linux/net/tipc/port.c

1365 lines
33 KiB
C
Raw Normal View History

/*
* net/tipc/port.c: TIPC port code
*
* Copyright (c) 1992-2007, Ericsson AB
* Copyright (c) 2004-2008, 2010-2011, Wind River Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the names of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "core.h"
#include "config.h"
#include "port.h"
#include "name_table.h"
/* Connection management: */
#define PROBING_INTERVAL 3600000 /* [ms] => 1 h */
#define CONFIRMED 0
#define PROBING 1
#define MAX_REJECT_SIZE 1024
static struct sk_buff *msg_queue_head;
static struct sk_buff *msg_queue_tail;
DEFINE_SPINLOCK(tipc_port_list_lock);
static DEFINE_SPINLOCK(queue_lock);
static LIST_HEAD(ports);
static void port_handle_node_down(unsigned long ref);
static struct sk_buff *port_build_self_abort_msg(struct tipc_port *, u32 err);
static struct sk_buff *port_build_peer_abort_msg(struct tipc_port *, u32 err);
static void port_timeout(unsigned long ref);
static u32 port_peernode(struct tipc_port *p_ptr)
{
return msg_destnode(&p_ptr->phdr);
}
static u32 port_peerport(struct tipc_port *p_ptr)
{
return msg_destport(&p_ptr->phdr);
}
/**
* tipc_port_peer_msg - verify message was sent by connected port's peer
*
* Handles cases where the node's network address has changed from
* the default of <0.0.0> to its configured setting.
*/
int tipc_port_peer_msg(struct tipc_port *p_ptr, struct tipc_msg *msg)
{
u32 peernode;
u32 orignode;
if (msg_origport(msg) != port_peerport(p_ptr))
return 0;
orignode = msg_orignode(msg);
peernode = port_peernode(p_ptr);
return (orignode == peernode) ||
(!orignode && (peernode == tipc_own_addr)) ||
(!peernode && (orignode == tipc_own_addr));
}
/**
* tipc_multicast - send a multicast message to local and remote destinations
*/
int tipc_multicast(u32 ref, struct tipc_name_seq const *seq,
u32 num_sect, struct iovec const *msg_sect,
unsigned int total_len)
{
struct tipc_msg *hdr;
struct sk_buff *buf;
struct sk_buff *ibuf = NULL;
struct tipc_port_list dports = {0, NULL, };
struct tipc_port *oport = tipc_port_deref(ref);
int ext_targets;
int res;
if (unlikely(!oport))
return -EINVAL;
/* Create multicast message */
hdr = &oport->phdr;
msg_set_type(hdr, TIPC_MCAST_MSG);
msg_set_lookup_scope(hdr, TIPC_CLUSTER_SCOPE);
msg_set_destport(hdr, 0);
msg_set_destnode(hdr, 0);
msg_set_nametype(hdr, seq->type);
msg_set_namelower(hdr, seq->lower);
msg_set_nameupper(hdr, seq->upper);
msg_set_hdr_sz(hdr, MCAST_H_SIZE);
res = tipc_msg_build(hdr, msg_sect, num_sect, total_len, MAX_MSG_SIZE,
!oport->user_port, &buf);
if (unlikely(!buf))
return res;
/* Figure out where to send multicast message */
ext_targets = tipc_nametbl_mc_translate(seq->type, seq->lower, seq->upper,
TIPC_NODE_SCOPE, &dports);
/* Send message to destinations (duplicate it only if necessary) */
if (ext_targets) {
if (dports.count != 0) {
ibuf = skb_copy(buf, GFP_ATOMIC);
if (ibuf == NULL) {
tipc_port_list_free(&dports);
kfree_skb(buf);
return -ENOMEM;
}
}
res = tipc_bclink_send_msg(buf);
if ((res < 0) && (dports.count != 0))
kfree_skb(ibuf);
} else {
ibuf = buf;
}
if (res >= 0) {
if (ibuf)
tipc_port_recv_mcast(ibuf, &dports);
} else {
tipc_port_list_free(&dports);
}
return res;
}
/**
* tipc_port_recv_mcast - deliver multicast message to all destination ports
*
* If there is no port list, perform a lookup to create one
*/
void tipc_port_recv_mcast(struct sk_buff *buf, struct tipc_port_list *dp)
{
struct tipc_msg *msg;
struct tipc_port_list dports = {0, NULL, };
struct tipc_port_list *item = dp;
int cnt = 0;
msg = buf_msg(buf);
/* Create destination port list, if one wasn't supplied */
if (dp == NULL) {
tipc_nametbl_mc_translate(msg_nametype(msg),
msg_namelower(msg),
msg_nameupper(msg),
TIPC_CLUSTER_SCOPE,
&dports);
item = dp = &dports;
}
/* Deliver a copy of message to each destination port */
if (dp->count != 0) {
msg_set_destnode(msg, tipc_own_addr);
if (dp->count == 1) {
msg_set_destport(msg, dp->ports[0]);
tipc_port_recv_msg(buf);
tipc_port_list_free(dp);
return;
}
for (; cnt < dp->count; cnt++) {
int index = cnt % PLSIZE;
struct sk_buff *b = skb_clone(buf, GFP_ATOMIC);
if (b == NULL) {
pr_warn("Unable to deliver multicast message(s)\n");
goto exit;
}
if ((index == 0) && (cnt != 0))
item = item->next;
msg_set_destport(buf_msg(b), item->ports[index]);
tipc_port_recv_msg(b);
}
}
exit:
kfree_skb(buf);
tipc_port_list_free(dp);
}
/**
* tipc_createport_raw - create a generic TIPC port
*
* Returns pointer to (locked) TIPC port, or NULL if unable to create it
*/
struct tipc_port *tipc_createport_raw(void *usr_handle,
u32 (*dispatcher)(struct tipc_port *, struct sk_buff *),
void (*wakeup)(struct tipc_port *),
const u32 importance)
{
struct tipc_port *p_ptr;
struct tipc_msg *msg;
u32 ref;
p_ptr = kzalloc(sizeof(*p_ptr), GFP_ATOMIC);
if (!p_ptr) {
pr_warn("Port creation failed, no memory\n");
return NULL;
}
ref = tipc_ref_acquire(p_ptr, &p_ptr->lock);
if (!ref) {
pr_warn("Port creation failed, ref. table exhausted\n");
kfree(p_ptr);
return NULL;
}
p_ptr->usr_handle = usr_handle;
p_ptr->max_pkt = MAX_PKT_DEFAULT;
p_ptr->ref = ref;
INIT_LIST_HEAD(&p_ptr->wait_list);
INIT_LIST_HEAD(&p_ptr->subscription.nodesub_list);
p_ptr->dispatcher = dispatcher;
p_ptr->wakeup = wakeup;
p_ptr->user_port = NULL;
k_init_timer(&p_ptr->timer, (Handler)port_timeout, ref);
INIT_LIST_HEAD(&p_ptr->publications);
INIT_LIST_HEAD(&p_ptr->port_list);
/*
