linux/drivers/net/ll_temac_main.c

1155 lines
29 KiB
C
Raw Normal View History

/*
* Driver for Xilinx TEMAC Ethernet device
*
* Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
* Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
* Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
*
* This is a driver for the Xilinx ll_temac ipcore which is often used
* in the Virtex and Spartan series of chips.
*
* Notes:
* - The ll_temac hardware uses indirect access for many of the TEMAC
* registers, include the MDIO bus. However, indirect access to MDIO
* registers take considerably more clock cycles than to TEMAC registers.
* MDIO accesses are long, so threads doing them should probably sleep
* rather than busywait. However, since only one indirect access can be
* in progress at any given time, that means that *all* indirect accesses
* could end up sleeping (to wait for an MDIO access to complete).
* Fortunately none of the indirect accesses are on the 'hot' path for tx
* or rx, so this should be okay.
*
* TODO:
* - Factor out locallink DMA code into separate driver
* - Fix multicast assignment.
* - Fix support for hardware checksumming.
* - Testing. Lots and lots of testing.
*
*/
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/tcp.h> /* needed for sizeof(tcphdr) */
#include <linux/udp.h> /* needed for sizeof(udphdr) */
#include <linux/phy.h>
#include <linux/in.h>
#include <linux/io.h>
#include <linux/ip.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include "ll_temac.h"
#define TX_BD_NUM 64
#define RX_BD_NUM 128
/* ---------------------------------------------------------------------
* Low level register access functions
*/
u32 temac_ior(struct temac_local *lp, int offset)
{
return in_be32((u32 *)(lp->regs + offset));
}
void temac_iow(struct temac_local *lp, int offset, u32 value)
{
out_be32((u32 *) (lp->regs + offset), value);
}
int temac_indirect_busywait(struct temac_local *lp)
{
long end = jiffies + 2;
while (!(temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK)) {
if (end - jiffies <= 0) {
WARN_ON(1);
return -ETIMEDOUT;
}
msleep(1);
}
return 0;
}
/**
* temac_indirect_in32
*
* lp->indirect_mutex must be held when calling this function
*/
u32 temac_indirect_in32(struct temac_local *lp, int reg)
{
u32 val;
if (temac_indirect_busywait(lp))
return -ETIMEDOUT;
temac_iow(lp, XTE_CTL0_OFFSET, reg);
if (temac_indirect_busywait(lp))
return -ETIMEDOUT;
val = temac_ior(lp, XTE_LSW0_OFFSET);
return val;
}
/**
* temac_indirect_out32
*
* lp->indirect_mutex must be held when calling this function
*/
void temac_indirect_out32(struct temac_local *lp, int reg, u32 value)
{
if (temac_indirect_busywait(lp))
return;
temac_iow(lp, XTE_LSW0_OFFSET, value);
temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg);
}
/**
* temac_dma_in32 - Memory mapped DMA read, this function expects a
* register input that is based on DCR word addresses which
* are then converted to memory mapped byte addresses
*/
static u32 temac_dma_in32(struct temac_local *lp, int reg)
{
return in_be32((u32 *)(lp->sdma_regs + (reg << 2)));
}
/**
* temac_dma_out32 - Memory mapped DMA read, this function expects a
* register input that is based on DCR word addresses which
* are then converted to memory mapped byte addresses
*/
static void temac_dma_out32(struct temac_local *lp, int reg, u32 value)
{
out_be32((u32 *)(lp->sdma_regs + (reg << 2)), value);
}
/* DMA register access functions can be DCR based or memory mapped.
* The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both
* memory mapped.
