linux/net/mac80211/mesh_pathtbl.c

1172 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008, 2009 open80211s Ltd.
* Author: Luis Carlos Cobo <luisca@cozybit.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/etherdevice.h>
#include <linux/list.h>
#include <linux/random.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "mesh.h"
#ifdef CONFIG_MAC80211_VERBOSE_MPATH_DEBUG
#define mpath_dbg(fmt, args...) printk(KERN_DEBUG fmt, ##args)
#else
#define mpath_dbg(fmt, args...) do { (void)(0); } while (0)
#endif
/* There will be initially 2^INIT_PATHS_SIZE_ORDER buckets */
#define INIT_PATHS_SIZE_ORDER 2
/* Keep the mean chain length below this constant */
#define MEAN_CHAIN_LEN 2
#define MPATH_EXPIRED(mpath) ((mpath->flags & MESH_PATH_ACTIVE) && \
time_after(jiffies, mpath->exp_time) && \
!(mpath->flags & MESH_PATH_FIXED))
struct mpath_node {
struct hlist_node list;
struct rcu_head rcu;
/* This indirection allows two different tables to point to the same
* mesh_path structure, useful when resizing
*/
struct mesh_path *mpath;
};
static struct mesh_table __rcu *mesh_paths;
static struct mesh_table __rcu *mpp_paths; /* Store paths for MPP&MAP */
int mesh_paths_generation;
/* This lock will have the grow table function as writer and add / delete nodes
* as readers. When reading the table (i.e. doing lookups) we are well protected
* by RCU
*/
static DEFINE_RWLOCK(pathtbl_resize_lock);
static inline struct mesh_table *resize_dereference_mesh_paths(void)
{
return rcu_dereference_protected(mesh_paths,
lockdep_is_held(&pathtbl_resize_lock));
}
static inline struct mesh_table *resize_dereference_mpp_paths(void)
{
return rcu_dereference_protected(mpp_paths,
lockdep_is_held(&pathtbl_resize_lock));
}
static int mesh_gate_add(struct mesh_table *tbl, struct mesh_path *mpath);
/*
* CAREFUL -- "tbl" must not be an expression,
* in particular not an rcu_dereference(), since
* it's used twice. So it is illegal to do
* for_each_mesh_entry(rcu_dereference(...), ...)
*/
#define for_each_mesh_entry(tbl, p, node, i) \
for (i = 0; i <= tbl->hash_mask; i++) \
hlist_for_each_entry_rcu(node, p, &tbl->hash_buckets[i], list)
static struct mesh_table *mesh_table_alloc(int size_order)
{
int i;
struct mesh_table *newtbl;
newtbl = kmalloc(sizeof(struct mesh_table), GFP_ATOMIC);
if (!newtbl)
return NULL;
newtbl->hash_buckets = kzalloc(sizeof(struct hlist_head) *
(1 << size_order), GFP_ATOMIC);
if (!newtbl->hash_buckets) {
kfree(newtbl);
return NULL;
}
newtbl->hashwlock = kmalloc(sizeof(spinlock_t) *
(1 << size_order), GFP_ATOMIC);
if (!newtbl->hashwlock) {
kfree(newtbl->hash_buckets);
kfree(newtbl);
return NULL;
}
newtbl->size_order = size_order;
newtbl->hash_mask = (1 << size_order) - 1;
atomic_set(&newtbl->entries, 0);
get_random_bytes(&newtbl->hash_rnd,
sizeof(newtbl->hash_rnd));
for (i = 0; i <= newtbl->hash_mask; i++)
spin_lock_init(&newtbl->hashwlock[i]);
spin_lock_init(&newtbl->gates_lock);
return newtbl;
}
static void __mesh_table_free(struct mesh_table *tbl)
{
kfree(tbl->hash_buckets);
kfree(tbl->hashwlock);
kfree(tbl);
}
static void mesh_table_free(struct mesh_table *tbl, bool free_leafs)
{
struct hlist_head *mesh_hash;
struct hlist_node *p, *q;
struct mpath_node *gate;
int i;
mesh_hash = tbl->hash_buckets;
for (i = 0; i <= tbl->hash_mask; i++) {
spin_lock_bh(&tbl->hashwlock[i]);
hlist_for_each_safe(p, q, &mesh_hash[i]) {
tbl->free_node(p, free_leafs);
atomic_dec(&tbl->entries);
}
spin_unlock_bh(&tbl->hashwlock[i]);
}
if (free_leafs) {