* Must hold port list lock while initializing message header template
* to ensure a change to node's own network address doesn't result
* in template containing out-dated network address information
*/
spin_lock_bh(&tipc_port_list_lock);
msg = &p_ptr->phdr;
tipc_msg_init(msg, importance, TIPC_NAMED_MSG, NAMED_H_SIZE, 0);
msg_set_origport(msg, ref);
list_add_tail(&p_ptr->port_list, &ports);
spin_unlock_bh(&tipc_port_list_lock);
return p_ptr;
}
int tipc_deleteport(u32 ref)
{
struct tipc_port *p_ptr;
struct sk_buff *buf = NULL;
tipc_withdraw(ref, 0, NULL);
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
tipc_ref_discard(ref);
tipc_port_unlock(p_ptr);
k_cancel_timer(&p_ptr->timer);
if (p_ptr->connected) {
buf = port_build_peer_abort_msg(p_ptr, TIPC_ERR_NO_PORT);
tipc_nodesub_unsubscribe(&p_ptr->subscription);
}
kfree(p_ptr->user_port);
spin_lock_bh(&tipc_port_list_lock);
list_del(&p_ptr->port_list);
list_del(&p_ptr->wait_list);
spin_unlock_bh(&tipc_port_list_lock);
k_term_timer(&p_ptr->timer);
kfree(p_ptr);
tipc_net_route_msg(buf);
return 0;
}
static int port_unreliable(struct tipc_port *p_ptr)
{
return msg_src_droppable(&p_ptr->phdr);
}
int tipc_portunreliable(u32 ref, unsigned int *isunreliable)
{
struct tipc_port *p_ptr;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
*isunreliable = port_unreliable(p_ptr);
tipc_port_unlock(p_ptr);
return 0;
}
int tipc_set_portunreliable(u32 ref, unsigned int isunreliable)
{
struct tipc_port *p_ptr;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
msg_set_src_droppable(&p_ptr->phdr, (isunreliable != 0));
tipc_port_unlock(p_ptr);
return 0;
}
static int port_unreturnable(struct tipc_port *p_ptr)
{
return msg_dest_droppable(&p_ptr->phdr);
}
int tipc_portunreturnable(u32 ref, unsigned int *isunrejectable)
{
struct tipc_port *p_ptr;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
*isunrejectable = port_unreturnable(p_ptr);
tipc_port_unlock(p_ptr);
return 0;
}
int tipc_set_portunreturnable(u32 ref, unsigned int isunrejectable)
{
struct tipc_port *p_ptr;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
msg_set_dest_droppable(&p_ptr->phdr, (isunrejectable != 0));
tipc_port_unlock(p_ptr);
return 0;
}
/*
* port_build_proto_msg(): create connection protocol message for port
*
* On entry the port must be locked and connected.
*/
static struct sk_buff *port_build_proto_msg(struct tipc_port *p_ptr,
u32 type, u32 ack)
{
struct sk_buff *buf;
struct tipc_msg *msg;
buf = tipc_buf_acquire(INT_H_SIZE);
if (buf) {
msg = buf_msg(buf);
tipc_msg_init(msg, CONN_MANAGER, type, INT_H_SIZE,
port_peernode(p_ptr));
msg_set_destport(msg, port_peerport(p_ptr));
msg_set_origport(msg, p_ptr->ref);
msg_set_msgcnt(msg, ack);
}
return buf;
}
int tipc_reject_msg(struct sk_buff *buf, u32 err)
{
struct tipc_msg *msg = buf_msg(buf);
struct sk_buff *rbuf;
struct tipc_msg *rmsg;
int hdr_sz;
u32 imp;
u32 data_sz = msg_data_sz(msg);
u32 src_node;
u32 rmsg_sz;
/* discard rejected message if it shouldn't be returned to sender */
if (WARN(!msg_isdata(msg),
"attempt to reject message with user=%u", msg_user(msg))) {
dump_stack();
goto exit;
}
if (msg_errcode(msg) || msg_dest_droppable(msg))
goto exit;
/*
* construct returned message by copying rejected message header and
* data (or subset), then updating header fields that need adjusting
*/
hdr_sz = msg_hdr_sz(msg);
rmsg_sz = hdr_sz + min_t(u32, data_sz, MAX_REJECT_SIZE);
rbuf = tipc_buf_acquire(rmsg_sz);
if (rbuf == NULL)
goto exit;
rmsg = buf_msg(rbuf);
skb_copy_to_linear_data(rbuf, msg, rmsg_sz);
if (msg_connected(rmsg)) {
imp = msg_importance(rmsg);
if (imp < TIPC_CRITICAL_IMPORTANCE)
msg_set_importance(rmsg, ++imp);
}
msg_set_non_seq(rmsg, 0);
msg_set_size(rmsg, rmsg_sz);
msg_set_errcode(rmsg, err);
msg_set_prevnode(rmsg, tipc_own_addr);
msg_swap_words(rmsg, 4, 5);
if (!msg_short(rmsg))
msg_swap_words(rmsg, 6, 7);
/* send self-abort message when rejecting on a connected port */
if (msg_connected(msg)) {
struct tipc_port *p_ptr = tipc_port_lock(msg_destport(msg));
if (p_ptr) {
struct sk_buff *abuf = NULL;
if (p_ptr->connected)
abuf = port_build_self_abort_msg(p_ptr, err);
tipc_port_unlock(p_ptr);
tipc_net_route_msg(abuf);
}
}
/* send returned message & dispose of rejected message */
src_node = msg_prevnode(msg);
if (in_own_node(src_node))
tipc_port_recv_msg(rbuf);
else
tipc_link_send(rbuf, src_node, msg_link_selector(rmsg));
exit:
kfree_skb(buf);
return data_sz;
}
int tipc_port_reject_sections(struct tipc_port *p_ptr, struct tipc_msg *hdr,
struct iovec const *msg_sect, u32 num_sect,
unsigned int total_len, int err)
{
struct sk_buff *buf;
int res;
res = tipc_msg_build(hdr, msg_sect, num_sect, total_len, MAX_MSG_SIZE,
!p_ptr->user_port, &buf);
if (!buf)
return res;
return tipc_reject_msg(buf, err);
}
static void port_timeout(unsigned long ref)
{
struct tipc_port *p_ptr = tipc_port_lock(ref);
struct sk_buff *buf = NULL;
if (!p_ptr)
return;
if (!p_ptr->connected) {
tipc_port_unlock(p_ptr);
return;
}
/* Last probe answered ? */
if (p_ptr->probing_state == PROBING) {
buf = port_build_self_abort_msg(p_ptr, TIPC_ERR_NO_PORT);
} else {
buf = port_build_proto_msg(p_ptr, CONN_PROBE, 0);
p_ptr->probing_state = PROBING;
k_start_timer(&p_ptr->timer, p_ptr->probing_interval);
}
tipc_port_unlock(p_ptr);
tipc_net_route_msg(buf);
}
static void port_handle_node_down(unsigned long ref)
{
struct tipc_port *p_ptr = tipc_port_lock(ref);
