linux/sound/soc/sh/rcar/dvc.c

381 lines
8.6 KiB
C
Raw Normal View History

/*
* Renesas R-Car DVC support
*
* Copyright (C) 2014 Renesas Solutions Corp.
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "rsnd.h"
#define RSND_DVC_NAME_SIZE 16
#define DVC_NAME "dvc"
struct rsnd_dvc {
struct rsnd_dvc_platform_info *info; /* rcar_snd.h */
struct rsnd_mod mod;
struct rsnd_kctrl_cfg_m volume;
struct rsnd_kctrl_cfg_m mute;
struct rsnd_kctrl_cfg_s ren; /* Ramp Enable */
struct rsnd_kctrl_cfg_s rup; /* Ramp Rate Up */
struct rsnd_kctrl_cfg_s rdown; /* Ramp Rate Down */
};
#define rsnd_dvc_nr(priv) ((priv)->dvc_nr)
#define rsnd_dvc_of_node(priv) \
of_get_child_by_name(rsnd_priv_to_dev(priv)->of_node, "rcar_sound,dvc")
#define rsnd_mod_to_dvc(_mod) \
container_of((_mod), struct rsnd_dvc, mod)
#define for_each_rsnd_dvc(pos, priv, i) \
for ((i) = 0; \
((i) < rsnd_dvc_nr(priv)) && \
((pos) = (struct rsnd_dvc *)(priv)->dvc + i); \
i++)
static const char * const dvc_ramp_rate[] = {
"128 dB/1 step", /* 00000 */
"64 dB/1 step", /* 00001 */
"32 dB/1 step", /* 00010 */
"16 dB/1 step", /* 00011 */
"8 dB/1 step", /* 00100 */
"4 dB/1 step", /* 00101 */
"2 dB/1 step", /* 00110 */
"1 dB/1 step", /* 00111 */
"0.5 dB/1 step", /* 01000 */
"0.25 dB/1 step", /* 01001 */
"0.125 dB/1 step", /* 01010 */
"0.125 dB/2 steps", /* 01011 */
"0.125 dB/4 steps", /* 01100 */
"0.125 dB/8 steps", /* 01101 */
"0.125 dB/16 steps", /* 01110 */
"0.125 dB/32 steps", /* 01111 */
"0.125 dB/64 steps", /* 10000 */
"0.125 dB/128 steps", /* 10001 */
"0.125 dB/256 steps", /* 10010 */
"0.125 dB/512 steps", /* 10011 */
"0.125 dB/1024 steps", /* 10100 */
"0.125 dB/2048 steps", /* 10101 */
"0.125 dB/4096 steps", /* 10110 */
"0.125 dB/8192 steps", /* 10111 */
};
static void rsnd_dvc_soft_reset(struct rsnd_mod *mod)
{
rsnd_mod_write(mod, DVC_SWRSR, 0);
rsnd_mod_write(mod, DVC_SWRSR, 1);
}
#define rsnd_dvc_initialize_lock(mod) __rsnd_dvc_initialize_lock(mod, 1)
#define rsnd_dvc_initialize_unlock(mod) __rsnd_dvc_initialize_lock(mod, 0)
static void __rsnd_dvc_initialize_lock(struct rsnd_mod *mod, u32 enable)
{
rsnd_mod_write(mod, DVC_DVUIR, enable);
}
static void rsnd_dvc_volume_update(struct rsnd_dai_stream *io,
struct rsnd_mod *mod)
{
struct rsnd_dvc *dvc = rsnd_mod_to_dvc(mod);
u32 val[RSND_DVC_CHANNELS];
u32 dvucr = 0;
u32 mute = 0;
int i;
for (i = 0; i < dvc->mute.cfg.size; i++)
mute |= (!!dvc->mute.cfg.val[i]) << i;
/* Disable DVC Register access */
rsnd_mod_write(mod, DVC_DVUER, 0);
/* Enable Ramp */
if (dvc->ren.val) {
dvucr |= 0x10;
/* Digital Volume Max */
for (i = 0; i < RSND_DVC_CHANNELS; i++)
val[i] = dvc->volume.cfg.max;
rsnd_mod_write(mod, DVC_VRCTR, 0xff);
rsnd_mod_write(mod, DVC_VRPDR, dvc->rup.val << 8 |
dvc->rdown.val);
/*
* FIXME !!
