linux/drivers/mmc/host/omap_hsmmc.c

2393 lines
59 KiB
C
Raw Normal View History

/*
* drivers/mmc/host/omap_hsmmc.c
*
* Driver for OMAP2430/3430 MMC controller.
*
* Copyright (C) 2007 Texas Instruments.
*
* Authors:
* Syed Mohammed Khasim <x0khasim@ti.com>
* Madhusudhan <madhu.cr@ti.com>
* Mohit Jalori <mjalori@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/debugfs.h>
#include <linux/dmaengine.h>
#include <linux/seq_file.h>
#include <linux/sizes.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/of.h>
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
#include <linux/omap-dmaengine.h>
#include <linux/mmc/host.h>
#include <linux/mmc/core.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/pm_wakeirq.h>
#include <linux/platform_data/hsmmc-omap.h>
/* OMAP HSMMC Host Controller Registers */
#define OMAP_HSMMC_SYSSTATUS 0x0014
#define OMAP_HSMMC_CON 0x002C
#define OMAP_HSMMC_SDMASA 0x0100
#define OMAP_HSMMC_BLK 0x0104
#define OMAP_HSMMC_ARG 0x0108
#define OMAP_HSMMC_CMD 0x010C
#define OMAP_HSMMC_RSP10 0x0110
#define OMAP_HSMMC_RSP32 0x0114
#define OMAP_HSMMC_RSP54 0x0118
#define OMAP_HSMMC_RSP76 0x011C
#define OMAP_HSMMC_DATA 0x0120
#define OMAP_HSMMC_PSTATE 0x0124
#define OMAP_HSMMC_HCTL 0x0128
#define OMAP_HSMMC_SYSCTL 0x012C
#define OMAP_HSMMC_STAT 0x0130
#define OMAP_HSMMC_IE 0x0134
#define OMAP_HSMMC_ISE 0x0138
#define OMAP_HSMMC_AC12 0x013C
#define OMAP_HSMMC_CAPA 0x0140
#define VS18 (1 << 26)
#define VS30 (1 << 25)
#define HSS (1 << 21)
#define SDVS18 (0x5 << 9)
#define SDVS30 (0x6 << 9)
#define SDVS33 (0x7 << 9)
#define SDVS_MASK 0x00000E00
#define SDVSCLR 0xFFFFF1FF
#define SDVSDET 0x00000400
#define AUTOIDLE 0x1
#define SDBP (1 << 8)
#define DTO 0xe
#define ICE 0x1
#define ICS 0x2
#define CEN (1 << 2)
#define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
#define CLKD_MASK 0x0000FFC0
#define CLKD_SHIFT 6
#define DTO_MASK 0x000F0000
#define DTO_SHIFT 16
#define INIT_STREAM (1 << 1)
#define ACEN_ACMD23 (2 << 2)
#define DP_SELECT (1 << 21)
#define DDIR (1 << 4)
#define DMAE 0x1
#define MSBS (1 << 5)
#define BCE (1 << 1)
#define FOUR_BIT (1 << 1)
#define HSPE (1 << 2)
#define IWE (1 << 24)
#define DDR (1 << 19)
#define CLKEXTFREE (1 << 16)
#define CTPL (1 << 11)
#define DW8 (1 << 5)
#define OD 0x1
#define STAT_CLEAR 0xFFFFFFFF
#define INIT_STREAM_CMD 0x00000000
#define DUAL_VOLT_OCR_BIT 7
#define SRC (1 << 25)
#define SRD (1 << 26)
#define SOFTRESET (1 << 1)
/* PSTATE */
#define DLEV_DAT(x) (1 << (20 + (x)))
/* Interrupt masks for IE and ISE register */
#define CC_EN (1 << 0)
#define TC_EN (1 << 1)
#define BWR_EN (1 << 4)
#define BRR_EN (1 << 5)
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
#define CIRQ_EN (1 << 8)
#define ERR_EN (1 << 15)
#define CTO_EN (1 << 16)
#define CCRC_EN (1 << 17)
#define CEB_EN (1 << 18)
#define CIE_EN (1 << 19)
#define DTO_EN (1 << 20)
#define DCRC_EN (1 << 21)
#define DEB_EN (1 << 22)
#define ACE_EN (1 << 24)
#define CERR_EN (1 << 28)
#define BADA_EN (1 << 29)
#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
BRR_EN | BWR_EN | TC_EN | CC_EN)
#define CNI (1 << 7)
#define ACIE (1 << 4)
#define ACEB (1 << 3)
#define ACCE (1 << 2)
#define ACTO (1 << 1)
#define ACNE (1 << 0)
#define MMC_AUTOSUSPEND_DELAY 100
#define MMC_TIMEOUT_MS 20 /* 20 mSec */
#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
#define OMAP_MMC_MIN_CLOCK 400000
#define OMAP_MMC_MAX_CLOCK 52000000
#define DRIVER_NAME "omap_hsmmc"
#define VDD_1V8 1800000 /* 180000 uV */
#define VDD_3V0 3000000 /* 300000 uV */
#define VDD_165_195 (ffs(MMC_VDD_165_195) - 1)
/*
* One controller can have multiple slots, like on some omap boards using
* omap.c controller driver. Luckily this is not currently done on any known
* omap_hsmmc.c device.
*/
#define mmc_pdata(host) host->pdata
/*
* MMC Host controller read/write API's
*/
#define OMAP_HSMMC_READ(base, reg) \
__raw_readl((base) + OMAP_HSMMC_##reg)
#define OMAP_HSMMC_WRITE(base, reg, val) \
__raw_writel((val), (base) + OMAP_HSMMC_##reg)
struct omap_hsmmc_next {
unsigned int dma_len;
s32 cookie;
};
struct omap_hsmmc_host {
struct device *dev;
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
struct clk *fclk;
struct clk *dbclk;
struct regulator *pbias;
bool pbias_enabled;
void __iomem *base;
int vqmmc_enabled;
resource_size_t mapbase;
spinlock_t irq_lock; /* Prevent races with irq handler */
unsigned int dma_len;
unsigned int dma_sg_idx;
unsigned char bus_mode;
unsigned char power_mode;
int suspended;
u32 con;
u32 hctl;
u32 sysctl;
u32 capa;
int irq;
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
int wake_irq;
int use_dma, dma_ch;
struct dma_chan *tx_chan;
struct dma_chan *rx_chan;
int response_busy;
int context_loss;
int protect_card;
int reqs_blocked;
int req_in_progress;
unsigned long clk_rate;
unsigned int flags;
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
#define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
#define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
struct omap_hsmmc_next next_data;
struct omap_hsmmc_platform_data *pdata;
/* return MMC cover switch state, can be NULL if not supported.