struct sk_buff *buf = NULL;
if (!p_ptr)
return;
buf = port_build_self_abort_msg(p_ptr, TIPC_ERR_NO_NODE);
tipc_port_unlock(p_ptr);
tipc_net_route_msg(buf);
}
static struct sk_buff *port_build_self_abort_msg(struct tipc_port *p_ptr, u32 err)
{
struct sk_buff *buf = port_build_peer_abort_msg(p_ptr, err);
if (buf) {
struct tipc_msg *msg = buf_msg(buf);
msg_swap_words(msg, 4, 5);
msg_swap_words(msg, 6, 7);
}
return buf;
}
static struct sk_buff *port_build_peer_abort_msg(struct tipc_port *p_ptr, u32 err)
{
struct sk_buff *buf;
struct tipc_msg *msg;
u32 imp;
if (!p_ptr->connected)
return NULL;
buf = tipc_buf_acquire(BASIC_H_SIZE);
if (buf) {
msg = buf_msg(buf);
memcpy(msg, &p_ptr->phdr, BASIC_H_SIZE);
msg_set_hdr_sz(msg, BASIC_H_SIZE);
msg_set_size(msg, BASIC_H_SIZE);
imp = msg_importance(msg);
if (imp < TIPC_CRITICAL_IMPORTANCE)
msg_set_importance(msg, ++imp);
msg_set_errcode(msg, err);
}
return buf;
}
void tipc_port_recv_proto_msg(struct sk_buff *buf)
{
struct tipc_msg *msg = buf_msg(buf);
struct tipc_port *p_ptr;
struct sk_buff *r_buf = NULL;
u32 destport = msg_destport(msg);
int wakeable;
/* Validate connection */
p_ptr = tipc_port_lock(destport);
if (!p_ptr || !p_ptr->connected || !tipc_port_peer_msg(p_ptr, msg)) {
r_buf = tipc_buf_acquire(BASIC_H_SIZE);
if (r_buf) {
msg = buf_msg(r_buf);
tipc_msg_init(msg, TIPC_HIGH_IMPORTANCE, TIPC_CONN_MSG,
BASIC_H_SIZE, msg_orignode(msg));
msg_set_errcode(msg, TIPC_ERR_NO_PORT);
msg_set_origport(msg, destport);
msg_set_destport(msg, msg_origport(msg));
}
if (p_ptr)
tipc_port_unlock(p_ptr);
goto exit;
}
/* Process protocol message sent by peer */
switch (msg_type(msg)) {
case CONN_ACK:
wakeable = tipc_port_congested(p_ptr) && p_ptr->congested &&
p_ptr->wakeup;
p_ptr->acked += msg_msgcnt(msg);
if (!tipc_port_congested(p_ptr)) {
p_ptr->congested = 0;
if (wakeable)
p_ptr->wakeup(p_ptr);
}
break;
case CONN_PROBE:
r_buf = port_build_proto_msg(p_ptr, CONN_PROBE_REPLY, 0);
break;
default:
/* CONN_PROBE_REPLY or unrecognized - no action required */
break;
}
p_ptr->probing_state = CONFIRMED;
tipc_port_unlock(p_ptr);
exit:
tipc_net_route_msg(r_buf);
kfree_skb(buf);
}
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
static int port_print(struct tipc_port *p_ptr, char *buf, int len, int full_id)
{
struct publication *publ;
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
int ret;
if (full_id)
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
ret = tipc_snprintf(buf, len, "<%u.%u.%u:%u>:",
tipc_zone(tipc_own_addr),
tipc_cluster(tipc_own_addr),
tipc_node(tipc_own_addr), p_ptr->ref);
else
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
ret = tipc_snprintf(buf, len, "%-10u:", p_ptr->ref);
if (p_ptr->connected) {
u32 dport = port_peerport(p_ptr);
u32 destnode = port_peernode(p_ptr);
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
ret += tipc_snprintf(buf + ret, len - ret,
" connected to <%u.%u.%u:%u>",
tipc_zone(destnode),
tipc_cluster(destnode),
tipc_node(destnode), dport);
if (p_ptr->conn_type != 0)
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
ret += tipc_snprintf(buf + ret, len - ret,
" via {%u,%u}", p_ptr->conn_type,
p_ptr->conn_instance);
} else if (p_ptr->published) {
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
ret += tipc_snprintf(buf + ret, len - ret, " bound to");
list_for_each_entry(publ, &p_ptr->publications, pport_list) {
if (publ->lower == publ->upper)
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
ret += tipc_snprintf(buf + ret, len - ret,
" {%u,%u}", publ->type,
publ->lower);
else
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
ret += tipc_snprintf(buf + ret, len - ret,
" {%u,%u,%u}", publ->type,
publ->lower, publ->upper);
}
}
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
ret += tipc_snprintf(buf + ret, len - ret, "\n");
return ret;
}
struct sk_buff *tipc_port_get_ports(void)
{
struct sk_buff *buf;
struct tlv_desc *rep_tlv;
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
char *pb;
int pb_len;
struct tipc_port *p_ptr;
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
int str_len = 0;
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
buf = tipc_cfg_reply_alloc(TLV_SPACE(ULTRA_STRING_MAX_LEN));
if (!buf)
return NULL;
rep_tlv = (struct tlv_desc *)buf->data;
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
pb = TLV_DATA(rep_tlv);
pb_len = ULTRA_STRING_MAX_LEN;
spin_lock_bh(&tipc_port_list_lock);
list_for_each_entry(p_ptr, &ports, port_list) {
spin_lock_bh(p_ptr->lock);
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
str_len += port_print(p_ptr, pb, pb_len, 0);
spin_unlock_bh(p_ptr->lock);
}
spin_unlock_bh(&tipc_port_list_lock);