spin_lock_bh(&tbl->gates_lock);
hlist_for_each_entry_safe(gate, p, q,
tbl->known_gates, list) {
hlist_del(&gate->list);
kfree(gate);
}
kfree(tbl->known_gates);
spin_unlock_bh(&tbl->gates_lock);
}
__mesh_table_free(tbl);
}
static int mesh_table_grow(struct mesh_table *oldtbl,
struct mesh_table *newtbl)
{
struct hlist_head *oldhash;
struct hlist_node *p, *q;
int i;
if (atomic_read(&oldtbl->entries)
< oldtbl->mean_chain_len * (oldtbl->hash_mask + 1))
return -EAGAIN;
newtbl->free_node = oldtbl->free_node;
newtbl->mean_chain_len = oldtbl->mean_chain_len;
newtbl->copy_node = oldtbl->copy_node;
newtbl->known_gates = oldtbl->known_gates;
atomic_set(&newtbl->entries, atomic_read(&oldtbl->entries));
oldhash = oldtbl->hash_buckets;
for (i = 0; i <= oldtbl->hash_mask; i++)
hlist_for_each(p, &oldhash[i])
if (oldtbl->copy_node(p, newtbl) < 0)
goto errcopy;
return 0;
errcopy:
for (i = 0; i <= newtbl->hash_mask; i++) {
hlist_for_each_safe(p, q, &newtbl->hash_buckets[i])
oldtbl->free_node(p, 0);
}
return -ENOMEM;
}
static u32 mesh_table_hash(u8 *addr, struct ieee80211_sub_if_data *sdata,
struct mesh_table *tbl)
{
/* Use last four bytes of hw addr and interface index as hash index */
return jhash_2words(*(u32 *)(addr+2), sdata->dev->ifindex, tbl->hash_rnd)
& tbl->hash_mask;
}
/**
*
* mesh_path_assign_nexthop - update mesh path next hop
*
* @mpath: mesh path to update
* @sta: next hop to assign
*
* Locking: mpath->state_lock must be held when calling this function
*/
void mesh_path_assign_nexthop(struct mesh_path *mpath, struct sta_info *sta)
{
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
struct sk_buff_head tmpq;
unsigned long flags;
rcu_assign_pointer(mpath->next_hop, sta);
__skb_queue_head_init(&tmpq);
spin_lock_irqsave(&mpath->frame_queue.lock, flags);
while ((skb = __skb_dequeue(&mpath->frame_queue)) != NULL) {
hdr = (struct ieee80211_hdr *) skb->data;
memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN);
__skb_queue_tail(&tmpq, skb);
}
skb_queue_splice(&tmpq, &mpath->frame_queue);
spin_unlock_irqrestore(&mpath->frame_queue.lock, flags);
}
static void prepare_for_gate(struct sk_buff *skb, char *dst_addr,
struct mesh_path *gate_mpath)
{
struct ieee80211_hdr *hdr;
struct ieee80211s_hdr *mshdr;
int mesh_hdrlen, hdrlen;
char *next_hop;
hdr = (struct ieee80211_hdr *) skb->data;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
mshdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
if (!(mshdr->flags & MESH_FLAGS_AE)) {
/* size of the fixed part of the mesh header */
mesh_hdrlen = 6;
/* make room for the two extended addresses */
skb_push(skb, 2 * ETH_ALEN);
memmove(skb->data, hdr, hdrlen + mesh_hdrlen);
hdr = (struct ieee80211_hdr *) skb->data;
/* we preserve the previous mesh header and only add
* the new addreses */
mshdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
mshdr->flags = MESH_FLAGS_AE_A5_A6;
memcpy(mshdr->eaddr1, hdr->addr3, ETH_ALEN);
memcpy(mshdr->eaddr2, hdr->addr4, ETH_ALEN);
}
/* update next hop */
hdr = (struct ieee80211_hdr *) skb->data;
rcu_read_lock();
next_hop = rcu_dereference(gate_mpath->next_hop)->sta.addr;
memcpy(hdr->addr1, next_hop, ETH_ALEN);
rcu_read_unlock();
memcpy(hdr->addr3, dst_addr, ETH_ALEN);
}
/**
*
* mesh_path_move_to_queue - Move or copy frames from one mpath queue to another
*
* This function is used to transfer or copy frames from an unresolved mpath to
* a gate mpath. The function also adds the Address Extension field and
* updates the next hop.