*/
#ifdef CONFIG_PPC_DCR
/**
* temac_dma_dcr_in32 - DCR based DMA read
*/
static u32 temac_dma_dcr_in(struct temac_local *lp, int reg)
{
return dcr_read(lp->sdma_dcrs, reg);
}
/**
* temac_dma_dcr_out32 - DCR based DMA write
*/
static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value)
{
dcr_write(lp->sdma_dcrs, reg, value);
}
/**
* temac_dcr_setup - If the DMA is DCR based, then setup the address and
* I/O functions
*/
static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
struct device_node *np)
{
unsigned int dcrs;
/* setup the dcr address mapping if it's in the device tree */
dcrs = dcr_resource_start(np, 0);
if (dcrs != 0) {
lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0));
lp->dma_in = temac_dma_dcr_in;
lp->dma_out = temac_dma_dcr_out;
dev_dbg(&op->dev, "DCR base: %x\n", dcrs);
return 0;
}
/* no DCR in the device tree, indicate a failure */
return -1;
}
#else
/*
* temac_dcr_setup - This is a stub for when DCR is not supported,
* such as with MicroBlaze
*/
static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
struct device_node *np)
{
return -1;
}
#endif
/**
* * temac_dma_bd_release - Release buffer descriptor rings
*/
static void temac_dma_bd_release(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
int i;
for (i = 0; i < RX_BD_NUM; i++) {
if (!lp->rx_skb[i])
break;
else {
dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
dev_kfree_skb(lp->rx_skb[i]);
}
}
if (lp->rx_bd_v)
dma_free_coherent(ndev->dev.parent,
sizeof(*lp->rx_bd_v) * RX_BD_NUM,
lp->rx_bd_v, lp->rx_bd_p);
if (lp->tx_bd_v)
dma_free_coherent(ndev->dev.parent,
sizeof(*lp->tx_bd_v) * TX_BD_NUM,
lp->tx_bd_v, lp->tx_bd_p);
if (lp->rx_skb)
kfree(lp->rx_skb);
}
/**
* temac_dma_bd_init - Setup buffer descriptor rings
*/
static int temac_dma_bd_init(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct sk_buff *skb;
int i;
lp->rx_skb = kzalloc(sizeof(*lp->rx_skb) * RX_BD_NUM, GFP_KERNEL);
if (!lp->rx_skb) {
dev_err(&ndev->dev,
"can't allocate memory for DMA RX buffer\n");
goto out;
}
/* allocate the tx and rx ring buffer descriptors. */
/* returns a virtual address and a physical address. */
lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
sizeof(*lp->tx_bd_v) * TX_BD_NUM,
&lp->tx_bd_p, GFP_KERNEL);
if (!lp->tx_bd_v) {
dev_err(&ndev->dev,
"unable to allocate DMA TX buffer descriptors");
goto out;
}
lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
sizeof(*lp->rx_bd_v) * RX_BD_NUM,
&lp->rx_bd_p, GFP_KERNEL);
if (!lp->rx_bd_v) {
dev_err(&ndev->dev,
"unable to allocate DMA RX buffer descriptors");
goto out;
}
memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM);
for (i = 0; i < TX_BD_NUM; i++) {
lp->tx_bd_v[i].next = lp->tx_bd_p +
sizeof(*lp->tx_bd_v) * ((i + 1) % TX_BD_NUM);
}
memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM);
for (i = 0; i < RX_BD_NUM; i++) {
lp->rx_bd_v[i].next = lp->rx_bd_p +
sizeof(*lp->rx_bd_v) * ((i + 1) % RX_BD_NUM);
skb = netdev_alloc_skb_ip_align(ndev,
XTE_MAX_JUMBO_FRAME_SIZE);
if (skb == 0) {
dev_err(&ndev->dev, "alloc_skb error %d\n", i);
goto out;
}
lp->rx_skb[i] = skb;
/* returns physical address of skb->data */
lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
skb->data,
XTE_MAX_JUMBO_FRAME_SIZE,
DMA_FROM_DEVICE);
lp->rx_bd_v[i].len = XTE_MAX_JUMBO_FRAME_SIZE;
lp->rx_bd_v[i].app0 = STS_CTRL_APP0_IRQONEND;
}
lp->dma_out(lp, TX_CHNL_CTRL, 0x10220400 |
CHNL_CTRL_IRQ_EN |