tipc: phase out most of the struct print_buf usage The tipc_printf is renamed to tipc_snprintf, as the new name describes more what the function actually does. It is also changed to take a buffer and length parameter and return number of characters written to the buffer. All callers of this function that used to pass a print_buf are updated. Final removal of the struct print_buf itself will be done synchronously with the pending removal of the deprecated logging code that also was using it. Functions that build up a response message with a list of ports, nametable contents etc. are changed to return the number of characters written to the output buffer. This information was previously hidden in a field of the print_buf struct, and the number of chars written was fetched with a call to tipc_printbuf_validate. This function is removed since it is no longer referenced nor needed. A generic max size ULTRA_STRING_MAX_LEN is defined, named in keeping with the existing TIPC_TLV_ULTRA_STRING, and the various definitions in port, link and nametable code that largely duplicated this information are removed. This means that amount of link statistics that can be returned is now increased from 2k to 32k. The buffer overflow check is now done just before the reply message is passed over netlink or TIPC to a remote node and the message indicating a truncated buffer is changed to a less dramatic one (less CAPS), placed at the end of the message. Signed-off-by: Erik Hugne <erik.hugne@ericsson.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-06-29 12:50:23 +08:00
str_len += 1; /* for "\0" */
skb_put(buf, TLV_SPACE(str_len));
TLV_SET(rep_tlv, TIPC_TLV_ULTRA_STRING, NULL, str_len);
return buf;
}
void tipc_port_reinit(void)
{
struct tipc_port *p_ptr;
struct tipc_msg *msg;
spin_lock_bh(&tipc_port_list_lock);
list_for_each_entry(p_ptr, &ports, port_list) {
msg = &p_ptr->phdr;
msg_set_prevnode(msg, tipc_own_addr);
msg_set_orignode(msg, tipc_own_addr);
}
spin_unlock_bh(&tipc_port_list_lock);
}
/*
* port_dispatcher_sigh(): Signal handler for messages destinated
* to the tipc_port interface.
*/
static void port_dispatcher_sigh(void *dummy)
{
struct sk_buff *buf;
spin_lock_bh(&queue_lock);
buf = msg_queue_head;
msg_queue_head = NULL;
spin_unlock_bh(&queue_lock);
while (buf) {
struct tipc_port *p_ptr;
struct user_port *up_ptr;
struct tipc_portid orig;
struct tipc_name_seq dseq;
void *usr_handle;
int connected;
int peer_invalid;
int published;
u32 message_type;
struct sk_buff *next = buf->next;
struct tipc_msg *msg = buf_msg(buf);
u32 dref = msg_destport(msg);
message_type = msg_type(msg);
if (message_type > TIPC_DIRECT_MSG)
goto reject; /* Unsupported message type */
p_ptr = tipc_port_lock(dref);
if (!p_ptr)
goto reject; /* Port deleted while msg in queue */
orig.ref = msg_origport(msg);
orig.node = msg_orignode(msg);
up_ptr = p_ptr->user_port;
usr_handle = up_ptr->usr_handle;
connected = p_ptr->connected;
peer_invalid = connected && !tipc_port_peer_msg(p_ptr, msg);
published = p_ptr->published;
if (unlikely(msg_errcode(msg)))
goto err;
switch (message_type) {
case TIPC_CONN_MSG:{
tipc_conn_msg_event cb = up_ptr->conn_msg_cb;
u32 dsz;
tipc_port_unlock(p_ptr);
if (unlikely(!cb))
goto reject;
if (unlikely(!connected)) {
tipc: standardize across connect/disconnect function naming Currently we have tipc_disconnect and tipc_disconnect_port. It is not clear from the names alone, what they do or how they differ. It turns out that tipc_disconnect just deals with the port locking and then calls tipc_disconnect_port which does all the work. If we rename as follows: tipc_disconnect_port --> __tipc_disconnect then we will be following typical linux convention, where: __tipc_disconnect: "raw" function that does all the work. tipc_disconnect: wrapper that deals with locking and then calls the real core __tipc_disconnect function With this, the difference is immediately evident, and locking violations are more apt to be spotted by chance while working on, or even just while reading the code. On the connect side of things, we currently only have the single "tipc_connect2port" function. It does both the locking at enter/exit, and the core of the work. Pending changes will make it desireable to have the connect be a two part locking wrapper + worker function, just like the disconnect is already. Here, we make the connect look just like the updated disconnect case, for the above reason, and for consistency. In the process, we also get rid of the "2port" suffix that was on the original name, since it adds no descriptive value. On close examination, one might notice that the above connect changes implicitly move the call to tipc_link_get_max_pkt() to be within the scope of tipc_port_lock() protected region; when it was not previously. We don't see any issues with this, and it is in keeping with __tipc_connect doing the work and tipc_connect just handling the locking. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-30 02:48:40 +08:00
if (tipc_connect(dref, &orig))
goto reject;
} else if (peer_invalid)
goto reject;
dsz = msg_data_sz(msg);
if (unlikely(dsz &&
(++p_ptr->conn_unacked >=
TIPC_FLOW_CONTROL_WIN)))
tipc_acknowledge(dref,
p_ptr->conn_unacked);
skb_pull(buf, msg_hdr_sz(msg));
cb(usr_handle, dref, &buf, msg_data(msg), dsz);
break;
}
case TIPC_DIRECT_MSG:{
tipc_msg_event cb = up_ptr->msg_cb;
tipc_port_unlock(p_ptr);
if (unlikely(!cb || connected))
goto reject;
skb_pull(buf, msg_hdr_sz(msg));
cb(usr_handle, dref, &buf, msg_data(msg),
msg_data_sz(msg), msg_importance(msg),
&orig);
break;
}
case TIPC_MCAST_MSG:
case TIPC_NAMED_MSG:{
tipc_named_msg_event cb = up_ptr->named_msg_cb;
tipc_port_unlock(p_ptr);
if (unlikely(!cb || connected || !published))
goto reject;
dseq.type = msg_nametype(msg);
dseq.lower = msg_nameinst(msg);
dseq.upper = (message_type == TIPC_NAMED_MSG)
? dseq.lower : msg_nameupper(msg);
skb_pull(buf, msg_hdr_sz(msg));
cb(usr_handle, dref, &buf, msg_data(msg),
msg_data_sz(msg), msg_importance(msg),
&orig, &dseq);
break;
}
}
if (buf)
kfree_skb(buf);
buf = next;
continue;
err:
switch (message_type) {
case TIPC_CONN_MSG:{
tipc_conn_shutdown_event cb =