*
* If a frame already has an Address Extension field, only the next hop and
* destination addresses are updated.
*
* The gate mpath must be an active mpath with a valid mpath->next_hop.
*
* @mpath: An active mpath the frames will be sent to (i.e. the gate)
* @from_mpath: The failed mpath
* @copy: When true, copy all the frames to the new mpath queue. When false,
* move them.
*/
static void mesh_path_move_to_queue(struct mesh_path *gate_mpath,
struct mesh_path *from_mpath,
bool copy)
{
struct sk_buff *skb, *cp_skb = NULL;
struct sk_buff_head gateq, failq;
unsigned long flags;
int num_skbs;
BUG_ON(gate_mpath == from_mpath);
BUG_ON(!gate_mpath->next_hop);
__skb_queue_head_init(&gateq);
__skb_queue_head_init(&failq);
spin_lock_irqsave(&from_mpath->frame_queue.lock, flags);
skb_queue_splice_init(&from_mpath->frame_queue, &failq);
spin_unlock_irqrestore(&from_mpath->frame_queue.lock, flags);
num_skbs = skb_queue_len(&failq);
while (num_skbs--) {
skb = __skb_dequeue(&failq);
if (copy) {
cp_skb = skb_copy(skb, GFP_ATOMIC);
if (cp_skb)
__skb_queue_tail(&failq, cp_skb);
}
prepare_for_gate(skb, gate_mpath->dst, gate_mpath);
__skb_queue_tail(&gateq, skb);
}
spin_lock_irqsave(&gate_mpath->frame_queue.lock, flags);
skb_queue_splice(&gateq, &gate_mpath->frame_queue);
mpath_dbg("Mpath queue for gate %pM has %d frames\n",
gate_mpath->dst,
skb_queue_len(&gate_mpath->frame_queue));
spin_unlock_irqrestore(&gate_mpath->frame_queue.lock, flags);
if (!copy)
return;
spin_lock_irqsave(&from_mpath->frame_queue.lock, flags);
skb_queue_splice(&failq, &from_mpath->frame_queue);
spin_unlock_irqrestore(&from_mpath->frame_queue.lock, flags);
}
/**
* mesh_path_lookup - look up a path in the mesh path table
* @dst: hardware address (ETH_ALEN length) of destination
* @sdata: local subif
*
* Returns: pointer to the mesh path structure, or NULL if not found
*
* Locking: must be called within a read rcu section.
