoaudio *chip)
{
return PX_DIGITAL_OUT;
}
static inline int px_analog_in(const struct echoaudio *chip)
{
return PX_ANALOG_IN;
}
static inline int px_digital_in(const struct echoaudio *chip)
{
return PX_DIGITAL_IN;
}
static inline int px_num(const struct echoaudio *chip)
{
return PX_NUM;
}
static inline int bx_digital_out(const struct echoaudio *chip)
{
return BX_DIGITAL_OUT;
}
static inline int bx_analog_in(const struct echoaudio *chip)
{
return BX_ANALOG_IN;
}
static inline int bx_digital_in(const struct echoaudio *chip)
{
return BX_DIGITAL_IN;
}
static inline int bx_num(const struct echoaudio *chip)
{
return BX_NUM;
}
static inline int num_pipes_out(const struct echoaudio *chip)
{
return px_analog_in(chip);
}
static inline int num_pipes_in(const struct echoaudio *chip)
{
return px_num(chip) - px_analog_in(chip);
}
static inline int num_busses_out(const struct echoaudio *chip)
{
return bx_analog_in(chip);
}
static inline int num_busses_in(const struct echoaudio *chip)
{
return bx_num(chip) - bx_analog_in(chip);
}
static inline int num_analog_busses_out(const struct echoaudio *chip)
{
return bx_digital_out(chip);
}
static inline int num_analog_busses_in(const struct echoaudio *chip)
{
return bx_digital_in(chip) - bx_analog_in(chip);
}
static inline int num_digital_busses_out(const struct echoaudio *chip)
{
return num_busses_out(chip) - num_analog_busses_out(chip);
}
static inline int num_digital_busses_in(const struct echoaudio *chip)
{
return num_busses_in(chip) - num_analog_busses_in(chip);
}
/* The monitor array is a one-dimensional array; compute the offset
* into the array */
static inline int monitor_index(const struct echoaudio *chip, int out, int in)
{
return out * num_busses_in(chip) + in;
}
#endif /* _ECHOAUDIO_H_ */