linux/drivers/mmc/card/mmc_test.c

1216 lines
25 KiB
C
Raw Normal View History

/*
* linux/drivers/mmc/card/mmc_test.c
*
* Copyright 2007-2008 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
#include <linux/mmc/core.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/scatterlist.h>
#define RESULT_OK 0
#define RESULT_FAIL 1
#define RESULT_UNSUP_HOST 2
#define RESULT_UNSUP_CARD 3
#define BUFFER_ORDER 2
#define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
struct mmc_test_card {
struct mmc_card *card;
u8 scratch[BUFFER_SIZE];
u8 *buffer;
#ifdef CONFIG_HIGHMEM
struct page *highmem;
#endif
};
/*******************************************************************/
/* General helper functions */
/*******************************************************************/
/*
* Configure correct block size in card
*/
static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
{
struct mmc_command cmd;
int ret;
cmd.opcode = MMC_SET_BLOCKLEN;
cmd.arg = size;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
if (ret)
return ret;
return 0;
}
/*
* Fill in the mmc_request structure given a set of transfer parameters.
*/
static void mmc_test_prepare_mrq(struct mmc_test_card *test,
struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
{
BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop);
if (blocks > 1) {
mrq->cmd->opcode = write ?
MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
} else {
mrq->cmd->opcode = write ?
MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
}
mrq->cmd->arg = dev_addr;
if (!mmc_card_blockaddr(test->card))
mrq->cmd->arg <<= 9;
mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
if (blocks == 1)
mrq->stop = NULL;
else {
mrq->stop->opcode = MMC_STOP_TRANSMISSION;
mrq->stop->arg = 0;
mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
}
mrq->data->blksz = blksz;
mrq->data->blocks = blocks;
mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
mrq->data->sg = sg;
mrq->data->sg_len = sg_len;
mmc_set_data_timeout(mrq->data, test->card);
}
/*
* Wait for the card to finish the busy state
*/
static int mmc_test_wait_busy(struct mmc_test_card *test)
{
int ret, busy;
struct mmc_command cmd;
busy = 0;
do {
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = test->card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
if (ret)
break;
if (!busy && !(cmd.resp[0] & R1_READY_FOR_DATA)) {
busy = 1;
printk(KERN_INFO "%s: Warning: Host did not "
"wait for busy state to end.\n",
mmc_hostname(test->card->host));
}
} while (!(cmd.resp[0] & R1_READY_FOR_DATA));
return ret;
}
/*
* Transfer a single sector of kernel addressable data
*/
static int mmc_test_buffer_transfer(struct mmc_test_card *test,
u8 *buffer, unsigned addr, unsigned blksz, int write)
{
int ret;
struct mmc_request mrq;
struct mmc_command cmd;
struct mmc_command stop;
struct mmc_data data;
struct scatterlist sg;
memset(&mrq, 0, sizeof(struct mmc_request));
memset(&cmd, 0, sizeof(struct mmc_command));
memset(&data, 0, sizeof(struct mmc_data));
memset(&stop, 0, sizeof(struct mmc_command));
mrq.cmd = &cmd;
mrq.data = &data;
mrq.stop = &stop;
sg_init_one(&sg, buffer, blksz);
mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
mmc_wait_for_req(test->card->host, &mrq);
if (cmd.error)
return cmd.error;
if (data.error)
return data.error;
ret = mmc_test_wait_busy(test);
if (ret)
return ret;
return 0;
}
/*******************************************************************/
/* Test preparation and cleanup */
/*******************************************************************/
/*
* Fill the first couple of sectors of the card with known data
* so that bad reads/writes can be detected
*/
static int __mmc_test_prepare(struct mmc_test_card *test, int write)
{
int ret, i;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
if (write)
memset(test->buffer, 0xDF, 512);
else {
for (i = 0;i < 512;i++)
test->buffer[i] = i;
}
for (i = 0;i < BUFFER_SIZE / 512;i++) {
ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_prepare_write(struct mmc_test_card *test)
{
return __mmc_test_prepare(test, 1);
}
static int mmc_test_prepare_read(struct mmc_test_card *test)
{
return __mmc_test_prepare(test, 0);
}
static int mmc_test_cleanup(struct mmc_test_card *test)
{
int ret, i;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
memset(test->buffer, 0, 512);
for (i = 0;i < BUFFER_SIZE / 512;i++) {
ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
if (ret)
return ret;
}
return 0;
}
/*******************************************************************/
/* Test execution helpers */
/*******************************************************************/
/*
* Modifies the mmc_request to perform the "short transfer" tests
*/
static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
struct mmc_request *mrq, int write)
{
BUG_ON(!mrq || !mrq->cmd || !mrq->data);
if (mrq->data->blocks > 1) {
mrq->cmd->opcode = write ?
MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
mrq->stop = NULL;
} else {
mrq->cmd->opcode = MMC_SEND_STATUS;
mrq->cmd->arg = test->card->rca << 16;
}
}
/*
* Checks that a normal transfer didn't have any errors
*/
static int mmc_test_check_result(struct mmc_test_card *test,
struct mmc_request *mrq)
{
int ret;
BUG_ON(!mrq || !mrq->cmd || !mrq->data);
ret = 0;
if (!ret && mrq->cmd->error)
ret = mrq->cmd->error;
if (!ret && mrq->data->error)
ret = mrq->data->error;
if (!ret && mrq->stop && mrq->stop->error)
ret = mrq->stop->error;
if (!ret && mrq->data->bytes_xfered !=
mrq->data->blocks * mrq->data->blksz)
ret = RESULT_FAIL;
if (ret == -EINVAL)
ret = RESULT_UNSUP_HOST;
return ret;
}
/*
* Checks that a "short transfer" behaved as expected
*/
static int mmc_test_check_broken_result(struct mmc_test_card *test,
struct mmc_request *mrq)
{
int ret;
BUG_ON(!mrq || !mrq->cmd || !mrq->data);
ret = 0;
if (!ret && mrq->cmd->error)
ret = mrq->cmd->error;
if (!ret && mrq->data->error == 0)
ret = RESULT_FAIL;
if (!ret && mrq->data->error != -ETIMEDOUT)
ret = mrq->data->error;
if (!ret && mrq->stop && mrq->stop->error)
ret = mrq->stop->error;
if (mrq->data->blocks > 1) {
if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
ret = RESULT_FAIL;
} else {
if (!ret && mrq->data->bytes_xfered > 0)
ret = RESULT_FAIL;
}
if (ret == -EINVAL)
ret = RESULT_UNSUP_HOST;
return ret;
}
/*
* Tests a basic transfer with certain parameters
*/
static int mmc_test_simple_transfer(struct mmc_test_card *test,
struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
unsigned blocks, unsigned blksz, int write)
{
struct mmc_request mrq;
struct mmc_command cmd;
struct mmc_command stop;
struct mmc_data data;
memset(&mrq, 0, sizeof(struct mmc_request));
memset(&cmd, 0, sizeof(struct mmc_command));
memset(&data, 0, sizeof(struct mmc_data));
memset(&stop, 0, sizeof(struct mmc_command));
mrq.cmd = &cmd;
mrq.data = &data;
mrq.stop = &stop;
mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
blocks, blksz, write);
mmc_wait_for_req(test->card->host, &mrq);
mmc_test_wait_busy(test);
return mmc_test_check_result(test, &mrq);
}
/*
* Tests a transfer where the card will fail completely or partly
*/
static int mmc_test_broken_transfer(struct mmc_test_card *test,
unsigned blocks, unsigned blksz, int write)
{
struct mmc_request mrq;
struct mmc_command cmd;
struct mmc_command stop;
struct mmc_data data;
struct scatterlist sg;
memset(&mrq, 0, sizeof(struct mmc_request));
memset(&cmd, 0, sizeof(struct mmc_command));
memset(&data, 0, sizeof(struct mmc_data));
memset(&stop, 0, sizeof(struct mmc_command));
mrq.cmd = &cmd;
mrq.data = &data;
mrq.stop = &stop;
sg_init_one(&sg, test->buffer, blocks * blksz);
mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
mmc_test_prepare_broken_mrq(test, &mrq, write);
mmc_wait_for_req(test->card->host, &mrq);
mmc_test_wait_busy(test);
return mmc_test_check_broken_result(test, &mrq);
}
/*
* Does a complete transfer test where data is also validated
*
* Note: mmc_test_prepare() must have been done before this call
*/
static int mmc_test_transfer(struct mmc_test_card *test,
struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
unsigned blocks, unsigned blksz, int write)
{
int ret, i;
unsigned long flags;
if (write) {
for (i = 0;i < blocks * blksz;i++)
test->scratch[i] = i;
} else {
memset(test->scratch, 0, BUFFER_SIZE);
}
local_irq_save(flags);
sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
local_irq_restore(flags);
ret = mmc_test_set_blksize(test, blksz);
if (ret)
return ret;
ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
blocks, blksz, write);
if (ret)
return ret;
if (write) {
int sectors;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
sectors = (blocks * blksz + 511) / 512;
if ((sectors * 512) == (blocks * blksz))
sectors++;
if ((sectors * 512) > BUFFER_SIZE)
return -EINVAL;
memset(test->buffer, 0, sectors * 512);
for (i = 0;i < sectors;i++) {
ret = mmc_test_buffer_transfer(test,
test->buffer + i * 512,
dev_addr + i, 512, 0);
if (ret)
return ret;
}
for (i = 0;i < blocks * blksz;i++) {
if (test->buffer[i] != (u8)i)
return RESULT_FAIL;
}