*/
struct mesh_path *mesh_path_lookup(u8 *dst, struct ieee80211_sub_if_data *sdata)
{
struct mesh_path *mpath;
struct hlist_node *n;
struct hlist_head *bucket;
struct mesh_table *tbl;
struct mpath_node *node;
tbl = rcu_dereference(mesh_paths);
bucket = &tbl->hash_buckets[mesh_table_hash(dst, sdata, tbl)];
hlist_for_each_entry_rcu(node, n, bucket, list) {
mpath = node->mpath;
if (mpath->sdata == sdata &&
memcmp(dst, mpath->dst, ETH_ALEN) == 0) {
if (MPATH_EXPIRED(mpath)) {
spin_lock_bh(&mpath->state_lock);
mpath->flags &= ~MESH_PATH_ACTIVE;
spin_unlock_bh(&mpath->state_lock);
}
return mpath;
}
}
return NULL;
}
struct mesh_path *mpp_path_lookup(u8 *dst, struct ieee80211_sub_if_data *sdata)
{
struct mesh_path *mpath;
struct hlist_node *n;
struct hlist_head *bucket;
struct mesh_table *tbl;
struct mpath_node *node;
tbl = rcu_dereference(mpp_paths);
bucket = &tbl->hash_buckets[mesh_table_hash(dst, sdata, tbl)];
hlist_for_each_entry_rcu(node, n, bucket, list) {
mpath = node->mpath;
if (mpath->sdata == sdata &&
memcmp(dst, mpath->dst, ETH_ALEN) == 0) {
if (MPATH_EXPIRED(mpath)) {
spin_lock_bh(&mpath->state_lock);
mpath->flags &= ~MESH_PATH_ACTIVE;
spin_unlock_bh(&mpath->state_lock);
}
return mpath;
}
}
return NULL;
}
/**
* mesh_path_lookup_by_idx - look up a path in the mesh path table by its index
* @idx: index
* @sdata: local subif, or NULL for all entries
*
* Returns: pointer to the mesh path structure, or NULL if not found.
*
* Locking: must be called within a read rcu section.
*/
struct mesh_path *mesh_path_lookup_by_idx(int idx, struct ieee80211_sub_if_data *sdata)
{
struct mesh_table *tbl = rcu_dereference(mesh_paths);
struct mpath_node *node;
struct hlist_node *p;
int i;
int j = 0;
for_each_mesh_entry(tbl, p, node, i) {
if (sdata && node->mpath->sdata != sdata)
continue;
if (j++ == idx) {
if (MPATH_EXPIRED(node->mpath)) {
spin_lock_bh(&node->mpath->state_lock);
node->mpath->flags &= ~MESH_PATH_ACTIVE;
spin_unlock_bh(&node->mpath->state_lock);
}
return node->mpath;
}
}
return NULL;
}
static void mesh_gate_node_reclaim(struct rcu_head *rp)
{
struct mpath_node *node = container_of(rp, struct mpath_node, rcu);
kfree(node);
}
/**
* mesh_gate_add - mark mpath as path to a mesh gate and add to known_gates
* @mesh_tbl: table which contains known_gates list
* @mpath: mpath to known mesh gate
*
* Returns: 0 on success
*
*/
static int mesh_gate_add(struct mesh_table *tbl, struct mesh_path *mpath)
{
struct mpath_node *gate, *new_gate;
struct hlist_node *n;
int err;
rcu_read_lock();
tbl = rcu_dereference(tbl);
hlist_for_each_entry_rcu(gate, n, tbl->known_gates, list)
if (gate->mpath == mpath) {
err = -EEXIST;
goto err_rcu;
}
new_gate = kzalloc(sizeof(struct mpath_node), GFP_ATOMIC);
if (!new_gate) {
err = -ENOMEM;
goto err_rcu;
}
mpath->is_gate = true;
mpath->sdata->u.mesh.num_gates++;
new_gate->mpath = mpath;
spin_lock_bh(&tbl->gates_lock);
hlist_add_head_rcu(&new_gate->list, tbl->known_gates);
spin_unlock_bh(&tbl->gates_lock);
rcu_read_unlock();
mpath_dbg("Mesh path (%s): Recorded new gate: %pM. %d known gates\n",
mpath->sdata->name, mpath->dst,
mpath->sdata->u.mesh.num_gates);
return 0;
err_rcu:
rcu_read_unlock();