* use scale-downed Digital Volume
* as Volume Ramp
* 7F FFFF -> 3FF
*/
rsnd_mod_write(mod, DVC_VRDBR,
0x3ff - (dvc->volume.val[0] >> 13));
} else {
for (i = 0; i < RSND_DVC_CHANNELS; i++)
val[i] = dvc->volume.val[i];
}
/* Enable Digital Volume */
dvucr |= 0x100;
rsnd_mod_write(mod, DVC_VOL0R, val[0]);
rsnd_mod_write(mod, DVC_VOL1R, val[1]);
/* Enable Mute */
if (mute) {
dvucr |= 0x1;
rsnd_mod_write(mod, DVC_ZCMCR, mute);
}
rsnd_mod_write(mod, DVC_DVUCR, dvucr);
/* Enable DVC Register access */
rsnd_mod_write(mod, DVC_DVUER, 1);
}
static int rsnd_dvc_remove_gen2(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
struct rsnd_dvc *dvc = rsnd_mod_to_dvc(mod);
rsnd_kctrl_remove(dvc->volume);
rsnd_kctrl_remove(dvc->mute);
rsnd_kctrl_remove(dvc->ren);
rsnd_kctrl_remove(dvc->rup);
rsnd_kctrl_remove(dvc->rdown);
return 0;
}
static int rsnd_dvc_init(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
rsnd_mod_power_on(mod);
rsnd_dvc_soft_reset(mod);
rsnd_dvc_initialize_lock(mod);
rsnd_path_parse(priv, io);
rsnd_mod_write(mod, DVC_ADINR, rsnd_get_adinr_bit(mod, io));
/* ch0/ch1 Volume */
rsnd_dvc_volume_update(io, mod);
rsnd_adg_set_cmd_timsel_gen2(mod, io);
return 0;
}
static int rsnd_dvc_quit(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
rsnd_mod_power_off(mod);
return 0;
}
static int rsnd_dvc_start(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
rsnd_dvc_initialize_unlock(mod);
rsnd_mod_write(mod, CMD_CTRL, 0x10);
return 0;
}
static int rsnd_dvc_stop(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct rsnd_priv *priv)
{
rsnd_mod_write(mod, CMD_CTRL, 0);
return 0;
}
static int rsnd_dvc_pcm_new(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct snd_soc_pcm_runtime *rtd)
{
struct rsnd_dvc *dvc = rsnd_mod_to_dvc(mod);
int is_play = rsnd_io_is_play(io);
int ret;
/* Volume */
ret = rsnd_kctrl_new_m(mod, io, rtd,
is_play ?
"DVC Out Playback Volume" : "DVC In Capture Volume",
rsnd_dvc_volume_update,
&dvc->volume, 0x00800000 - 1);
if (ret < 0)
return ret;
/* Mute */
ret = rsnd_kctrl_new_m(mod, io, rtd,
is_play ?
"DVC Out Mute Switch" : "DVC In Mute Switch",
rsnd_dvc_volume_update,
&dvc->mute, 1);
if (ret < 0)
return ret;
/* Ramp */
ret = rsnd_kctrl_new_s(mod, io, rtd,
is_play ?
"DVC Out Ramp Switch" : "DVC In Ramp Switch",
rsnd_dvc_volume_update,
&dvc->ren, 1);
if (ret < 0)
return ret;
ret = rsnd_kctrl_new_e(mod, io, rtd,
is_play ?