*
* possible return values:
* 0 - closed
* 1 - open
*/
int (*get_cover_state)(struct device *dev);
int (*card_detect)(struct device *dev);
};
struct omap_mmc_of_data {
u32 reg_offset;
u8 controller_flags;
};
static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
static int omap_hsmmc_card_detect(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
return mmc_gpio_get_cd(host->mmc);
}
static int omap_hsmmc_get_cover_state(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
return mmc_gpio_get_cd(host->mmc);
}
static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
{
int ret;
struct omap_hsmmc_host *host = mmc_priv(mmc);
struct mmc_ios *ios = &mmc->ios;
if (mmc->supply.vmmc) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
if (ret)
return ret;
}
/* Enable interface voltage rail, if needed */
if (mmc->supply.vqmmc && !host->vqmmc_enabled) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret) {
dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
goto err_vqmmc;
}
host->vqmmc_enabled = 1;
}
return 0;
err_vqmmc:
if (mmc->supply.vmmc)
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
return ret;
}
static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
{
int ret;
int status;
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (mmc->supply.vqmmc && host->vqmmc_enabled) {
ret = regulator_disable(mmc->supply.vqmmc);
if (ret) {
dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
return ret;
}
host->vqmmc_enabled = 0;
}
if (mmc->supply.vmmc) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (ret)
goto err_set_ocr;
}
return 0;
err_set_ocr:
if (mmc->supply.vqmmc) {
status = regulator_enable(mmc->supply.vqmmc);
if (status)
dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
}
return ret;
}
static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on,
int vdd)
{
int ret;
if (!host->pbias)
return 0;
if (power_on) {
if (vdd <= VDD_165_195)
ret = regulator_set_voltage(host->pbias, VDD_1V8,
VDD_1V8);
else
ret = regulator_set_voltage(host->pbias, VDD_3V0,
VDD_3V0);
if (ret < 0) {
dev_err(host->dev, "pbias set voltage fail\n");
return ret;
}
if (host->pbias_enabled == 0) {
ret = regulator_enable(host->pbias);
if (ret) {
dev_err(host->dev, "pbias reg enable fail\n");
return ret;
}
host->pbias_enabled = 1;
}
} else {
if (host->pbias_enabled == 1) {
ret = regulator_disable(host->pbias);
if (ret) {
dev_err(host->dev, "pbias reg disable fail\n");
return ret;
}
host->pbias_enabled = 0;
}
}
return 0;
}
static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on,
int vdd)
{
struct mmc_host *mmc = host->mmc;
int ret = 0;
if (mmc_pdata(host)->set_power)
return mmc_pdata(host)->set_power(host->dev, power_on, vdd);
/*
* If we don't see a Vcc regulator, assume it's a fixed
* voltage always-on regulator.
*/
if (!mmc->supply.vmmc)
return 0;
if (mmc_pdata(host)->before_set_reg)
mmc_pdata(host)->before_set_reg(host->dev, power_on, vdd);
ret = omap_hsmmc_set_pbias(host, false, 0);
if (ret)
return ret;
/*
* Assume Vcc regulator is used only to power the card ... OMAP
* VDDS is used to power the pins, optionally with a transceiver to
* support cards using voltages other than VDDS (1.8V nominal). When a
* transceiver is used, DAT3..7 are muxed as transceiver control pins.
*
* In some cases this regulator won't support enable/disable;
* e.g. it's a fixed rail for a WLAN chip.
*
* In other cases vcc_aux switches interface power. Example, for
* eMMC cards it represents VccQ. Sometimes transceivers or SDIO
* chips/cards need an interface voltage rail too.
*/
if (power_on) {
ret = omap_hsmmc_enable_supply(mmc);
if (ret)
return ret;
ret = omap_hsmmc_set_pbias(host, true, vdd);
if (ret)
goto err_set_voltage;
} else {
ret = omap_hsmmc_disable_supply(mmc);
if (ret)
return ret;
}
if (mmc_pdata(host)->after_set_reg)
mmc_pdata(host)->after_set_reg(host->dev, power_on, vdd);
return 0;
err_set_voltage:
omap_hsmmc_disable_supply(mmc);
return ret;
}
static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
{
int ret;
if (!reg)
return 0;
if (regulator_is_enabled(reg)) {
ret = regulator_enable(reg);
if (ret)
return ret;
ret = regulator_disable(reg);
if (ret)
return ret;
}
return 0;
}
static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret;
/*
* disable regulators enabled during boot and get the usecount
* right so that regulators can be enabled/disabled by checking
* the return value of regulator_is_enabled
*/
ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
if (ret) {
dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
return ret;
}
ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
if (ret) {
dev_err(host->dev,
"fail to disable boot enabled vmmc_aux reg\n");
return ret;
}
ret = omap_hsmmc_disable_boot_regulator(host->pbias);
if (ret) {
dev_err(host->dev,
"failed to disable boot enabled pbias reg\n");
return ret;
}
return 0;
}
static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
{
int ocr_value = 0;
int ret;
struct mmc_host *mmc = host->mmc;
if (mmc_pdata(host)->set_power)
return 0;
mmc->supply.vmmc = devm_regulator_get_optional(host->dev, "vmmc");
if (IS_ERR(mmc->supply.vmmc)) {
ret = PTR_ERR(mmc->supply.vmmc);
if ((ret != -ENODEV) && host->dev->of_node)
return ret;
dev_dbg(host->dev, "unable to get vmmc regulator %ld\n",
PTR_ERR(mmc->supply.vmmc));
mmc->supply.vmmc = NULL;
} else {
ocr_value = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
if (ocr_value > 0)
mmc_pdata(host)->ocr_mask = ocr_value;
}
/* Allow an aux regulator */
mmc->supply.vqmmc = devm_regulator_get_optional(host->dev, "vmmc_aux");
if (IS_ERR(mmc->supply.vqmmc)) {
ret = PTR_ERR(mmc->supply.vqmmc);
if ((ret != -ENODEV) && host->dev->of_node)
return ret;
dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
PTR_ERR(mmc->supply.vqmmc));
mmc->supply.vqmmc = NULL;
}
host->pbias = devm_regulator_get_optional(host->dev, "pbias");
if (IS_ERR(host->pbias)) {
ret = PTR_ERR(host->pbias);
if ((ret != -ENODEV) && host->dev->of_node) {
dev_err(host->dev,
"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
return ret;
}
dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
PTR_ERR(host->pbias));
host->pbias = NULL;
}
/* For eMMC do not power off when not in sleep state */
if (mmc_pdata(host)->no_regulator_off_init)
return 0;
ret = omap_hsmmc_disable_boot_regulators(host);
if (ret)
return ret;
return 0;
}
static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
struct omap_hsmmc_host *host,
struct omap_hsmmc_platform_data *pdata)
{
int ret;
if (gpio_is_valid(pdata->gpio_cod)) {
ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
if (ret)
return ret;
host->get_cover_state = omap_hsmmc_get_cover_state;
mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
} else if (gpio_is_valid(pdata->gpio_cd)) {
ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
if (ret)
return ret;
host->card_detect = omap_hsmmc_card_detect;
}
if (gpio_is_valid(pdata->gpio_wp)) {
ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
if (ret)
return ret;
}
return 0;
}
/*
* Start clock to the card
*/