return err;
}
/**
* mesh_gate_del - remove a mesh gate from the list of known gates
* @tbl: table which holds our list of known gates
* @mpath: gate mpath
*
* Returns: 0 on success
*
* Locking: must be called inside rcu_read_lock() section
*/
static int mesh_gate_del(struct mesh_table *tbl, struct mesh_path *mpath)
{
struct mpath_node *gate;
struct hlist_node *p, *q;
tbl = rcu_dereference(tbl);
hlist_for_each_entry_safe(gate, p, q, tbl->known_gates, list)
if (gate->mpath == mpath) {
spin_lock_bh(&tbl->gates_lock);
hlist_del_rcu(&gate->list);
call_rcu(&gate->rcu, mesh_gate_node_reclaim);
spin_unlock_bh(&tbl->gates_lock);
mpath->sdata->u.mesh.num_gates--;
mpath->is_gate = false;
mpath_dbg("Mesh path (%s): Deleted gate: %pM. "
"%d known gates\n", mpath->sdata->name,
mpath->dst, mpath->sdata->u.mesh.num_gates);
break;
}
return 0;
}
/**
*
* mesh_path_add_gate - add the given mpath to a mesh gate to our path table
* @mpath: gate path to add to table
*/
int mesh_path_add_gate(struct mesh_path *mpath)
{
return mesh_gate_add(mesh_paths, mpath);
}
/**
* mesh_gate_num - number of gates known to this interface
* @sdata: subif data
*/
int mesh_gate_num(struct ieee80211_sub_if_data *sdata)
{
return sdata->u.mesh.num_gates;
}
/**
* mesh_path_add - allocate and add a new path to the mesh path table
* @addr: destination address of the path (ETH_ALEN length)
* @sdata: local subif
*
* Returns: 0 on success
*
* State: the initial state of the new path is set to 0
*/
int mesh_path_add(u8 *dst, struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
struct ieee80211_local *local = sdata->local;
struct mesh_table *tbl;
struct mesh_path *mpath, *new_mpath;
struct mpath_node *node, *new_node;
struct hlist_head *bucket;
struct hlist_node *n;
int grow = 0;
int err = 0;
u32 hash_idx;
if (memcmp(dst, sdata->vif.addr, ETH_ALEN) == 0)
/* never add ourselves as neighbours */
return -ENOTSUPP;
if (is_multicast_ether_addr(dst))
return -ENOTSUPP;
if (atomic_add_unless(&sdata->u.mesh.mpaths, 1, MESH_MAX_MPATHS) == 0)
return -ENOSPC;
err = -ENOMEM;
new_mpath = kzalloc(sizeof(struct mesh_path), GFP_ATOMIC);
if (!new_mpath)
goto err_path_alloc;
new_node = kmalloc(sizeof(struct mpath_node), GFP_ATOMIC);
if (!new_node)
goto err_node_alloc;
read_lock_bh(&pathtbl_resize_lock);
memcpy(new_mpath->dst, dst, ETH_ALEN);
new_mpath->sdata = sdata;
new_mpath->flags = 0;
skb_queue_head_init(&new_mpath->frame_queue);
new_node->mpath = new_mpath;
new_mpath->timer.data = (unsigned long) new_mpath;
new_mpath->timer.function = mesh_path_timer;
new_mpath->exp_time = jiffies;
spin_lock_init(&new_mpath->state_lock);
init_timer(&new_mpath->timer);
tbl = resize_dereference_mesh_paths();
hash_idx = mesh_table_hash(dst, sdata, tbl);
bucket = &tbl->hash_buckets[hash_idx];
spin_lock_bh(&tbl->hashwlock[hash_idx]);
err = -EEXIST;
hlist_for_each_entry(node, n, bucket, list) {
mpath = node->mpath;
if (mpath->sdata == sdata && memcmp(dst, mpath->dst, ETH_ALEN) == 0)
goto err_exists;
}
hlist_add_head_rcu(&new_node->list, bucket);
if (atomic_inc_return(&tbl->entries) >=
tbl->mean_chain_len * (tbl->hash_mask + 1))
grow = 1;
mesh_paths_generation++;
spin_unlock_bh(&tbl->hashwlock[hash_idx]);