CHNL_CTRL_IRQ_DLY_EN |
CHNL_CTRL_IRQ_COAL_EN);
/* 0x10220483 */
/* 0x00100483 */
lp->dma_out(lp, RX_CHNL_CTRL, 0xff070000 |
CHNL_CTRL_IRQ_EN |
CHNL_CTRL_IRQ_DLY_EN |
CHNL_CTRL_IRQ_COAL_EN |
CHNL_CTRL_IRQ_IOE);
/* 0xff010283 */
lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p);
lp->dma_out(lp, RX_TAILDESC_PTR,
lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p);
return 0;
out:
temac_dma_bd_release(ndev);
return -ENOMEM;
}
/* ---------------------------------------------------------------------
* net_device_ops
*/
static int temac_set_mac_address(struct net_device *ndev, void *address)
{
struct temac_local *lp = netdev_priv(ndev);
if (address)
memcpy(ndev->dev_addr, address, ETH_ALEN);
if (!is_valid_ether_addr(ndev->dev_addr))
random_ether_addr(ndev->dev_addr);
/* set up unicast MAC address filter set its mac address */
mutex_lock(&lp->indirect_mutex);
temac_indirect_out32(lp, XTE_UAW0_OFFSET,
(ndev->dev_addr[0]) |
(ndev->dev_addr[1] << 8) |
(ndev->dev_addr[2] << 16) |
(ndev->dev_addr[3] << 24));
/* There are reserved bits in EUAW1
* so don't affect them Set MAC bits [47:32] in EUAW1 */
temac_indirect_out32(lp, XTE_UAW1_OFFSET,
(ndev->dev_addr[4] & 0x000000ff) |
(ndev->dev_addr[5] << 8));
mutex_unlock(&lp->indirect_mutex);
return 0;
}
static int netdev_set_mac_address(struct net_device *ndev, void *p)
{
struct sockaddr *addr = p;
return temac_set_mac_address(ndev, addr->sa_data);
}
static void temac_set_multicast_list(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
u32 multi_addr_msw, multi_addr_lsw, val;
int i;
mutex_lock(&lp->indirect_mutex);
if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM) {
/*
* We must make the kernel realise we had to move
* into promisc mode or we start all out war on
* the cable. If it was a promisc request the
* flag is already set. If not we assert it.
*/
ndev->flags |= IFF_PROMISC;
temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK);
dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
} else if (!netdev_mc_empty(ndev)) {
struct netdev_hw_addr *ha;
i = 0;
netdev_for_each_mc_addr(ha, ndev) {
if (i >= MULTICAST_CAM_TABLE_NUM)
break;
multi_addr_msw = ((ha->addr[3] << 24) |
(ha->addr[2] << 16) |
(ha->addr[1] << 8) |
(ha->addr[0]));
temac_indirect_out32(lp, XTE_MAW0_OFFSET,
multi_addr_msw);
multi_addr_lsw = ((ha->addr[5] << 8) |
(ha->addr[4]) | (i << 16));
temac_indirect_out32(lp, XTE_MAW1_OFFSET,
multi_addr_lsw);
i++;
}
} else {
val = temac_indirect_in32(lp, XTE_AFM_OFFSET);
temac_indirect_out32(lp, XTE_AFM_OFFSET,
val & ~XTE_AFM_EPPRM_MASK);
temac_indirect_out32(lp, XTE_MAW0_OFFSET, 0);
temac_indirect_out32(lp, XTE_MAW1_OFFSET, 0);
dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
}
mutex_unlock(&lp->indirect_mutex);
}
struct temac_option {
int flg;
u32 opt;
u32 reg;
u32 m_or;
u32 m_and;
} temac_options[] = {
/* Turn on jumbo packet support for both Rx and Tx */
{
.opt = XTE_OPTION_JUMBO,
.reg = XTE_TXC_OFFSET,
.m_or = XTE_TXC_TXJMBO_MASK,
},
{
.opt = XTE_OPTION_JUMBO,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXJMBO_MASK,
},
/* Turn on VLAN packet support for both Rx and Tx */
{
.opt = XTE_OPTION_VLAN,
.reg = XTE_TXC_OFFSET,
.m_or =XTE_TXC_TXVLAN_MASK,
},
{
.opt = XTE_OPTION_VLAN,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXVLAN_MASK,
},
/* Turn on FCS stripping on receive packets */
{
.opt = XTE_OPTION_FCS_STRIP,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXFCS_MASK,