static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
{
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
}
/*
* Stop clock to the card
*/
static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
{
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
}
static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
struct mmc_command *cmd)
{
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
u32 irq_mask = INT_EN_MASK;
unsigned long flags;
if (host->use_dma)
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
irq_mask &= ~(BRR_EN | BWR_EN);
/* Disable timeout for erases */
if (cmd->opcode == MMC_ERASE)
irq_mask &= ~DTO_EN;
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
spin_lock_irqsave(&host->irq_lock, flags);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
/* latch pending CIRQ, but don't signal MMC core */
if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
irq_mask |= CIRQ_EN;
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
spin_unlock_irqrestore(&host->irq_lock, flags);
}
static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
{
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
u32 irq_mask = 0;
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
/* no transfer running but need to keep cirq if enabled */
if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
irq_mask |= CIRQ_EN;
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
spin_unlock_irqrestore(&host->irq_lock, flags);
}
/* Calculate divisor for the given clock frequency */
static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
{
u16 dsor = 0;
if (ios->clock) {
dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
if (dsor > CLKD_MAX)
dsor = CLKD_MAX;
}
return dsor;
}
static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
unsigned long regval;
unsigned long timeout;
unsigned long clkdiv;
dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
omap_hsmmc_stop_clock(host);
regval = OMAP_HSMMC_READ(host->base, SYSCTL);
regval = regval & ~(CLKD_MASK | DTO_MASK);
clkdiv = calc_divisor(host, ios);
regval = regval | (clkdiv << 6) | (DTO << 16);
OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
/* Wait till the ICS bit is set */
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
&& time_before(jiffies, timeout))
cpu_relax();
/*
* Enable High-Speed Support
* Pre-Requisites
* - Controller should support High-Speed-Enable Bit
* - Controller should not be using DDR Mode
* - Controller should advertise that it supports High Speed
* in capabilities register
* - MMC/SD clock coming out of controller > 25MHz
*/
if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
(ios->timing != MMC_TIMING_MMC_DDR52) &&
(ios->timing != MMC_TIMING_UHS_DDR50) &&
((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
regval = OMAP_HSMMC_READ(host->base, HCTL);
if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
regval |= HSPE;
else
regval &= ~HSPE;
OMAP_HSMMC_WRITE(host->base, HCTL, regval);
}
omap_hsmmc_start_clock(host);
}
static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 con;
con = OMAP_HSMMC_READ(host->base, CON);
if (ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_DDR50)
con |= DDR; /* configure in DDR mode */
else
con &= ~DDR;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
break;
case MMC_BUS_WIDTH_4:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
break;
case MMC_BUS_WIDTH_1:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
break;
}
}
static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 con;
con = OMAP_HSMMC_READ(host->base, CON);
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
OMAP_HSMMC_WRITE(host->base, CON, con | OD);
else
OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
}
#ifdef CONFIG_PM
/*
* Restore the MMC host context, if it was lost as result of a
* power state change.
*/
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 hctl, capa;
unsigned long timeout;
if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
host->capa == OMAP_HSMMC_READ(host->base, CAPA))
return 0;
host->context_loss++;
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
if (host->power_mode != MMC_POWER_OFF &&
(1 << ios->vdd) <= MMC_VDD_23_24)
hctl = SDVS18;
else
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
hctl |= IWE;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | hctl);
OMAP_HSMMC_WRITE(host->base, CAPA,
OMAP_HSMMC_READ(host->base, CAPA) | capa);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
&& time_before(jiffies, timeout))
;
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
/* Do not initialize card-specific things if the power is off */
if (host->power_mode == MMC_POWER_OFF)
goto out;
omap_hsmmc_set_bus_width(host);
omap_hsmmc_set_clock(host);
omap_hsmmc_set_bus_mode(host);
out:
dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
host->context_loss);
return 0;
}
/*
* Save the MMC host context (store the number of power state changes so far).
*/
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
{
host->con = OMAP_HSMMC_READ(host->base, CON);
host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
host->capa = OMAP_HSMMC_READ(host->base, CAPA);
}
#else
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
{
return 0;
}
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
{
}
#endif
/*
* Send init stream sequence to card
* before sending IDLE command
*/
static void send_init_stream(struct omap_hsmmc_host *host)
{
int reg = 0;
unsigned long timeout;
if (host->protect_card)
return;
disable_irq(host->irq);
OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((reg != CC_EN) && time_before(jiffies, timeout))
reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_READ(host->base, STAT);
enable_irq(host->irq);
}
static inline
int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
{
int r = 1;
if (host->get_cover_state)
r = host->get_cover_state(host->dev);
return r;
}
static ssize_t
omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct omap_hsmmc_host *host = mmc_priv(mmc);
return sprintf(buf, "%s\n",
omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
}
static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
static ssize_t
omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct omap_hsmmc_host *host = mmc_priv(mmc);
return sprintf(buf, "%s\n", mmc_pdata(host)->name);
}
static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
/*
* Configure the response type and send the cmd.
*/
static void
omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
struct mmc_data *data)
{
int cmdreg = 0, resptype = 0, cmdtype = 0;
dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
host->cmd = cmd;
omap_hsmmc_enable_irq(host, cmd);
host->response_busy = 0;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
resptype = 1;
else if (cmd->flags & MMC_RSP_BUSY) {
resptype = 3;
host->response_busy = 1;
} else
resptype = 2;
}
/*
* Unlike OMAP1 controller, the cmdtype does not seem to be based on
* ac, bc, adtc, bcr. Only commands ending an open ended transfer need
* a val of 0x3, rest 0x0.