up_ptr->conn_err_cb;
tipc_port_unlock(p_ptr);
if (!cb || !connected || peer_invalid)
break;
tipc_disconnect(dref);
skb_pull(buf, msg_hdr_sz(msg));
cb(usr_handle, dref, &buf, msg_data(msg),
msg_data_sz(msg), msg_errcode(msg));
break;
}
case TIPC_DIRECT_MSG:{
tipc_msg_err_event cb = up_ptr->err_cb;
tipc_port_unlock(p_ptr);
if (!cb || connected)
break;
skb_pull(buf, msg_hdr_sz(msg));
cb(usr_handle, dref, &buf, msg_data(msg),
msg_data_sz(msg), msg_errcode(msg), &orig);
break;
}
case TIPC_MCAST_MSG:
case TIPC_NAMED_MSG:{
tipc_named_msg_err_event cb =
up_ptr->named_err_cb;
tipc_port_unlock(p_ptr);
if (!cb || connected)
break;
dseq.type = msg_nametype(msg);
dseq.lower = msg_nameinst(msg);
dseq.upper = (message_type == TIPC_NAMED_MSG)
? dseq.lower : msg_nameupper(msg);
skb_pull(buf, msg_hdr_sz(msg));
cb(usr_handle, dref, &buf, msg_data(msg),
msg_data_sz(msg), msg_errcode(msg), &dseq);
break;
}
}
if (buf)
kfree_skb(buf);
buf = next;
continue;
reject:
tipc_reject_msg(buf, TIPC_ERR_NO_PORT);
buf = next;
}
}
/*
* port_dispatcher(): Dispatcher for messages destinated
* to the tipc_port interface. Called with port locked.
*/
static u32 port_dispatcher(struct tipc_port *dummy, struct sk_buff *buf)
{
buf->next = NULL;
spin_lock_bh(&queue_lock);
if (msg_queue_head) {
msg_queue_tail->next = buf;
msg_queue_tail = buf;
} else {
msg_queue_tail = msg_queue_head = buf;
tipc_k_signal((Handler)port_dispatcher_sigh, 0);
}
spin_unlock_bh(&queue_lock);
return 0;
}
/*
* Wake up port after congestion: Called with port locked
*/
static void port_wakeup_sh(unsigned long ref)
{
struct tipc_port *p_ptr;
struct user_port *up_ptr;
tipc_continue_event cb = NULL;
void *uh = NULL;
p_ptr = tipc_port_lock(ref);
if (p_ptr) {
up_ptr = p_ptr->user_port;
if (up_ptr) {
cb = up_ptr->continue_event_cb;
uh = up_ptr->usr_handle;
}
tipc_port_unlock(p_ptr);
}
if (cb)
cb(uh, ref);
}
static void port_wakeup(struct tipc_port *p_ptr)
{
tipc_k_signal((Handler)port_wakeup_sh, p_ptr->ref);
}
void tipc_acknowledge(u32 ref, u32 ack)
{
struct tipc_port *p_ptr;
struct sk_buff *buf = NULL;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return;
if (p_ptr->connected) {
p_ptr->conn_unacked -= ack;
buf = port_build_proto_msg(p_ptr, CONN_ACK, ack);
}
tipc_port_unlock(p_ptr);
tipc_net_route_msg(buf);
}
/*
* tipc_createport(): user level call.
*/
int tipc_createport(void *usr_handle,
unsigned int importance,
tipc_msg_err_event error_cb,
tipc_named_msg_err_event named_error_cb,
tipc_conn_shutdown_event conn_error_cb,
tipc_msg_event msg_cb,
tipc_named_msg_event named_msg_cb,
tipc_conn_msg_event conn_msg_cb,
tipc_continue_event continue_event_cb, /* May be zero */
u32 *portref)
{
struct user_port *up_ptr;
struct tipc_port *p_ptr;
up_ptr = kmalloc(sizeof(*up_ptr), GFP_ATOMIC);
if (!up_ptr) {
pr_warn("Port creation failed, no memory\n");
return -ENOMEM;
}
p_ptr = tipc_createport_raw(NULL, port_dispatcher, port_wakeup,
importance);
if (!p_ptr) {
kfree(up_ptr);
return -ENOMEM;
}
p_ptr->user_port = up_ptr;
up_ptr->usr_handle = usr_handle;
up_ptr->ref = p_ptr->ref;
up_ptr->err_cb = error_cb;
up_ptr->named_err_cb = named_error_cb;
up_ptr->conn_err_cb = conn_error_cb;
up_ptr->msg_cb = msg_cb;
up_ptr->named_msg_cb = named_msg_cb;
up_ptr->conn_msg_cb = conn_msg_cb;
up_ptr->continue_event_cb = continue_event_cb;
*portref = p_ptr->ref;
tipc_port_unlock(p_ptr);
return 0;
}
int tipc_portimportance(u32 ref, unsigned int *importance)
{
struct tipc_port *p_ptr;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
*importance = (unsigned int)msg_importance(&p_ptr->phdr);
tipc_port_unlock(p_ptr);
return 0;
}
int tipc_set_portimportance(u32 ref, unsigned int imp)
{
struct tipc_port *p_ptr;
if (imp > TIPC_CRITICAL_IMPORTANCE)
return -EINVAL;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
msg_set_importance(&p_ptr->phdr, (u32)imp);
tipc_port_unlock(p_ptr);
return 0;
}
int tipc_publish(u32 ref, unsigned int scope, struct tipc_name_seq const *seq)
{
struct tipc_port *p_ptr;
struct publication *publ;
u32 key;
int res = -EINVAL;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
if (p_ptr->connected)
goto exit;
key = ref + p_ptr->pub_count + 1;
if (key == ref) {
res = -EADDRINUSE;
goto exit;
}
publ = tipc_nametbl_publish(seq->type, seq->lower, seq->upper,
scope, p_ptr->ref, key);
if (publ) {
list_add(&publ->pport_list, &p_ptr->publications);
p_ptr->pub_count++;
p_ptr->published = 1;
res = 0;
}
exit:
tipc_port_unlock(p_ptr);
return res;
}
int tipc_withdraw(u32 ref, unsigned int scope, struct tipc_name_seq const *seq)
{
struct tipc_port *p_ptr;
struct publication *publ;
struct publication *tpubl;
int res = -EINVAL;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
if (!seq) {
list_for_each_entry_safe(publ, tpubl,
&p_ptr->publications, pport_list) {
tipc_nametbl_withdraw(publ->type, publ->lower,
publ->ref, publ->key);
}
res = 0;
} else {
list_for_each_entry_safe(publ, tpubl,
&p_ptr->publications, pport_list) {
if (publ->scope != scope)
continue;
if (publ->type != seq->type)
continue;
if (publ->lower != seq->lower)
continue;
if (publ->upper != seq->upper)
break;
tipc_nametbl_withdraw(publ->type, publ->lower,
publ->ref, publ->key);
res = 0;
break;
}
}
if (list_empty(&p_ptr->publications))
p_ptr->published = 0;
tipc_port_unlock(p_ptr);
return res;
}