},
/* Turn on FCS insertion on transmit packets */
{
.opt = XTE_OPTION_FCS_INSERT,
.reg = XTE_TXC_OFFSET,
.m_or =XTE_TXC_TXFCS_MASK,
},
/* Turn on length/type field checking on receive packets */
{
.opt = XTE_OPTION_LENTYPE_ERR,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXLT_MASK,
},
/* Turn on flow control */
{
.opt = XTE_OPTION_FLOW_CONTROL,
.reg = XTE_FCC_OFFSET,
.m_or =XTE_FCC_RXFLO_MASK,
},
/* Turn on flow control */
{
.opt = XTE_OPTION_FLOW_CONTROL,
.reg = XTE_FCC_OFFSET,
.m_or =XTE_FCC_TXFLO_MASK,
},
/* Turn on promiscuous frame filtering (all frames are received ) */
{
.opt = XTE_OPTION_PROMISC,
.reg = XTE_AFM_OFFSET,
.m_or =XTE_AFM_EPPRM_MASK,
},
/* Enable transmitter if not already enabled */
{
.opt = XTE_OPTION_TXEN,
.reg = XTE_TXC_OFFSET,
.m_or =XTE_TXC_TXEN_MASK,
},
/* Enable receiver? */
{
.opt = XTE_OPTION_RXEN,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXEN_MASK,
},
{}
};
/**
* temac_setoptions
*/
static u32 temac_setoptions(struct net_device *ndev, u32 options)
{
struct temac_local *lp = netdev_priv(ndev);
struct temac_option *tp = &temac_options[0];
int reg;
mutex_lock(&lp->indirect_mutex);
while (tp->opt) {
reg = temac_indirect_in32(lp, tp->reg) & ~tp->m_or;
if (options & tp->opt)
reg |= tp->m_or;
temac_indirect_out32(lp, tp->reg, reg);
tp++;
}
lp->options |= options;
mutex_unlock(&lp->indirect_mutex);
return 0;
}
/* Initialize temac */
static void temac_device_reset(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
u32 timeout;
u32 val;
/* Perform a software reset */
/* 0x300 host enable bit ? */
/* reset PHY through control register ?:1 */
dev_dbg(&ndev->dev, "%s()\n", __func__);
mutex_lock(&lp->indirect_mutex);
/* Reset the receiver and wait for it to finish reset */
temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK);
timeout = 1000;
while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) {
udelay(1);
if (--timeout == 0) {
dev_err(&ndev->dev,
"temac_device_reset RX reset timeout!!\n");
break;
}
}
/* Reset the transmitter and wait for it to finish reset */
temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK);
timeout = 1000;
while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) {
udelay(1);
if (--timeout == 0) {
dev_err(&ndev->dev,
"temac_device_reset TX reset timeout!!\n");
break;
}
}
/* Disable the receiver */
val = temac_indirect_in32(lp, XTE_RXC1_OFFSET);
temac_indirect_out32(lp, XTE_RXC1_OFFSET, val & ~XTE_RXC1_RXEN_MASK);
/* Reset Local Link (DMA) */
lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
timeout = 1000;
while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) {
udelay(1);
if (--timeout == 0) {
dev_err(&ndev->dev,
"temac_device_reset DMA reset timeout!!\n");
break;
}
}
lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE);
if (temac_dma_bd_init(ndev)) {
dev_err(&ndev->dev,
"temac_device_reset descriptor allocation failed\n");
}
temac_indirect_out32(lp, XTE_RXC0_OFFSET, 0);
temac_indirect_out32(lp, XTE_RXC1_OFFSET, 0);
temac_indirect_out32(lp, XTE_TXC_OFFSET, 0);
temac_indirect_out32(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK);
mutex_unlock(&lp->indirect_mutex);
/* Sync default options with HW
* but leave receiver and transmitter disabled. */
temac_setoptions(ndev,
lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN));
temac_set_mac_address(ndev, NULL);
/* Set address filter table */