*/
if (cmd == host->mrq->stop)
cmdtype = 0x3;
cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
host->mrq->sbc) {
cmdreg |= ACEN_ACMD23;
OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
}
if (data) {
cmdreg |= DP_SELECT | MSBS | BCE;
if (data->flags & MMC_DATA_READ)
cmdreg |= DDIR;
else
cmdreg &= ~(DDIR);
}
if (host->use_dma)
cmdreg |= DMAE;
host->req_in_progress = 1;
OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
}
static int
omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
{
if (data->flags & MMC_DATA_WRITE)
return DMA_TO_DEVICE;
else
return DMA_FROM_DEVICE;
}
static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
struct mmc_data *data)
{
return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
}
static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
{
int dma_ch;
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
host->req_in_progress = 0;
dma_ch = host->dma_ch;
spin_unlock_irqrestore(&host->irq_lock, flags);
omap_hsmmc_disable_irq(host);
/* Do not complete the request if DMA is still in progress */
if (mrq->data && host->use_dma && dma_ch != -1)
return;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
/*
* Notify the transfer complete to MMC core
*/
static void
omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
{
if (!data) {
struct mmc_request *mrq = host->mrq;
/* TC before CC from CMD6 - don't know why, but it happens */
if (host->cmd && host->cmd->opcode == 6 &&
host->response_busy) {
host->response_busy = 0;
return;
}
omap_hsmmc_request_done(host, mrq);
return;
}
host->data = NULL;
if (!data->error)
data->bytes_xfered += data->blocks * (data->blksz);
else
data->bytes_xfered = 0;
if (data->stop && (data->error || !host->mrq->sbc))
omap_hsmmc_start_command(host, data->stop, NULL);
else
omap_hsmmc_request_done(host, data->mrq);
}
/*
* Notify the core about command completion
*/
static void
omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
{
if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
!host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
host->cmd = NULL;
omap_hsmmc_start_dma_transfer(host);
omap_hsmmc_start_command(host, host->mrq->cmd,
host->mrq->data);
return;
}
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
/* response type 2 */
cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
} else {
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
}
}
if ((host->data == NULL && !host->response_busy) || cmd->error)
omap_hsmmc_request_done(host, host->mrq);
}
/*
* DMA clean up for command errors
*/
static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
{
int dma_ch;
unsigned long flags;
host->data->error = errno;
spin_lock_irqsave(&host->irq_lock, flags);
dma_ch = host->dma_ch;
host->dma_ch = -1;
spin_unlock_irqrestore(&host->irq_lock, flags);
if (host->use_dma && dma_ch != -1) {
struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
dmaengine_terminate_all(chan);
dma_unmap_sg(chan->device->dev,
host->data->sg, host->data->sg_len,
omap_hsmmc_get_dma_dir(host, host->data));
host->data->host_cookie = 0;
}
host->data = NULL;
}
/*
* Readable error output
*/
#ifdef CONFIG_MMC_DEBUG
static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
{
/* --- means reserved bit without definition at documentation */
static const char *omap_hsmmc_status_bits[] = {
"CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
"CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
};
char res[256];
char *buf = res;
int len, i;
len = sprintf(buf, "MMC IRQ 0x%x :", status);
buf += len;
for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
if (status & (1 << i)) {
len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
buf += len;
}
dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
}
#else
static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
u32 status)
{
}
#endif /* CONFIG_MMC_DEBUG */
/*
* MMC controller internal state machines reset
*
* Used to reset command or data internal state machines, using respectively
* SRC or SRD bit of SYSCTL register
* Can be called from interrupt context
*/
static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
unsigned long bit)
{
unsigned long i = 0;
unsigned long limit = MMC_TIMEOUT_US;
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
/*
* OMAP4 ES2 and greater has an updated reset logic.
* Monitor a 0->1 transition first
*/
if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
&& (i++ < limit))
udelay(1);
}
i = 0;
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
(i++ < limit))
udelay(1);
if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
dev_err(mmc_dev(host->mmc),
"Timeout waiting on controller reset in %s\n",
__func__);
}
static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
int err, int end_cmd)
{
if (end_cmd) {
omap_hsmmc_reset_controller_fsm(host, SRC);
if (host->cmd)
host->cmd->error = err;
}
if (host->data) {
omap_hsmmc_reset_controller_fsm(host, SRD);
omap_hsmmc_dma_cleanup(host, err);
} else if (host->mrq && host->mrq->cmd)
host->mrq->cmd->error = err;
}
static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
{
struct mmc_data *data;
int end_cmd = 0, end_trans = 0;
int error = 0;
data = host->data;
dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
if (status & ERR_EN) {
omap_hsmmc_dbg_report_irq(host, status);
if (status & (CTO_EN | CCRC_EN))
end_cmd = 1;
if (host->data || host->response_busy) {
end_trans = !end_cmd;
host->response_busy = 0;
}
if (status & (CTO_EN | DTO_EN))
hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
BADA_EN))
hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
if (status & ACE_EN) {
u32 ac12;
ac12 = OMAP_HSMMC_READ(host->base, AC12);
if (!(ac12 & ACNE) && host->mrq->sbc) {
end_cmd = 1;
if (ac12 & ACTO)
error = -ETIMEDOUT;
else if (ac12 & (ACCE | ACEB | ACIE))
error = -EILSEQ;
host->mrq->sbc->error = error;
hsmmc_command_incomplete(host, error, end_cmd);
}
dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
}
}
OMAP_HSMMC_WRITE(host->base, STAT, status);
if (end_cmd || ((status & CC_EN) && host->cmd))
omap_hsmmc_cmd_done(host, host->cmd);
if ((end_trans || (status & TC_EN)) && host->mrq)
omap_hsmmc_xfer_done(host, data);
}
/*
* MMC controller IRQ handler
*/
static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
{
struct omap_hsmmc_host *host = dev_id;
int status;
status = OMAP_HSMMC_READ(host->base, STAT);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
while (status & (INT_EN_MASK | CIRQ_EN)) {
if (host->req_in_progress)
omap_hsmmc_do_irq(host, status);
if (status & CIRQ_EN)
mmc_signal_sdio_irq(host->mmc);
/* Flush posted write */
status = OMAP_HSMMC_READ(host->base, STAT);
}
return IRQ_HANDLED;
}
static void set_sd_bus_power(struct omap_hsmmc_host *host)
{
unsigned long i;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
for (i = 0; i < loops_per_jiffy; i++) {
if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
break;
cpu_relax();
}
}
/*
* Switch MMC interface voltage ... only relevant for MMC1.
*
* MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
* The MMC2 transceiver controls are used instead of DAT4..DAT7.
* Some chips, like eMMC ones, use internal transceivers.
*/
static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
{
u32 reg_val = 0;
int ret;
/* Disable the clocks */
if (host->dbclk)
clk_disable_unprepare(host->dbclk);
/* Turn the power off */
ret = omap_hsmmc_set_power(host, 0, 0);
/* Turn the power ON with given VDD 1.8 or 3.0v */
if (!ret)
ret = omap_hsmmc_set_power(host, 1, vdd);
if (host->dbclk)
clk_prepare_enable(host->dbclk);
if (ret != 0)
goto err;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
reg_val = OMAP_HSMMC_READ(host->base, HCTL);
/*
* If a MMC dual voltage card is detected, the set_ios fn calls
* this fn with VDD bit set for 1.8V. Upon card removal from the
* slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
*
* Cope with a bit of slop in the range ... per data sheets:
* - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
* but recommended values are 1.71V to 1.89V
* - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
* but recommended values are 2.7V to 3.3V
*
* Board setup code shouldn't permit anything very out-of-range.
* TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
* middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
*/
if ((1 << vdd) <= MMC_VDD_23_24)
reg_val |= SDVS18;
else
reg_val |= SDVS30;
OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
set_sd_bus_power(host);
return 0;
err:
dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
return ret;
}
/* Protect the card while the cover is open */
static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
{
if (!host->get_cover_state)
return;
host->reqs_blocked = 0;
if (host->get_cover_state(host->dev)) {
if (host->protect_card) {
dev_info(host->dev, "%s: cover is closed, "
"card is now accessible\n",
mmc_hostname(host->mmc));
host->protect_card = 0;
}
} else {
if (!host->protect_card) {
dev_info(host->dev, "%s: cover is open, "
"card is now inaccessible\n",
mmc_hostname(host->mmc));
host->protect_card = 1;
}
}
}
/*
* irq handler when (cell-phone) cover is mounted/removed
*/
static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
{
struct omap_hsmmc_host *host = dev_id;
sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
omap_hsmmc_protect_card(host);
mmc_detect_change(host->mmc, (HZ * 200) / 1000);
return IRQ_HANDLED;
}
static void omap_hsmmc_dma_callback(void *param)
{
struct omap_hsmmc_host *host = param;
struct dma_chan *chan;
struct mmc_data *data;
int req_in_progress;
spin_lock_irq(&host->irq_lock);
if (host->dma_ch < 0) {
spin_unlock_irq(&host->irq_lock);
return;
}
data = host->mrq->data;
chan = omap_hsmmc_get_dma_chan(host, data);
if (!data->host_cookie)
dma_unmap_sg(chan->device->dev,
data->sg, data->sg_len,
omap_hsmmc_get_dma_dir(host, data));
req_in_progress = host->req_in_progress;
host->dma_ch = -1;
spin_unlock_irq(&host->irq_lock);
/* If DMA has finished after TC, complete the request */
if (!req_in_progress) {
struct mmc_request *mrq = host->mrq;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
}
static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
struct mmc_data *data,
struct omap_hsmmc_next *next,
struct dma_chan *chan)
{
int dma_len;
if (!next && data->host_cookie &&
data->host_cookie != host->next_data.cookie) {
dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
" host->next_data.cookie %d\n",
__func__, data->host_cookie, host->next_data.cookie);
data->host_cookie = 0;
}
/* Check if next job is already prepared */
if (next || data->host_cookie != host->next_data.cookie) {
dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
omap_hsmmc_get_dma_dir(host, data));
} else {
dma_len = host->next_data.dma_len;
host->next_data.dma_len = 0;
}
if (dma_len == 0)
return -EINVAL;
if (next) {
next->dma_len = dma_len;
data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
} else
host->dma_len = dma_len;
return 0;
}
/*
* Routine to configure and start DMA for the MMC card
*/
static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
struct mmc_request *req)
{
struct dma_slave_config cfg;
struct dma_async_tx_descriptor *tx;
int ret = 0, i;
struct mmc_data *data = req->data;
struct dma_chan *chan;
/* Sanity check: all the SG entries must be aligned by block size. */
for (i = 0; i < data->sg_len; i++) {
struct scatterlist *sgl;
sgl = data->sg + i;
if (sgl->length % data->blksz)
return -EINVAL;
}
if ((data->blksz % 4) != 0)
/* REVISIT: The MMC buffer increments only when MSB is written.
* Return error for blksz which is non multiple of four.
*/
return -EINVAL;
BUG_ON(host->dma_ch != -1);
chan = omap_hsmmc_get_dma_chan(host, data);
cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = data->blksz / 4;
cfg.dst_maxburst = data->blksz / 4;
ret = dmaengine_slave_config(chan, &cfg);
if (ret)
return ret;
ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
if (ret)
return ret;
tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx) {
dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
/* FIXME: cleanup */
return -1;
}
tx->callback = omap_hsmmc_dma_callback;
tx->callback_param = host;
/* Does not fail */
dmaengine_submit(tx);
host->dma_ch = 1;
return 0;
}
static void set_data_timeout(struct omap_hsmmc_host *host,
unsigned int timeout_ns,
unsigned int timeout_clks)
{
unsigned int timeout, cycle_ns;
uint32_t reg, clkd, dto = 0;
reg = OMAP_HSMMC_READ(host->base, SYSCTL);
clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
if (clkd == 0)
clkd = 1;
cycle_ns = 1000000000 / (host->clk_rate / clkd);
timeout = timeout_ns / cycle_ns;
timeout += timeout_clks;
if (timeout) {
while ((timeout & 0x80000000) == 0) {
dto += 1;
timeout <<= 1;
}
dto = 31 - dto;
timeout <<= 1;
if (timeout && dto)
dto += 1;
if (dto >= 13)
dto -= 13;
else
dto = 0;
if (dto > 14)
dto = 14;
}
reg &= ~DTO_MASK;
reg |= dto << DTO_SHIFT;
OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
}
static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
{
struct mmc_request *req = host->mrq;
struct dma_chan *chan;
if (!req->data)
return;
OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
| (req->data->blocks << 16));
set_data_timeout(host, req->data->timeout_ns,
req->data->timeout_clks);
chan = omap_hsmmc_get_dma_chan(host, req->data);
dma_async_issue_pending(chan);
}
/*
* Configure block length for MMC/SD cards and initiate the transfer.
*/
static int
omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
{
int ret;
host->data = req->data;
if (req->data == NULL) {
OMAP_HSMMC_WRITE(host->base, BLK, 0);
/*
* Set an arbitrary 100ms data timeout for commands with
* busy signal.
*/
if (req->cmd->flags & MMC_RSP_BUSY)
set_data_timeout(host, 100000000U, 0);
return 0;
}
if (host->use_dma) {
ret = omap_hsmmc_setup_dma_transfer(host, req);
if (ret != 0) {
dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
return ret;
}
}
return 0;
}
static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (host->use_dma && data->host_cookie) {
struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
omap_hsmmc_get_dma_dir(host, data));
data->host_cookie = 0;
}
}
static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
bool is_first_req)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (mrq->data->host_cookie) {
mrq->data->host_cookie = 0;
return ;
}
if (host->use_dma) {
struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
&host->next_data, c))
mrq->data->host_cookie = 0;
}
}
/*
* Request function. for read/write operation
*/
static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
int err;
BUG_ON(host->req_in_progress);
BUG_ON(host->dma_ch != -1);
if (host->protect_card) {
if (host->reqs_blocked < 3) {
/*
* Ensure the controller is left in a consistent
* state by resetting the command and data state
* machines.