for (;i < sectors * 512;i++) {
if (test->buffer[i] != 0xDF)
return RESULT_FAIL;
}
} else {
local_irq_save(flags);
sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
local_irq_restore(flags);
for (i = 0;i < blocks * blksz;i++) {
if (test->scratch[i] != (u8)i)
return RESULT_FAIL;
}
}
return 0;
}
/*******************************************************************/
/* Tests */
/*******************************************************************/
struct mmc_test_case {
const char *name;
int (*prepare)(struct mmc_test_card *);
int (*run)(struct mmc_test_card *);
int (*cleanup)(struct mmc_test_card *);
};
static int mmc_test_basic_write(struct mmc_test_card *test)
{
int ret;
struct scatterlist sg;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
sg_init_one(&sg, test->buffer, 512);
ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
if (ret)
return ret;
return 0;
}
static int mmc_test_basic_read(struct mmc_test_card *test)
{
int ret;
struct scatterlist sg;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
sg_init_one(&sg, test->buffer, 512);
ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
if (ret)
return ret;
return 0;
}
static int mmc_test_verify_write(struct mmc_test_card *test)
{
int ret;
struct scatterlist sg;
sg_init_one(&sg, test->buffer, 512);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
if (ret)
return ret;
return 0;
}
static int mmc_test_verify_read(struct mmc_test_card *test)
{
int ret;
struct scatterlist sg;
sg_init_one(&sg, test->buffer, 512);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
if (ret)
return ret;
return 0;
}
static int mmc_test_multi_write(struct mmc_test_card *test)
{
int ret;
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
sg_init_one(&sg, test->buffer, size);
ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
if (ret)
return ret;
return 0;
}
static int mmc_test_multi_read(struct mmc_test_card *test)
{
int ret;
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
sg_init_one(&sg, test->buffer, size);
ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
if (ret)
return ret;
return 0;
}
static int mmc_test_pow2_write(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
if (!test->card->csd.write_partial)
return RESULT_UNSUP_CARD;
for (i = 1; i < 512;i <<= 1) {
sg_init_one(&sg, test->buffer, i);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_pow2_read(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
if (!test->card->csd.read_partial)
return RESULT_UNSUP_CARD;
for (i = 1; i < 512;i <<= 1) {
sg_init_one(&sg, test->buffer, i);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_weird_write(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
if (!test->card->csd.write_partial)
return RESULT_UNSUP_CARD;
for (i = 3; i < 512;i += 7) {
sg_init_one(&sg, test->buffer, i);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_weird_read(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
if (!test->card->csd.read_partial)
return RESULT_UNSUP_CARD;
for (i = 3; i < 512;i += 7) {
sg_init_one(&sg, test->buffer, i);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_align_write(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
for (i = 1;i < 4;i++) {
sg_init_one(&sg, test->buffer + i, 512);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_align_read(struct mmc_test_card *test)
{
int ret, i;
struct scatterlist sg;
for (i = 1;i < 4;i++) {
sg_init_one(&sg, test->buffer + i, 512);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_align_multi_write(struct mmc_test_card *test)
{
int ret, i;
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
for (i = 1;i < 4;i++) {
sg_init_one(&sg, test->buffer + i, size);
ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_align_multi_read(struct mmc_test_card *test)
{
int ret, i;
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
for (i = 1;i < 4;i++) {
sg_init_one(&sg, test->buffer + i, size);
ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
if (ret)
return ret;
}
return 0;
}
static int mmc_test_xfersize_write(struct mmc_test_card *test)
{
int ret;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
ret = mmc_test_broken_transfer(test, 1, 512, 1);
if (ret)