temac_set_multicast_list(ndev);
if (temac_setoptions(ndev, lp->options))
dev_err(&ndev->dev, "Error setting TEMAC options\n");
/* Init Driver variable */
ndev->trans_start = jiffies; /* prevent tx timeout */
}
void temac_adjust_link(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct phy_device *phy = lp->phy_dev;
u32 mii_speed;
int link_state;
/* hash together the state values to decide if something has changed */
link_state = phy->speed | (phy->duplex << 1) | phy->link;
mutex_lock(&lp->indirect_mutex);
if (lp->last_link != link_state) {
mii_speed = temac_indirect_in32(lp, XTE_EMCFG_OFFSET);
mii_speed &= ~XTE_EMCFG_LINKSPD_MASK;
switch (phy->speed) {
case SPEED_1000: mii_speed |= XTE_EMCFG_LINKSPD_1000; break;
case SPEED_100: mii_speed |= XTE_EMCFG_LINKSPD_100; break;
case SPEED_10: mii_speed |= XTE_EMCFG_LINKSPD_10; break;
}
/* Write new speed setting out to TEMAC */
temac_indirect_out32(lp, XTE_EMCFG_OFFSET, mii_speed);
lp->last_link = link_state;
phy_print_status(phy);
}
mutex_unlock(&lp->indirect_mutex);
}
static void temac_start_xmit_done(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct cdmac_bd *cur_p;
unsigned int stat = 0;
cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
stat = cur_p->app0;
while (stat & STS_CTRL_APP0_CMPLT) {
dma_unmap_single(ndev->dev.parent, cur_p->phys, cur_p->len,
DMA_TO_DEVICE);
if (cur_p->app4)
dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
cur_p->app0 = 0;
cur_p->app1 = 0;
cur_p->app2 = 0;
cur_p->app3 = 0;
cur_p->app4 = 0;
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += cur_p->len;
lp->tx_bd_ci++;
if (lp->tx_bd_ci >= TX_BD_NUM)
lp->tx_bd_ci = 0;
cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
stat = cur_p->app0;
}
netif_wake_queue(ndev);
}
static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag)
{
struct cdmac_bd *cur_p;
int tail;
tail = lp->tx_bd_tail;
cur_p = &lp->tx_bd_v[tail];
do {
if (cur_p->app0)
return NETDEV_TX_BUSY;
tail++;
if (tail >= TX_BD_NUM)
tail = 0;
cur_p = &lp->tx_bd_v[tail];
num_frag--;
} while (num_frag >= 0);
return 0;
}
static int temac_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct cdmac_bd *cur_p;
dma_addr_t start_p, tail_p;
int ii;
unsigned long num_frag;
skb_frag_t *frag;
num_frag = skb_shinfo(skb)->nr_frags;
frag = &skb_shinfo(skb)->frags[0];
start_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
if (temac_check_tx_bd_space(lp, num_frag)) {
if (!netif_queue_stopped(ndev)) {
netif_stop_queue(ndev);
return NETDEV_TX_BUSY;
}
return NETDEV_TX_BUSY;
}
cur_p->app0 = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
unsigned int csum_start_off = skb_checksum_start_offset(skb);
unsigned int csum_index_off = csum_start_off + skb->csum_offset;
cur_p->app0 |= 1; /* TX Checksum Enabled */
cur_p->app1 = (csum_start_off << 16) | csum_index_off;
cur_p->app2 = 0; /* initial checksum seed */
}
cur_p->app0 |= STS_CTRL_APP0_SOP;
cur_p->len = skb_headlen(skb);
cur_p->phys = dma_map_single(ndev->dev.parent, skb->data, skb->len,
DMA_TO_DEVICE);
cur_p->app4 = (unsigned long)skb;
for (ii = 0; ii < num_frag; ii++) {
lp->tx_bd_tail++;
if (lp->tx_bd_tail >= TX_BD_NUM)
lp->tx_bd_tail = 0;
cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
cur_p->phys = dma_map_single(ndev->dev.parent,
(void *)page_address(frag->page) +
frag->page_offset,
frag->size, DMA_TO_DEVICE);
cur_p->len = frag->size;
cur_p->app0 = 0;
frag++;