tipc: standardize across connect/disconnect function naming Currently we have tipc_disconnect and tipc_disconnect_port. It is not clear from the names alone, what they do or how they differ. It turns out that tipc_disconnect just deals with the port locking and then calls tipc_disconnect_port which does all the work. If we rename as follows: tipc_disconnect_port --> __tipc_disconnect then we will be following typical linux convention, where: __tipc_disconnect: "raw" function that does all the work. tipc_disconnect: wrapper that deals with locking and then calls the real core __tipc_disconnect function With this, the difference is immediately evident, and locking violations are more apt to be spotted by chance while working on, or even just while reading the code. On the connect side of things, we currently only have the single "tipc_connect2port" function. It does both the locking at enter/exit, and the core of the work. Pending changes will make it desireable to have the connect be a two part locking wrapper + worker function, just like the disconnect is already. Here, we make the connect look just like the updated disconnect case, for the above reason, and for consistency. In the process, we also get rid of the "2port" suffix that was on the original name, since it adds no descriptive value. On close examination, one might notice that the above connect changes implicitly move the call to tipc_link_get_max_pkt() to be within the scope of tipc_port_lock() protected region; when it was not previously. We don't see any issues with this, and it is in keeping with __tipc_connect doing the work and tipc_connect just handling the locking. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-30 02:48:40 +08:00
int tipc_connect(u32 ref, struct tipc_portid const *peer)
{
struct tipc_port *p_ptr;
tipc: standardize across connect/disconnect function naming Currently we have tipc_disconnect and tipc_disconnect_port. It is not clear from the names alone, what they do or how they differ. It turns out that tipc_disconnect just deals with the port locking and then calls tipc_disconnect_port which does all the work. If we rename as follows: tipc_disconnect_port --> __tipc_disconnect then we will be following typical linux convention, where: __tipc_disconnect: "raw" function that does all the work. tipc_disconnect: wrapper that deals with locking and then calls the real core __tipc_disconnect function With this, the difference is immediately evident, and locking violations are more apt to be spotted by chance while working on, or even just while reading the code. On the connect side of things, we currently only have the single "tipc_connect2port" function. It does both the locking at enter/exit, and the core of the work. Pending changes will make it desireable to have the connect be a two part locking wrapper + worker function, just like the disconnect is already. Here, we make the connect look just like the updated disconnect case, for the above reason, and for consistency. In the process, we also get rid of the "2port" suffix that was on the original name, since it adds no descriptive value. On close examination, one might notice that the above connect changes implicitly move the call to tipc_link_get_max_pkt() to be within the scope of tipc_port_lock() protected region; when it was not previously. We don't see any issues with this, and it is in keeping with __tipc_connect doing the work and tipc_connect just handling the locking. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-30 02:48:40 +08:00
int res;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
tipc: standardize across connect/disconnect function naming Currently we have tipc_disconnect and tipc_disconnect_port. It is not clear from the names alone, what they do or how they differ. It turns out that tipc_disconnect just deals with the port locking and then calls tipc_disconnect_port which does all the work. If we rename as follows: tipc_disconnect_port --> __tipc_disconnect then we will be following typical linux convention, where: __tipc_disconnect: "raw" function that does all the work. tipc_disconnect: wrapper that deals with locking and then calls the real core __tipc_disconnect function With this, the difference is immediately evident, and locking violations are more apt to be spotted by chance while working on, or even just while reading the code. On the connect side of things, we currently only have the single "tipc_connect2port" function. It does both the locking at enter/exit, and the core of the work. Pending changes will make it desireable to have the connect be a two part locking wrapper + worker function, just like the disconnect is already. Here, we make the connect look just like the updated disconnect case, for the above reason, and for consistency. In the process, we also get rid of the "2port" suffix that was on the original name, since it adds no descriptive value. On close examination, one might notice that the above connect changes implicitly move the call to tipc_link_get_max_pkt() to be within the scope of tipc_port_lock() protected region; when it was not previously. We don't see any issues with this, and it is in keeping with __tipc_connect doing the work and tipc_connect just handling the locking. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-30 02:48:40 +08:00
res = __tipc_connect(ref, p_ptr, peer);
tipc_port_unlock(p_ptr);
return res;
}
/*
* __tipc_connect - connect to a remote peer
*
* Port must be locked.