return ret;
return 0;
}
static int mmc_test_xfersize_read(struct mmc_test_card *test)
{
int ret;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
ret = mmc_test_broken_transfer(test, 1, 512, 0);
if (ret)
return ret;
return 0;
}
static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
{
int ret;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
ret = mmc_test_broken_transfer(test, 2, 512, 1);
if (ret)
return ret;
return 0;
}
static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
{
int ret;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
ret = mmc_test_set_blksize(test, 512);
if (ret)
return ret;
ret = mmc_test_broken_transfer(test, 2, 512, 0);
if (ret)
return ret;
return 0;
}
#ifdef CONFIG_HIGHMEM
static int mmc_test_write_high(struct mmc_test_card *test)
{
int ret;
struct scatterlist sg;
sg_init_table(&sg, 1);
sg_set_page(&sg, test->highmem, 512, 0);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
if (ret)
return ret;
return 0;
}
static int mmc_test_read_high(struct mmc_test_card *test)
{
int ret;
struct scatterlist sg;
sg_init_table(&sg, 1);
sg_set_page(&sg, test->highmem, 512, 0);
ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
if (ret)
return ret;
return 0;
}
static int mmc_test_multi_write_high(struct mmc_test_card *test)
{
int ret;
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
sg_init_table(&sg, 1);
sg_set_page(&sg, test->highmem, size, 0);
ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
if (ret)
return ret;
return 0;
}
static int mmc_test_multi_read_high(struct mmc_test_card *test)
{
int ret;
unsigned int size;
struct scatterlist sg;
if (test->card->host->max_blk_count == 1)
return RESULT_UNSUP_HOST;
size = PAGE_SIZE * 2;
size = min(size, test->card->host->max_req_size);
size = min(size, test->card->host->max_seg_size);
size = min(size, test->card->host->max_blk_count * 512);
if (size < 1024)
return RESULT_UNSUP_HOST;
sg_init_table(&sg, 1);
sg_set_page(&sg, test->highmem, size, 0);
ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
if (ret)
return ret;
return 0;
}
#endif /* CONFIG_HIGHMEM */
static const struct mmc_test_case mmc_test_cases[] = {
{
.name = "Basic write (no data verification)",
.run = mmc_test_basic_write,
},
{
.name = "Basic read (no data verification)",
.run = mmc_test_basic_read,
},
{
.name = "Basic write (with data verification)",
.prepare = mmc_test_prepare_write,
.run = mmc_test_verify_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Basic read (with data verification)",
.prepare = mmc_test_prepare_read,
.run = mmc_test_verify_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Multi-block write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_multi_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Multi-block read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_multi_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Power of two block writes",
.prepare = mmc_test_prepare_write,
.run = mmc_test_pow2_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Power of two block reads",
.prepare = mmc_test_prepare_read,
.run = mmc_test_pow2_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Weird sized block writes",
.prepare = mmc_test_prepare_write,
.run = mmc_test_weird_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Weird sized block reads",
.prepare = mmc_test_prepare_read,
.run = mmc_test_weird_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Badly aligned write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_align_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Badly aligned read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_align_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Badly aligned multi-block write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_align_multi_write,
.cleanup = mmc_test_cleanup,
},
{
.name = "Badly aligned multi-block read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_align_multi_read,
.cleanup = mmc_test_cleanup,
},
{
.name = "Correct xfer_size at write (start failure)",
.run = mmc_test_xfersize_write,
},
{
.name = "Correct xfer_size at read (start failure)",
.run = mmc_test_xfersize_read,
},
{