}
cur_p->app0 |= STS_CTRL_APP0_EOP;
tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
lp->tx_bd_tail++;
if (lp->tx_bd_tail >= TX_BD_NUM)
lp->tx_bd_tail = 0;
skb_tx_timestamp(skb);
/* Kick off the transfer */
lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */
return NETDEV_TX_OK;
}
static void ll_temac_recv(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct sk_buff *skb, *new_skb;
unsigned int bdstat;
struct cdmac_bd *cur_p;
dma_addr_t tail_p;
int length;
unsigned long flags;
spin_lock_irqsave(&lp->rx_lock, flags);
tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
bdstat = cur_p->app0;
while ((bdstat & STS_CTRL_APP0_CMPLT)) {
skb = lp->rx_skb[lp->rx_bd_ci];
length = cur_p->app4 & 0x3FFF;
dma_unmap_single(ndev->dev.parent, cur_p->phys, length,
DMA_FROM_DEVICE);
skb_put(skb, length);
skb->dev = ndev;
skb->protocol = eth_type_trans(skb, ndev);
skb_checksum_none_assert(skb);
/* if we're doing rx csum offload, set it up */
if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) &&
(skb->protocol == __constant_htons(ETH_P_IP)) &&
(skb->len > 64)) {
skb->csum = cur_p->app3 & 0xFFFF;
skb->ip_summed = CHECKSUM_COMPLETE;
}
if (!skb_defer_rx_timestamp(skb))
netif_rx(skb);
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += length;
new_skb = netdev_alloc_skb_ip_align(ndev,
XTE_MAX_JUMBO_FRAME_SIZE);
if (new_skb == 0) {
dev_err(&ndev->dev, "no memory for new sk_buff\n");
spin_unlock_irqrestore(&lp->rx_lock, flags);
return;
}
cur_p->app0 = STS_CTRL_APP0_IRQONEND;
cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
XTE_MAX_JUMBO_FRAME_SIZE,
DMA_FROM_DEVICE);
cur_p->len = XTE_MAX_JUMBO_FRAME_SIZE;
lp->rx_skb[lp->rx_bd_ci] = new_skb;
lp->rx_bd_ci++;
if (lp->rx_bd_ci >= RX_BD_NUM)
lp->rx_bd_ci = 0;
cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
bdstat = cur_p->app0;
}
lp->dma_out(lp, RX_TAILDESC_PTR, tail_p);
spin_unlock_irqrestore(&lp->rx_lock, flags);
}
static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev)
{
struct net_device *ndev = _ndev;
struct temac_local *lp = netdev_priv(ndev);
unsigned int status;
status = lp->dma_in(lp, TX_IRQ_REG);
lp->dma_out(lp, TX_IRQ_REG, status);
if (status & (IRQ_COAL | IRQ_DLY))
temac_start_xmit_done(lp->ndev);
if (status & 0x080)
dev_err(&ndev->dev, "DMA error 0x%x\n", status);
return IRQ_HANDLED;
}
static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev)
{
struct net_device *ndev = _ndev;
struct temac_local *lp = netdev_priv(ndev);
unsigned int status;
/* Read and clear the status registers */
status = lp->dma_in(lp, RX_IRQ_REG);
lp->dma_out(lp, RX_IRQ_REG, status);
if (status & (IRQ_COAL | IRQ_DLY))
ll_temac_recv(lp->ndev);
return IRQ_HANDLED;
}
static int temac_open(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
int rc;
dev_dbg(&ndev->dev, "temac_open()\n");
if (lp->phy_node) {
lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
temac_adjust_link, 0, 0);
if (!lp->phy_dev) {
dev_err(lp->dev, "of_phy_connect() failed\n");
return -ENODEV;
}
phy_start(lp->phy_dev);
}
rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev);
if (rc)
goto err_tx_irq;
rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev);
if (rc)
goto err_rx_irq;
temac_device_reset(ndev);
return 0;
err_rx_irq:
free_irq(lp->tx_irq, ndev);
err_tx_irq:
if (lp->phy_dev)
phy_disconnect(lp->phy_dev);
lp->phy_dev = NULL;
dev_err(lp->dev, "request_irq() failed\n");
return rc;
}