*/
int __tipc_connect(u32 ref, struct tipc_port *p_ptr,
struct tipc_portid const *peer)
{
struct tipc_msg *msg;
int res = -EINVAL;
if (p_ptr->published || p_ptr->connected)
goto exit;
if (!peer->ref)
goto exit;
msg = &p_ptr->phdr;
msg_set_destnode(msg, peer->node);
msg_set_destport(msg, peer->ref);
msg_set_type(msg, TIPC_CONN_MSG);
msg_set_lookup_scope(msg, 0);
msg_set_hdr_sz(msg, SHORT_H_SIZE);
p_ptr->probing_interval = PROBING_INTERVAL;
p_ptr->probing_state = CONFIRMED;
p_ptr->connected = 1;
k_start_timer(&p_ptr->timer, p_ptr->probing_interval);
tipc_nodesub_subscribe(&p_ptr->subscription, peer->node,
(void *)(unsigned long)ref,
(net_ev_handler)port_handle_node_down);
res = 0;
exit:
p_ptr->max_pkt = tipc_link_get_max_pkt(peer->node, ref);
return res;
}
tipc: standardize across connect/disconnect function naming Currently we have tipc_disconnect and tipc_disconnect_port. It is not clear from the names alone, what they do or how they differ. It turns out that tipc_disconnect just deals with the port locking and then calls tipc_disconnect_port which does all the work. If we rename as follows: tipc_disconnect_port --> __tipc_disconnect then we will be following typical linux convention, where: __tipc_disconnect: "raw" function that does all the work. tipc_disconnect: wrapper that deals with locking and then calls the real core __tipc_disconnect function With this, the difference is immediately evident, and locking violations are more apt to be spotted by chance while working on, or even just while reading the code. On the connect side of things, we currently only have the single "tipc_connect2port" function. It does both the locking at enter/exit, and the core of the work. Pending changes will make it desireable to have the connect be a two part locking wrapper + worker function, just like the disconnect is already. Here, we make the connect look just like the updated disconnect case, for the above reason, and for consistency. In the process, we also get rid of the "2port" suffix that was on the original name, since it adds no descriptive value. On close examination, one might notice that the above connect changes implicitly move the call to tipc_link_get_max_pkt() to be within the scope of tipc_port_lock() protected region; when it was not previously. We don't see any issues with this, and it is in keeping with __tipc_connect doing the work and tipc_connect just handling the locking. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-30 02:48:40 +08:00
/*
* __tipc_disconnect - disconnect port from peer
*
* Port must be locked.
*/
tipc: standardize across connect/disconnect function naming Currently we have tipc_disconnect and tipc_disconnect_port. It is not clear from the names alone, what they do or how they differ. It turns out that tipc_disconnect just deals with the port locking and then calls tipc_disconnect_port which does all the work. If we rename as follows: tipc_disconnect_port --> __tipc_disconnect then we will be following typical linux convention, where: __tipc_disconnect: "raw" function that does all the work. tipc_disconnect: wrapper that deals with locking and then calls the real core __tipc_disconnect function With this, the difference is immediately evident, and locking violations are more apt to be spotted by chance while working on, or even just while reading the code. On the connect side of things, we currently only have the single "tipc_connect2port" function. It does both the locking at enter/exit, and the core of the work. Pending changes will make it desireable to have the connect be a two part locking wrapper + worker function, just like the disconnect is already. Here, we make the connect look just like the updated disconnect case, for the above reason, and for consistency. In the process, we also get rid of the "2port" suffix that was on the original name, since it adds no descriptive value. On close examination, one might notice that the above connect changes implicitly move the call to tipc_link_get_max_pkt() to be within the scope of tipc_port_lock() protected region; when it was not previously. We don't see any issues with this, and it is in keeping with __tipc_connect doing the work and tipc_connect just handling the locking. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-30 02:48:40 +08:00
int __tipc_disconnect(struct tipc_port *tp_ptr)
{
int res;
if (tp_ptr->connected) {
tp_ptr->connected = 0;
/* let timer expire on it's own to avoid deadlock! */
tipc_nodesub_unsubscribe(&tp_ptr->subscription);
res = 0;
} else {
res = -ENOTCONN;
}
return res;
}
/*
* tipc_disconnect(): Disconnect port form peer.
* This is a node local operation.
*/
int tipc_disconnect(u32 ref)
{
struct tipc_port *p_ptr;
int res;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
tipc: standardize across connect/disconnect function naming Currently we have tipc_disconnect and tipc_disconnect_port. It is not clear from the names alone, what they do or how they differ. It turns out that tipc_disconnect just deals with the port locking and then calls tipc_disconnect_port which does all the work. If we rename as follows: tipc_disconnect_port --> __tipc_disconnect then we will be following typical linux convention, where: __tipc_disconnect: "raw" function that does all the work. tipc_disconnect: wrapper that deals with locking and then calls the real core __tipc_disconnect function With this, the difference is immediately evident, and locking violations are more apt to be spotted by chance while working on, or even just while reading the code. On the connect side of things, we currently only have the single "tipc_connect2port" function. It does both the locking at enter/exit, and the core of the work. Pending changes will make it desireable to have the connect be a two part locking wrapper + worker function, just like the disconnect is already. Here, we make the connect look just like the updated disconnect case, for the above reason, and for consistency. In the process, we also get rid of the "2port" suffix that was on the original name, since it adds no descriptive value. On close examination, one might notice that the above connect changes implicitly move the call to tipc_link_get_max_pkt() to be within the scope of tipc_port_lock() protected region; when it was not previously. We don't see any issues with this, and it is in keeping with __tipc_connect doing the work and tipc_connect just handling the locking. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-30 02:48:40 +08:00
res = __tipc_disconnect(p_ptr);
tipc_port_unlock(p_ptr);
return res;
}
/*
* tipc_shutdown(): Send a SHUTDOWN msg to peer and disconnect
*/
int tipc_shutdown(u32 ref)
{
struct tipc_port *p_ptr;
struct sk_buff *buf = NULL;
p_ptr = tipc_port_lock(ref);
if (!p_ptr)
return -EINVAL;
buf = port_build_peer_abort_msg(p_ptr, TIPC_CONN_SHUTDOWN);
tipc_port_unlock(p_ptr);
tipc_net_route_msg(buf);
return tipc_disconnect(ref);
}
/**
* tipc_port_recv_msg - receive message from lower layer and deliver to port user
*/
int tipc_port_recv_msg(struct sk_buff *buf)
{
struct tipc_port *p_ptr;
struct tipc_msg *msg = buf_msg(buf);
u32 destport = msg_destport(msg);
u32 dsz = msg_data_sz(msg);
u32 err;
/* forward unresolved named message */
if (unlikely(!destport)) {
tipc_net_route_msg(buf);
return dsz;
}
/* validate destination & pass to port, otherwise reject message */
p_ptr = tipc_port_lock(destport);
if (likely(p_ptr)) {
err = p_ptr->dispatcher(p_ptr, buf);
tipc_port_unlock(p_ptr);
if (likely(!err))
return dsz;
} else {
err = TIPC_ERR_NO_PORT;
}
return tipc_reject_msg(buf, err);
}
/*
* tipc_port_recv_sections(): Concatenate and deliver sectioned
* message for this node.