*/
omap_hsmmc_reset_controller_fsm(host, SRD);
omap_hsmmc_reset_controller_fsm(host, SRC);
host->reqs_blocked += 1;
}
req->cmd->error = -EBADF;
if (req->data)
req->data->error = -EBADF;
req->cmd->retries = 0;
mmc_request_done(mmc, req);
return;
} else if (host->reqs_blocked)
host->reqs_blocked = 0;
WARN_ON(host->mrq != NULL);
host->mrq = req;
host->clk_rate = clk_get_rate(host->fclk);
err = omap_hsmmc_prepare_data(host, req);
if (err) {
req->cmd->error = err;
if (req->data)
req->data->error = err;
host->mrq = NULL;
mmc_request_done(mmc, req);
return;
}
if (req->sbc && !(host->flags & AUTO_CMD23)) {
omap_hsmmc_start_command(host, req->sbc, NULL);
return;
}
omap_hsmmc_start_dma_transfer(host);
omap_hsmmc_start_command(host, req->cmd, req->data);
}
/* Routine to configure clock values. Exposed API to core */
static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
int do_send_init_stream = 0;
if (ios->power_mode != host->power_mode) {
switch (ios->power_mode) {
case MMC_POWER_OFF:
omap_hsmmc_set_power(host, 0, 0);
break;
case MMC_POWER_UP:
omap_hsmmc_set_power(host, 1, ios->vdd);
break;
case MMC_POWER_ON:
do_send_init_stream = 1;
break;
}
host->power_mode = ios->power_mode;
}
/* FIXME: set registers based only on changes to ios */
omap_hsmmc_set_bus_width(host);
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
/* Only MMC1 can interface at 3V without some flavor
* of external transceiver; but they all handle 1.8V.
*/
if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
(ios->vdd == DUAL_VOLT_OCR_BIT)) {
/*
* The mmc_select_voltage fn of the core does
* not seem to set the power_mode to
* MMC_POWER_UP upon recalculating the voltage.
* vdd 1.8v.
*/
if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
dev_dbg(mmc_dev(host->mmc),
"Switch operation failed\n");
}
}
omap_hsmmc_set_clock(host);
if (do_send_init_stream)
send_init_stream(host);
omap_hsmmc_set_bus_mode(host);
}
static int omap_hsmmc_get_cd(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (!host->card_detect)
return -ENOSYS;
return host->card_detect(host->dev);
}
static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (mmc_pdata(host)->init_card)
mmc_pdata(host)->init_card(card);
}
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
u32 irq_mask, con;
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
con = OMAP_HSMMC_READ(host->base, CON);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
irq_mask = OMAP_HSMMC_READ(host->base, ISE);
if (enable) {
host->flags |= HSMMC_SDIO_IRQ_ENABLED;
irq_mask |= CIRQ_EN;
con |= CTPL | CLKEXTFREE;
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
} else {
host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
irq_mask &= ~CIRQ_EN;
con &= ~(CTPL | CLKEXTFREE);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
}
OMAP_HSMMC_WRITE(host->base, CON, con);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
/*
* if enable, piggy back detection on current request
* but always disable immediately
*/
if (!host->req_in_progress || !enable)
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
/* flush posted write */
OMAP_HSMMC_READ(host->base, IE);
spin_unlock_irqrestore(&host->irq_lock, flags);
}
static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
{
int ret;
/*
* For omaps with wake-up path, wakeirq will be irq from pinctrl and
* for other omaps, wakeirq will be from GPIO (dat line remuxed to
* gpio). wakeirq is needed to detect sdio irq in runtime suspend state
* with functional clock disabled.
*/
if (!host->dev->of_node || !host->wake_irq)
return -ENODEV;
ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
goto err;
}
/*
* Some omaps don't have wake-up path from deeper idle states
* and need to remux SDIO DAT1 to GPIO for wake-up from idle.
*/
if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
struct pinctrl *p = devm_pinctrl_get(host->dev);
if (!p) {
ret = -ENODEV;
goto err_free_irq;
}
if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
dev_info(host->dev, "missing default pinctrl state\n");
devm_pinctrl_put(p);
ret = -EINVAL;
goto err_free_irq;
}
if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
dev_info(host->dev, "missing idle pinctrl state\n");
devm_pinctrl_put(p);
ret = -EINVAL;
goto err_free_irq;
}
devm_pinctrl_put(p);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
}
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | IWE);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
return 0;
err_free_irq:
dev_pm_clear_wake_irq(host->dev);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
err:
dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
host->wake_irq = 0;
return ret;
}
static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
{
u32 hctl, capa, value;
/* Only MMC1 supports 3.0V */
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
value = OMAP_HSMMC_READ(host->base, CAPA);
OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
/* Set SD bus power bit */
set_sd_bus_power(host);
}
static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
unsigned int direction, int blk_size)
{
/* This controller can't do multiblock reads due to hw bugs */
if (direction == MMC_DATA_READ)
return 1;
return blk_size;
}
static struct mmc_host_ops omap_hsmmc_ops = {
.post_req = omap_hsmmc_post_req,
.pre_req = omap_hsmmc_pre_req,
.request = omap_hsmmc_request,
.set_ios = omap_hsmmc_set_ios,
.get_cd = omap_hsmmc_get_cd,
.get_ro = mmc_gpio_get_ro,
.init_card = omap_hsmmc_init_card,
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
};
#ifdef CONFIG_DEBUG_FS
static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
{
struct mmc_host *mmc = s->private;
struct omap_hsmmc_host *host = mmc_priv(mmc);
seq_printf(s, "mmc%d:\n", mmc->index);
seq_printf(s, "sdio irq mode\t%s\n",
(mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
if (mmc->caps & MMC_CAP_SDIO_IRQ) {
seq_printf(s, "sdio irq \t%s\n",
(host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
: "disabled");
}
seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
pm_runtime_get_sync(host->dev);
seq_puts(s, "\nregs:\n");
seq_printf(s, "CON:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, CON));
seq_printf(s, "PSTATE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, PSTATE));
seq_printf(s, "HCTL:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, HCTL));
seq_printf(s, "SYSCTL:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, SYSCTL));
seq_printf(s, "IE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, IE));
seq_printf(s, "ISE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, ISE));