static int temac_stop(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
dev_dbg(&ndev->dev, "temac_close()\n");
free_irq(lp->tx_irq, ndev);
free_irq(lp->rx_irq, ndev);
if (lp->phy_dev)
phy_disconnect(lp->phy_dev);
lp->phy_dev = NULL;
temac_dma_bd_release(ndev);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void
temac_poll_controller(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
disable_irq(lp->tx_irq);
disable_irq(lp->rx_irq);
ll_temac_rx_irq(lp->tx_irq, ndev);
ll_temac_tx_irq(lp->rx_irq, ndev);
enable_irq(lp->tx_irq);
enable_irq(lp->rx_irq);
}
#endif
static const struct net_device_ops temac_netdev_ops = {
.ndo_open = temac_open,
.ndo_stop = temac_stop,
.ndo_start_xmit = temac_start_xmit,
.ndo_set_mac_address = netdev_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
//.ndo_set_multicast_list = temac_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = temac_poll_controller,
#endif
};
/* ---------------------------------------------------------------------
* SYSFS device attributes
*/
static ssize_t temac_show_llink_regs(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct temac_local *lp = netdev_priv(ndev);
int i, len = 0;
for (i = 0; i < 0x11; i++)
len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i),
(i % 8) == 7 ? "\n" : " ");
len += sprintf(buf + len, "\n");
return len;
}
static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL);
static struct attribute *temac_device_attrs[] = {
&dev_attr_llink_regs.attr,
NULL,
};
static const struct attribute_group temac_attr_group = {
.attrs = temac_device_attrs,
};
static int __devinit temac_of_probe(struct platform_device *op)
{
struct device_node *np;
struct temac_local *lp;
struct net_device *ndev;
const void *addr;
__be32 *p;
int size, rc = 0;
/* Init network device structure */
ndev = alloc_etherdev(sizeof(*lp));
if (!ndev) {
dev_err(&op->dev, "could not allocate device.\n");
return -ENOMEM;
}
ether_setup(ndev);
dev_set_drvdata(&op->dev, ndev);
SET_NETDEV_DEV(ndev, &op->dev);
ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST;
ndev->netdev_ops = &temac_netdev_ops;
#if 0
ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */
ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */
ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */
ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */
ndev->features |= NETIF_F_HW_VLAN_TX; /* Transmit VLAN hw accel */
ndev->features |= NETIF_F_HW_VLAN_RX; /* Receive VLAN hw acceleration */
ndev->features |= NETIF_F_HW_VLAN_FILTER; /* Receive VLAN filtering */
ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */
ndev->features |= NETIF_F_GSO; /* Enable software GSO. */
ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */
ndev->features |= NETIF_F_LRO; /* large receive offload */
#endif
/* setup temac private info structure */
lp = netdev_priv(ndev);
lp->ndev = ndev;
lp->dev = &op->dev;
lp->options = XTE_OPTION_DEFAULTS;
spin_lock_init(&lp->rx_lock);
mutex_init(&lp->indirect_mutex);
/* map device registers */
lp->regs = of_iomap(op->dev.of_node, 0);
if (!lp->regs) {
dev_err(&op->dev, "could not map temac regs.\n");
goto nodev;
}
/* Setup checksum offload, but default to off if not specified */
lp->temac_features = 0;
p = (__be32 *)of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
if (p && be32_to_cpu(*p)) {
lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
/* Can checksum TCP/UDP over IPv4. */