*/
static int tipc_port_recv_sections(struct tipc_port *sender, unsigned int num_sect,
struct iovec const *msg_sect,
unsigned int total_len)
{
struct sk_buff *buf;
int res;
res = tipc_msg_build(&sender->phdr, msg_sect, num_sect, total_len,
MAX_MSG_SIZE, !sender->user_port, &buf);
if (likely(buf))
tipc_port_recv_msg(buf);
return res;
}
/**
* tipc_send - send message sections on connection
*/
int tipc_send(u32 ref, unsigned int num_sect, struct iovec const *msg_sect,
unsigned int total_len)
{
struct tipc_port *p_ptr;
u32 destnode;
int res;
p_ptr = tipc_port_deref(ref);
if (!p_ptr || !p_ptr->connected)
return -EINVAL;
p_ptr->congested = 1;
if (!tipc_port_congested(p_ptr)) {
destnode = port_peernode(p_ptr);
if (likely(!in_own_node(destnode)))
res = tipc_link_send_sections_fast(p_ptr, msg_sect, num_sect,
total_len, destnode);
else
res = tipc_port_recv_sections(p_ptr, num_sect, msg_sect,
total_len);
if (likely(res != -ELINKCONG)) {
p_ptr->congested = 0;
if (res > 0)
p_ptr->sent++;
return res;
}
}
if (port_unreliable(p_ptr)) {
p_ptr->congested = 0;
return total_len;
}
return -ELINKCONG;
}
/**
* tipc_send2name - send message sections to port name
*/
int tipc_send2name(u32 ref, struct tipc_name const *name, unsigned int domain,
unsigned int num_sect, struct iovec const *msg_sect,
unsigned int total_len)
{
struct tipc_port *p_ptr;
struct tipc_msg *msg;
u32 destnode = domain;
u32 destport;
int res;
p_ptr = tipc_port_deref(ref);
if (!p_ptr || p_ptr->connected)
return -EINVAL;
msg = &p_ptr->phdr;
msg_set_type(msg, TIPC_NAMED_MSG);
msg_set_hdr_sz(msg, NAMED_H_SIZE);
msg_set_nametype(msg, name->type);
msg_set_nameinst(msg, name->instance);
msg_set_lookup_scope(msg, tipc_addr_scope(domain));
destport = tipc_nametbl_translate(name->type, name->instance, &destnode);
msg_set_destnode(msg, destnode);
msg_set_destport(msg, destport);
if (likely(destport || destnode)) {
if (likely(in_own_node(destnode)))
res = tipc_port_recv_sections(p_ptr, num_sect,
msg_sect, total_len);
else if (tipc_own_addr)
res = tipc_link_send_sections_fast(p_ptr, msg_sect,
num_sect, total_len,
destnode);
else
res = tipc_port_reject_sections(p_ptr, msg, msg_sect,
num_sect, total_len,
TIPC_ERR_NO_NODE);
if (likely(res != -ELINKCONG)) {
if (res > 0)
p_ptr->sent++;
return res;
}
if (port_unreliable(p_ptr)) {
return total_len;
}
return -ELINKCONG;
}
return tipc_port_reject_sections(p_ptr, msg, msg_sect, num_sect,
total_len, TIPC_ERR_NO_NAME);
}
/**
* tipc_send2port - send message sections to port identity
*/
int tipc_send2port(u32 ref, struct tipc_portid const *dest,
unsigned int num_sect, struct iovec const *msg_sect,
unsigned int total_len)
{
struct tipc_port *p_ptr;
struct tipc_msg *msg;
int res;
p_ptr = tipc_port_deref(ref);
if (!p_ptr || p_ptr->connected)
return -EINVAL;
msg = &p_ptr->phdr;
msg_set_type(msg, TIPC_DIRECT_MSG);
msg_set_lookup_scope(msg, 0);
msg_set_destnode(msg, dest->node);
msg_set_destport(msg, dest->ref);
msg_set_hdr_sz(msg, BASIC_H_SIZE);
if (in_own_node(dest->node))
res = tipc_port_recv_sections(p_ptr, num_sect, msg_sect,
total_len);
else if (tipc_own_addr)
res = tipc_link_send_sections_fast(p_ptr, msg_sect, num_sect,
total_len, dest->node);
else
res = tipc_port_reject_sections(p_ptr, msg, msg_sect, num_sect,
total_len, TIPC_ERR_NO_NODE);
if (likely(res != -ELINKCONG)) {
if (res > 0)
p_ptr->sent++;
return res;
}
if (port_unreliable(p_ptr)) {
return total_len;
}
return -ELINKCONG;
}
/**
* tipc_send_buf2port - send message buffer to port identity
*/
int tipc_send_buf2port(u32 ref, struct tipc_portid const *dest,
struct sk_buff *buf, unsigned int dsz)
{
struct tipc_port *p_ptr;
struct tipc_msg *msg;
int res;
p_ptr = (struct tipc_port *)tipc_ref_deref(ref);
if (!p_ptr || p_ptr->connected)
return -EINVAL;
msg = &p_ptr->phdr;
msg_set_type(msg, TIPC_DIRECT_MSG);
msg_set_destnode(msg, dest->node);
msg_set_destport(msg, dest->ref);
msg_set_hdr_sz(msg, BASIC_H_SIZE);
msg_set_size(msg, BASIC_H_SIZE + dsz);
if (skb_cow(buf, BASIC_H_SIZE))
return -ENOMEM;
skb_push(buf, BASIC_H_SIZE);
skb_copy_to_linear_data(buf, msg, BASIC_H_SIZE);
if (in_own_node(dest->node))
res = tipc_port_recv_msg(buf);
else
res = tipc_send_buf_fast(buf, dest->node);
if (likely(res != -ELINKCONG)) {
if (res > 0)
p_ptr->sent++;
return res;
}
if (port_unreliable(p_ptr))
return dsz;
return -ELINKCONG;
}