seq_printf(s, "CAPA:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, CAPA));
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
}
static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, omap_hsmmc_regs_show, inode->i_private);
}
static const struct file_operations mmc_regs_fops = {
.open = omap_hsmmc_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
{
if (mmc->debugfs_root)
debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
mmc, &mmc_regs_fops);
}
#else
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
{
}
#endif
#ifdef CONFIG_OF
static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
/* See 35xx errata 2.1.1.128 in SPRZ278F */
.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
};
static const struct omap_mmc_of_data omap4_mmc_of_data = {
.reg_offset = 0x100,
};
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
static const struct omap_mmc_of_data am33xx_mmc_of_data = {
.reg_offset = 0x100,
.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
};
static const struct of_device_id omap_mmc_of_match[] = {
{
.compatible = "ti,omap2-hsmmc",
},
{
.compatible = "ti,omap3-pre-es3-hsmmc",
.data = &omap3_pre_es3_mmc_of_data,
},
{
.compatible = "ti,omap3-hsmmc",
},
{
.compatible = "ti,omap4-hsmmc",
.data = &omap4_mmc_of_data,
},
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
{
.compatible = "ti,am33xx-hsmmc",
.data = &am33xx_mmc_of_data,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
{
struct omap_hsmmc_platform_data *pdata;
struct device_node *np = dev->of_node;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM); /* out of memory */
if (of_find_property(np, "ti,dual-volt", NULL))
pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
pdata->gpio_cd = -EINVAL;
pdata->gpio_cod = -EINVAL;
pdata->gpio_wp = -EINVAL;
if (of_find_property(np, "ti,non-removable", NULL)) {
pdata->nonremovable = true;
pdata->no_regulator_off_init = true;
}
if (of_find_property(np, "ti,needs-special-reset", NULL))
pdata->features |= HSMMC_HAS_UPDATED_RESET;
if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
return pdata;
}
#else
static inline struct omap_hsmmc_platform_data
*of_get_hsmmc_pdata(struct device *dev)
{
return ERR_PTR(-EINVAL);
}
#endif
static int omap_hsmmc_probe(struct platform_device *pdev)
{
struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
struct mmc_host *mmc;
struct omap_hsmmc_host *host = NULL;
struct resource *res;
int ret, irq;
const struct of_device_id *match;
dma_cap_mask_t mask;
unsigned tx_req, rx_req;
const struct omap_mmc_of_data *data;
void __iomem *base;
match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
if (match) {
pdata = of_get_hsmmc_pdata(&pdev->dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
if (match->data) {
data = match->data;
pdata->reg_offset = data->reg_offset;
pdata->controller_flags |= data->controller_flags;
}
}
if (pdata == NULL) {
dev_err(&pdev->dev, "Platform Data is missing\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (res == NULL || irq < 0)
return -ENXIO;
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto err;
}
ret = mmc_of_parse(mmc);
if (ret)
goto err1;
host = mmc_priv(mmc);
host->mmc = mmc;
host->pdata = pdata;
host->dev = &pdev->dev;
host->use_dma = 1;
host->dma_ch = -1;
host->irq = irq;
host->mapbase = res->start + pdata->reg_offset;
host->base = base + pdata->reg_offset;
host->power_mode = MMC_POWER_OFF;
host->next_data.cookie = 1;
host->pbias_enabled = 0;
host->vqmmc_enabled = 0;
ret = omap_hsmmc_gpio_init(mmc, host, pdata);
if (ret)
goto err_gpio;
platform_set_drvdata(pdev, host);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
if (pdev->dev.of_node)
host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
mmc->ops = &omap_hsmmc_ops;
mmc->f_min = OMAP_MMC_MIN_CLOCK;
if (pdata->max_freq > 0)
mmc->f_max = pdata->max_freq;
else if (mmc->f_max == 0)
mmc->f_max = OMAP_MMC_MAX_CLOCK;
spin_lock_init(&host->irq_lock);
host->fclk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(host->fclk)) {
ret = PTR_ERR(host->fclk);
host->fclk = NULL;
goto err1;
}
if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
}
device_init_wakeup(&pdev->dev, true);
pm_runtime_enable(host->dev);
pm_runtime_get_sync(host->dev);
pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(host->dev);
omap_hsmmc_context_save(host);
host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
/*
* MMC can still work without debounce clock.
*/
if (IS_ERR(host->dbclk)) {
host->dbclk = NULL;
} else if (clk_prepare_enable(host->dbclk) != 0) {
dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
host->dbclk = NULL;
}
/* Since we do only SG emulation, we can have as many segs
* as we want. */
mmc->max_segs = 1024;
mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
mmc->caps |= mmc_pdata(host)->caps;
if (mmc->caps & MMC_CAP_8_BIT_DATA)
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (mmc_pdata(host)->nonremovable)
mmc->caps |= MMC_CAP_NONREMOVABLE;
mmc->pm_caps |= mmc_pdata(host)->pm_caps;
omap_hsmmc_conf_bus_power(host);
if (!pdev->dev.of_node) {
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
if (!res) {
dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
ret = -ENXIO;
goto err_irq;
}
tx_req = res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
if (!res) {
dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
ret = -ENXIO;
goto err_irq;
}
rx_req = res->start;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->rx_chan =
dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
&rx_req, &pdev->dev, "rx");
if (!host->rx_chan) {
dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel\n");
ret = -ENXIO;
goto err_irq;
}
host->tx_chan =
dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
&tx_req, &pdev->dev, "tx");
if (!host->tx_chan) {
dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel\n");
ret = -ENXIO;
goto err_irq;
}
/* Request IRQ for MMC operations */
ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
mmc_hostname(mmc), host);
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
goto err_irq;
}
ret = omap_hsmmc_reg_get(host);
if (ret)
goto err_irq;
mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
omap_hsmmc_disable_irq(host);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
/*
* For now, only support SDIO interrupt if we have a separate
* wake-up interrupt configured from device tree. This is because
* the wake-up interrupt is needed for idle state and some
* platforms need special quirks. And we don't want to add new
* legacy mux platform init code callbacks any longer as we
* are moving to DT based booting anyways.