"DVC Out Ramp Up Rate" : "DVC In Ramp Up Rate",
&dvc->rup,
rsnd_dvc_volume_update,
dvc_ramp_rate, ARRAY_SIZE(dvc_ramp_rate));
if (ret < 0)
return ret;
ret = rsnd_kctrl_new_e(mod, io, rtd,
is_play ?
"DVC Out Ramp Down Rate" : "DVC In Ramp Down Rate",
&dvc->rdown,
rsnd_dvc_volume_update,
dvc_ramp_rate, ARRAY_SIZE(dvc_ramp_rate));
if (ret < 0)
return ret;
return 0;
}
static struct dma_chan *rsnd_dvc_dma_req(struct rsnd_dai_stream *io,
struct rsnd_mod *mod)
ASoC: rsnd: 1st DMAC dma-names cares subnode Renesas R-Car sound (= rsnd) needs 2 DMAC which are called as Audio DMAC (= 1st DMAC) and Audio DMAC peri peri (2nd DMAC). And rsnd had assumed that 1st / 2nd DMACs are implemented as DMAEngine. But, in result of DMA ML discussion, 2nd DMAC was concluded that it is not a general purpose DMAC (2nd DMAC is for Device to Device inside sound system). Additionally, current DMAEngine can't support Device to Device, and we don't have correct DT bindings for it at this point. So the easiest solution for it is that move it from DMAEngine to rsnd driver. dma-names on DT was implemented as no difference between 1st / 2nd DMAC's, since rsnd had assumed that both DMACs are implemented as DMAEngine. That style was "src_dst". But now, 2nd DMAC was implemented as non DMAEngine, and it doesn't need dma-names anymore. So, this dma-names rule is no longer needed. And additionally, dma-names was assumed that it has all (= SSI/SSIU/SRC/DVC) nodes under sound node. In upstream code, no SoC/platform is supporting DMA for rsnd driver yet. This means there is no compatible issue if this patch changes dma-names's rule of DT. This patch assumes dma-names for 1st DMAC are tx/rx base, and listed in each SSI/SRC/DVC subnode ex) rcar_sound,dvc { dvc0: dvc@0 { dmas = <&audma0 0xbc>; dma-names = "tx"; }; ... rcar_sound,src { src0: src@0 { ... dmas = <&audma0 0x85>, <&audma1 0x9a>; dma-names = "rx", "tx"; }; ... rcar_sound,ssi { ssi0: ssi@0 { ... dmas = <&audma0 0x01>, <&audma1 0x02>, <&audma0 0x15>, <&audma1 0x16>; dma-names = "rx", "tx", "rxu", "txu"; }; ... Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-02-20 18:31:23 +08:00
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
return rsnd_dma_request_channel(rsnd_dvc_of_node(priv),
mod, "tx");
}
static struct rsnd_mod_ops rsnd_dvc_ops = {
.name = DVC_NAME,
ASoC: rsnd: 1st DMAC dma-names cares subnode Renesas R-Car sound (= rsnd) needs 2 DMAC which are called as Audio DMAC (= 1st DMAC) and Audio DMAC peri peri (2nd DMAC). And rsnd had assumed that 1st / 2nd DMACs are implemented as DMAEngine. But, in result of DMA ML discussion, 2nd DMAC was concluded that it is not a general purpose DMAC (2nd DMAC is for Device to Device inside sound system). Additionally, current DMAEngine can't support Device to Device, and we don't have correct DT bindings for it at this point. So the easiest solution for it is that move it from DMAEngine to rsnd driver. dma-names on DT was implemented as no difference between 1st / 2nd DMAC's, since rsnd had assumed that both DMACs are implemented as DMAEngine. That style was "src_dst". But now, 2nd DMAC was implemented as non DMAEngine, and it doesn't need dma-names anymore. So, this dma-names rule is no longer needed. And additionally, dma-names was assumed that it has all (= SSI/SSIU/SRC/DVC) nodes under sound node. In upstream code, no SoC/platform is supporting DMA for rsnd driver yet. This means there is no compatible issue if this patch changes dma-names's rule of DT. This patch assumes dma-names for 1st DMAC are tx/rx base, and listed in each SSI/SRC/DVC subnode ex) rcar_sound,dvc { dvc0: dvc@0 { dmas = <&audma0 0xbc>; dma-names = "tx"; }; ... rcar_sound,src { src0: src@0 { ... dmas = <&audma0 0x85>, <&audma1 0x9a>; dma-names = "rx", "tx"; }; ... rcar_sound,ssi { ssi0: ssi@0 { ... dmas = <&audma0 0x01>, <&audma1 0x02>, <&audma0 0x15>, <&audma1 0x16>; dma-names = "rx", "tx", "rxu", "txu"; }; ... Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-02-20 18:31:23 +08:00
.dma_req = rsnd_dvc_dma_req,
.remove = rsnd_dvc_remove_gen2,
.init = rsnd_dvc_init,
.quit = rsnd_dvc_quit,
.start = rsnd_dvc_start,
.stop = rsnd_dvc_stop,
.pcm_new = rsnd_dvc_pcm_new,
};
struct rsnd_mod *rsnd_dvc_mod_get(struct rsnd_priv *priv, int id)
{
if (WARN_ON(id < 0 || id >= rsnd_dvc_nr(priv)))
id = 0;
return rsnd_mod_get((struct rsnd_dvc *)(priv->dvc) + id);
}
static void rsnd_of_parse_dvc(struct platform_device *pdev,
const struct rsnd_of_data *of_data,
struct rsnd_priv *priv)
{
struct device_node *node;
struct rsnd_dvc_platform_info *dvc_info;
struct rcar_snd_info *info = rsnd_priv_to_info(priv);
struct device *dev = &pdev->dev;
int nr;
if (!of_data)
return;
node = of_get_child_by_name(dev->of_node, "rcar_sound,dvc");
if (!node)
return;
nr = of_get_child_count(node);
if (!nr)
goto rsnd_of_parse_dvc_end;
dvc_info = devm_kzalloc(dev,
sizeof(struct rsnd_dvc_platform_info) * nr,
GFP_KERNEL);
if (!dvc_info) {
dev_err(dev, "dvc info allocation error\n");
goto rsnd_of_parse_dvc_end;
}
info->dvc_info = dvc_info;
info->dvc_info_nr = nr;
rsnd_of_parse_dvc_end:
of_node_put(node);
}
int rsnd_dvc_probe(struct platform_device *pdev,
const struct rsnd_of_data *of_data,
struct rsnd_priv *priv)
{
struct rcar_snd_info *info = rsnd_priv_to_info(priv);
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_dvc *dvc;
struct clk *clk;
char name[RSND_DVC_NAME_SIZE];
int i, nr, ret;
/* This driver doesn't support Gen1 at this point */
if (rsnd_is_gen1(priv))
return 0;
rsnd_of_parse_dvc(pdev, of_data, priv);
nr = info->dvc_info_nr;
if (!nr)
return 0;
dvc = devm_kzalloc(dev, sizeof(*dvc) * nr, GFP_KERNEL);
if (!dvc)
return -ENOMEM;
priv->dvc_nr = nr;
priv->dvc = dvc;
for_each_rsnd_dvc(dvc, priv, i) {
snprintf(name, RSND_DVC_NAME_SIZE, "%s.%d",
DVC_NAME, i);
clk = devm_clk_get(dev, name);
if (IS_ERR(clk))
return PTR_ERR(clk);
dvc->info = &info->dvc_info[i];
ret = rsnd_mod_init(priv, rsnd_mod_get(dvc), &rsnd_dvc_ops,
clk, RSND_MOD_DVC, i);
if (ret)
return ret;
}
return 0;
}
void rsnd_dvc_remove(struct platform_device *pdev,
struct rsnd_priv *priv)
{
struct rsnd_dvc *dvc;
int i;
for_each_rsnd_dvc(dvc, priv, i) {
rsnd_mod_quit(rsnd_mod_get(dvc));
}
}