ndev->features |= NETIF_F_IP_CSUM;
}
p = (__be32 *)of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
if (p && be32_to_cpu(*p))
lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
np = of_parse_phandle(op->dev.of_node, "llink-connected", 0);
if (!np) {
dev_err(&op->dev, "could not find DMA node\n");
goto err_iounmap;
}
/* Setup the DMA register accesses, could be DCR or memory mapped */
if (temac_dcr_setup(lp, op, np)) {
/* no DCR in the device tree, try non-DCR */
lp->sdma_regs = of_iomap(np, 0);
if (lp->sdma_regs) {
lp->dma_in = temac_dma_in32;
lp->dma_out = temac_dma_out32;
dev_dbg(&op->dev, "MEM base: %p\n", lp->sdma_regs);
} else {
dev_err(&op->dev, "unable to map DMA registers\n");
of_node_put(np);
goto err_iounmap;
}
}
lp->rx_irq = irq_of_parse_and_map(np, 0);
lp->tx_irq = irq_of_parse_and_map(np, 1);
of_node_put(np); /* Finished with the DMA node; drop the reference */
if ((lp->rx_irq == NO_IRQ) || (lp->tx_irq == NO_IRQ)) {
dev_err(&op->dev, "could not determine irqs\n");
rc = -ENOMEM;
goto err_iounmap_2;
}
/* Retrieve the MAC address */
addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
if ((!addr) || (size != 6)) {
dev_err(&op->dev, "could not find MAC address\n");
rc = -ENODEV;
goto err_iounmap_2;
}
temac_set_mac_address(ndev, (void *)addr);
rc = temac_mdio_setup(lp, op->dev.of_node);
if (rc)
dev_warn(&op->dev, "error registering MDIO bus\n");
lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
if (lp->phy_node)
dev_dbg(lp->dev, "using PHY node %s (%p)\n", np->full_name, np);
/* Add the device attributes */
rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group);
if (rc) {
dev_err(lp->dev, "Error creating sysfs files\n");
goto err_iounmap_2;
}
rc = register_netdev(lp->ndev);
if (rc) {
dev_err(lp->dev, "register_netdev() error (%i)\n", rc);
goto err_register_ndev;
}
return 0;
err_register_ndev:
sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
err_iounmap_2:
if (lp->sdma_regs)
iounmap(lp->sdma_regs);
err_iounmap:
iounmap(lp->regs);
nodev:
free_netdev(ndev);
ndev = NULL;
return rc;
}
static int __devexit temac_of_remove(struct platform_device *op)
{
struct net_device *ndev = dev_get_drvdata(&op->dev);
struct temac_local *lp = netdev_priv(ndev);
temac_mdio_teardown(lp);
unregister_netdev(ndev);
sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
if (lp->phy_node)
of_node_put(lp->phy_node);
lp->phy_node = NULL;
dev_set_drvdata(&op->dev, NULL);
iounmap(lp->regs);
if (lp->sdma_regs)
iounmap(lp->sdma_regs);
free_netdev(ndev);
return 0;
}
static struct of_device_id temac_of_match[] __devinitdata = {
{ .compatible = "xlnx,xps-ll-temac-1.01.b", },
{ .compatible = "xlnx,xps-ll-temac-2.00.a", },
{ .compatible = "xlnx,xps-ll-temac-2.02.a", },
{ .compatible = "xlnx,xps-ll-temac-2.03.a", },
{},
};
MODULE_DEVICE_TABLE(of, temac_of_match);
static struct platform_driver temac_of_driver = {
.probe = temac_of_probe,
.remove = __devexit_p(temac_of_remove),
.driver = {
.owner = THIS_MODULE,
.name = "xilinx_temac",
.of_match_table = temac_of_match,
},
};
static int __init temac_init(void)
{
return platform_driver_register(&temac_of_driver);
}
module_init(temac_init);
static void __exit temac_exit(void)
{
platform_driver_unregister(&temac_of_driver);
}
module_exit(temac_exit);
MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver");
MODULE_AUTHOR("Yoshio Kashiwagi");
MODULE_LICENSE("GPL");