*/
ret = omap_hsmmc_configure_wake_irq(host);
if (!ret)
mmc->caps |= MMC_CAP_SDIO_IRQ;
omap_hsmmc_protect_card(host);
mmc_add_host(mmc);
if (mmc_pdata(host)->name != NULL) {
ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
if (ret < 0)
goto err_slot_name;
}
if (host->get_cover_state) {
ret = device_create_file(&mmc->class_dev,
&dev_attr_cover_switch);
if (ret < 0)
goto err_slot_name;
}
omap_hsmmc_debugfs(mmc);
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
err_slot_name:
mmc_remove_host(mmc);
err_irq:
device_init_wakeup(&pdev->dev, false);
if (host->tx_chan)
dma_release_channel(host->tx_chan);
if (host->rx_chan)
dma_release_channel(host->rx_chan);
mmc: omap_hsmmc: Fix PM regression with deferred probe for pm_runtime_reinit Commit 5de85b9d57ab ("PM / runtime: Re-init runtime PM states at probe error and driver unbind") introduced pm_runtime_reinit() that is used to reinitialize PM runtime after -EPROBE_DEFER. This allows shutting down the device after a failed probe. However, for drivers using pm_runtime_use_autosuspend() this can cause a state where suspend callback is never called after -EPROBE_DEFER. On the following device driver probe, hardware state is different from the PM runtime state causing omap_device to produce the following error: omap_device_enable() called from invalid state 1 And with omap_device and omap hardware being picky for PM, this will block any deeper idle states in hardware. The solution is to fix the drivers to follow the PM runtime documentation: 1. For sections of code that needs the device disabled, use pm_runtime_put_sync_suspend() if pm_runtime_set_autosuspend() has been set. 2. For driver exit code, use pm_runtime_dont_use_autosuspend() before pm_runtime_put_sync() if pm_runtime_use_autosuspend() has been set. Fixes: 5de85b9d57ab ("PM / runtime: Re-init runtime PM states at probe error and driver unbind") Cc: linux-mmc@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Nishanth Menon <nm@ti.com> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Tero Kristo <t-kristo@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2016-02-11 07:02:44 +08:00
pm_runtime_dont_use_autosuspend(host->dev);
pm_runtime_put_sync(host->dev);
pm_runtime_disable(host->dev);
if (host->dbclk)
clk_disable_unprepare(host->dbclk);
err1:
err_gpio:
mmc_free_host(mmc);
err:
return ret;
}
static int omap_hsmmc_remove(struct platform_device *pdev)
{
struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
pm_runtime_get_sync(host->dev);
mmc_remove_host(host->mmc);
dma_release_channel(host->tx_chan);
dma_release_channel(host->rx_chan);
mmc: omap_hsmmc: Fix PM regression with deferred probe for pm_runtime_reinit Commit 5de85b9d57ab ("PM / runtime: Re-init runtime PM states at probe error and driver unbind") introduced pm_runtime_reinit() that is used to reinitialize PM runtime after -EPROBE_DEFER. This allows shutting down the device after a failed probe. However, for drivers using pm_runtime_use_autosuspend() this can cause a state where suspend callback is never called after -EPROBE_DEFER. On the following device driver probe, hardware state is different from the PM runtime state causing omap_device to produce the following error: omap_device_enable() called from invalid state 1 And with omap_device and omap hardware being picky for PM, this will block any deeper idle states in hardware. The solution is to fix the drivers to follow the PM runtime documentation: 1. For sections of code that needs the device disabled, use pm_runtime_put_sync_suspend() if pm_runtime_set_autosuspend() has been set. 2. For driver exit code, use pm_runtime_dont_use_autosuspend() before pm_runtime_put_sync() if pm_runtime_use_autosuspend() has been set. Fixes: 5de85b9d57ab ("PM / runtime: Re-init runtime PM states at probe error and driver unbind") Cc: linux-mmc@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Nishanth Menon <nm@ti.com> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Tero Kristo <t-kristo@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2016-02-11 07:02:44 +08:00
pm_runtime_dont_use_autosuspend(host->dev);
pm_runtime_put_sync(host->dev);
pm_runtime_disable(host->dev);
device_init_wakeup(&pdev->dev, false);
if (host->dbclk)
clk_disable_unprepare(host->dbclk);
mmc_free_host(host->mmc);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int omap_hsmmc_suspend(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
if (!host)
return 0;
pm_runtime_get_sync(host->dev);
if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
}
if (host->dbclk)
clk_disable_unprepare(host->dbclk);
pm_runtime_put_sync(host->dev);
return 0;
}
/* Routine to resume the MMC device */
static int omap_hsmmc_resume(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
if (!host)
return 0;
pm_runtime_get_sync(host->dev);
if (host->dbclk)
clk_prepare_enable(host->dbclk);
if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
omap_hsmmc_conf_bus_power(host);
omap_hsmmc_protect_card(host);
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
}
#endif
static int omap_hsmmc_runtime_suspend(struct device *dev)
{
struct omap_hsmmc_host *host;
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
unsigned long flags;
int ret = 0;
host = platform_get_drvdata(to_platform_device(dev));
omap_hsmmc_context_save(host);
dev_dbg(dev, "disabled\n");
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
spin_lock_irqsave(&host->irq_lock, flags);
if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
(host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
/* disable sdio irq handling to prevent race */
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
/*
* dat1 line low, pending sdio irq
* race condition: possible irq handler running on
* multi-core, abort
*/
dev_dbg(dev, "pending sdio irq, abort suspend\n");
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
pm_runtime_mark_last_busy(dev);
ret = -EBUSY;
goto abort;
}
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
pinctrl_pm_select_idle_state(dev);
} else {
pinctrl_pm_select_idle_state(dev);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
}
abort:
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
spin_unlock_irqrestore(&host->irq_lock, flags);
return ret;
}
static int omap_hsmmc_runtime_resume(struct device *dev)
{
struct omap_hsmmc_host *host;
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
unsigned long flags;
host = platform_get_drvdata(to_platform_device(dev));
omap_hsmmc_context_restore(host);
dev_dbg(dev, "enabled\n");
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
spin_lock_irqsave(&host->irq_lock, flags);
if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
(host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
pinctrl_pm_select_default_state(host->dev);
/* irq lost, if pinmux incorrect */
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
} else {
pinctrl_pm_select_default_state(host->dev);
mmc: omap_hsmmc: Enable SDIO interrupt There have been various patches floating around for enabling the SDIO IRQ for hsmmc, but none of them ever got merged. Probably the reason for not merging the SDIO interrupt patches has been the lack of wake-up path for SDIO on some omaps that has also needed remuxing the SDIO DAT1 line to a GPIO making the patches complex. This patch adds the minimal SDIO IRQ support to hsmmc for omaps that do have the wake-up path. For those omaps, the DAT1 line need to have the wake-up enable bit set, and the wake-up interrupt is the same as for the MMC controller. This patch has been tested on am3730 es1.2 with mwifiex connected to MMC3 with mwifiex waking to Ethernet traffic from off-idle mode. Note that for omaps that do not have the SDIO wake-up path, this patch will not work for idle modes and further patches for remuxing DAT1 to GPIO are needed. Based on earlier patches [1][2] by David Vrabel <david.vrabel@csr.com>, Steve Sakoman <steve@sakoman.com> For now, only support SDIO interrupt if we are booted with a separate wake-irq configued via device tree. This is because omaps need the wake-irq for idle states, and some omaps need special quirks. And we don't want to add new legacy mux platform init code callbacks any longer as we are moving to DT based booting anyways. To use it, you need to specify the wake-irq using the interrupts-extended property. [1] http://www.sakoman.com/cgi-bin/gitweb.cgi?p=linux.git;a=commitdiff_plain;h=010810d22f6f49ac03da4ba384969432e0320453 [2] http://comments.gmane.org/gmane.linux.kernel.mmc/20446 Acked-by: Balaji T K <balajitk@ti.com> Signed-off-by: Andreas Fenkart <afenkart@gmail.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2014-05-29 16:28:00 +08:00
}
spin_unlock_irqrestore(&host->irq_lock, flags);
return 0;
}
static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
.runtime_suspend = omap_hsmmc_runtime_suspend,
.runtime_resume = omap_hsmmc_runtime_resume,
};
static struct platform_driver omap_hsmmc_driver = {
.probe = omap_hsmmc_probe,
.remove = omap_hsmmc_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &omap_hsmmc_dev_pm_ops,
.of_match_table = of_match_ptr(omap_mmc_of_match),
},
};
module_platform_driver(omap_hsmmc_driver);
MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Texas Instruments Inc");