.name = "Correct xfer_size at write (midway failure)",
.run = mmc_test_multi_xfersize_write,
},
{
.name = "Correct xfer_size at read (midway failure)",
.run = mmc_test_multi_xfersize_read,
},
#ifdef CONFIG_HIGHMEM
{
.name = "Highmem write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_write_high,
.cleanup = mmc_test_cleanup,
},
{
.name = "Highmem read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_read_high,
.cleanup = mmc_test_cleanup,
},
{
.name = "Multi-block highmem write",
.prepare = mmc_test_prepare_write,
.run = mmc_test_multi_write_high,
.cleanup = mmc_test_cleanup,
},
{
.name = "Multi-block highmem read",
.prepare = mmc_test_prepare_read,
.run = mmc_test_multi_read_high,
.cleanup = mmc_test_cleanup,
},
#endif /* CONFIG_HIGHMEM */
};
static DEFINE_MUTEX(mmc_test_lock);
static void mmc_test_run(struct mmc_test_card *test, int testcase)
{
int i, ret;
printk(KERN_INFO "%s: Starting tests of card %s...\n",
mmc_hostname(test->card->host), mmc_card_id(test->card));
mmc_claim_host(test->card->host);
for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
if (testcase && ((i + 1) != testcase))
continue;
printk(KERN_INFO "%s: Test case %d. %s...\n",
mmc_hostname(test->card->host), i + 1,
mmc_test_cases[i].name);
if (mmc_test_cases[i].prepare) {
ret = mmc_test_cases[i].prepare(test);
if (ret) {
printk(KERN_INFO "%s: Result: Prepare "
"stage failed! (%d)\n",
mmc_hostname(test->card->host),
ret);
continue;
}
}
ret = mmc_test_cases[i].run(test);
switch (ret) {
case RESULT_OK:
printk(KERN_INFO "%s: Result: OK\n",
mmc_hostname(test->card->host));
break;
case RESULT_FAIL:
printk(KERN_INFO "%s: Result: FAILED\n",
mmc_hostname(test->card->host));
break;
case RESULT_UNSUP_HOST:
printk(KERN_INFO "%s: Result: UNSUPPORTED "
"(by host)\n",
mmc_hostname(test->card->host));
break;
case RESULT_UNSUP_CARD:
printk(KERN_INFO "%s: Result: UNSUPPORTED "
"(by card)\n",
mmc_hostname(test->card->host));
break;
default:
printk(KERN_INFO "%s: Result: ERROR (%d)\n",
mmc_hostname(test->card->host), ret);
}
if (mmc_test_cases[i].cleanup) {
ret = mmc_test_cases[i].cleanup(test);
if (ret) {
printk(KERN_INFO "%s: Warning: Cleanup "
"stage failed! (%d)\n",
mmc_hostname(test->card->host),
ret);
}
}
}
mmc_release_host(test->card->host);
printk(KERN_INFO "%s: Tests completed.\n",
mmc_hostname(test->card->host));
}
static ssize_t mmc_test_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
mutex_lock(&mmc_test_lock);
mutex_unlock(&mmc_test_lock);
return 0;
}
static ssize_t mmc_test_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct mmc_card *card;
struct mmc_test_card *test;
int testcase;
card = container_of(dev, struct mmc_card, dev);
testcase = simple_strtol(buf, NULL, 10);
test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
if (!test)
return -ENOMEM;
test->card = card;
test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
#ifdef CONFIG_HIGHMEM
test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
#endif
#ifdef CONFIG_HIGHMEM
if (test->buffer && test->highmem) {
#else
if (test->buffer) {
#endif
mutex_lock(&mmc_test_lock);
mmc_test_run(test, testcase);
mutex_unlock(&mmc_test_lock);
}
#ifdef CONFIG_HIGHMEM
__free_pages(test->highmem, BUFFER_ORDER);
#endif
kfree(test->buffer);
kfree(test);
return count;
}
static DEVICE_ATTR(test, S_IWUSR | S_IRUGO, mmc_test_show, mmc_test_store);
static int mmc_test_probe(struct mmc_card *card)
{
int ret;
if ((card->type != MMC_TYPE_MMC) && (card->type != MMC_TYPE_SD))
return -ENODEV;
ret = device_create_file(&card->dev, &dev_attr_test);
if (ret)
return ret;
dev_info(&card->dev, "Card claimed for testing.\n");
return 0;
}
static void mmc_test_remove(struct mmc_card *card)
{
device_remove_file(&card->dev, &dev_attr_test);
}
static struct mmc_driver mmc_driver = {
.drv = {
.name = "mmc_test",
},
.probe = mmc_test_probe,
.remove = mmc_test_remove,
};
static int __init mmc_test_init(void)
{
return mmc_register_driver(&mmc_driver);
}
static void __exit mmc_test_exit(void)
{
mmc_unregister_driver(&mmc_driver);
}
module_init(mmc_test_init);
module_exit(mmc_test_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
MODULE_AUTHOR("Pierre Ossman");