read_unlock_bh(&pathtbl_resize_lock);
if (grow) {
set_bit(MESH_WORK_GROW_MPATH_TABLE, &ifmsh->wrkq_flags);
ieee80211_queue_work(&local->hw, &sdata->work);
}
return 0;
err_exists:
spin_unlock_bh(&tbl->hashwlock[hash_idx]);
read_unlock_bh(&pathtbl_resize_lock);
kfree(new_node);
err_node_alloc:
kfree(new_mpath);
err_path_alloc:
atomic_dec(&sdata->u.mesh.mpaths);
return err;
}
static void mesh_table_free_rcu(struct rcu_head *rcu)
{
struct mesh_table *tbl = container_of(rcu, struct mesh_table, rcu_head);
mesh_table_free(tbl, false);
}
void mesh_mpath_table_grow(void)
{
struct mesh_table *oldtbl, *newtbl;
write_lock_bh(&pathtbl_resize_lock);
oldtbl = resize_dereference_mesh_paths();
newtbl = mesh_table_alloc(oldtbl->size_order + 1);
if (!newtbl)
goto out;
if (mesh_table_grow(oldtbl, newtbl) < 0) {
__mesh_table_free(newtbl);
goto out;
}
rcu_assign_pointer(mesh_paths, newtbl);
call_rcu(&oldtbl->rcu_head, mesh_table_free_rcu);
out:
write_unlock_bh(&pathtbl_resize_lock);
}
void mesh_mpp_table_grow(void)
{
struct mesh_table *oldtbl, *newtbl;
write_lock_bh(&pathtbl_resize_lock);
oldtbl = resize_dereference_mpp_paths();
newtbl = mesh_table_alloc(oldtbl->size_order + 1);
if (!newtbl)
goto out;
if (mesh_table_grow(oldtbl, newtbl) < 0) {
__mesh_table_free(newtbl);
goto out;
}
rcu_assign_pointer(mpp_paths, newtbl);
call_rcu(&oldtbl->rcu_head, mesh_table_free_rcu);
out:
write_unlock_bh(&pathtbl_resize_lock);
}
int mpp_path_add(u8 *dst, u8 *mpp, struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
struct ieee80211_local *local = sdata->local;
struct mesh_table *tbl;
struct mesh_path *mpath, *new_mpath;
struct mpath_node *node, *new_node;
struct hlist_head *bucket;
struct hlist_node *n;
int grow = 0;
int err = 0;
u32 hash_idx;
if (memcmp(dst, sdata->vif.addr, ETH_ALEN) == 0)
/* never add ourselves as neighbours */
return -ENOTSUPP;
if (is_multicast_ether_addr(dst))
return -ENOTSUPP;
err = -ENOMEM;
new_mpath = kzalloc(sizeof(struct mesh_path), GFP_ATOMIC);
if (!new_mpath)
goto err_path_alloc;
new_node = kmalloc(sizeof(struct mpath_node), GFP_ATOMIC);
if (!new_node)
goto err_node_alloc;
read_lock_bh(&pathtbl_resize_lock);
memcpy(new_mpath->dst, dst, ETH_ALEN);
memcpy(new_mpath->mpp, mpp, ETH_ALEN);
new_mpath->sdata = sdata;
new_mpath->flags = 0;
skb_queue_head_init(&new_mpath->frame_queue);
new_node->mpath = new_mpath;
init_timer(&new_mpath->timer);
new_mpath->exp_time = jiffies;
spin_lock_init(&new_mpath->state_lock);
tbl = resize_dereference_mpp_paths();
hash_idx = mesh_table_hash(dst, sdata, tbl);
bucket = &tbl->hash_buckets[hash_idx];
spin_lock_bh(&tbl->hashwlock[hash_idx]);
err = -EEXIST;
hlist_for_each_entry(node, n, bucket, list) {
mpath = node->mpath;
if (mpath->sdata == sdata && memcmp(dst, mpath->dst, ETH_ALEN) == 0)
goto err_exists;
}
hlist_add_head_rcu(&new_node->list, bucket);
if (atomic_inc_return(&tbl->entries) >=
tbl->mean_chain_len * (tbl->hash_mask + 1))
grow = 1;
spin_unlock_bh(&tbl->hashwlock[hash_idx]);
read_unlock_bh(&pathtbl_resize_lock);
if (grow) {
set_bit(MESH_WORK_GROW_MPP_TABLE, &ifmsh->wrkq_flags);
ieee80211_queue_work(&local->hw, &sdata->work);
}
return 0;
err_exists:
spin_unlock_bh(&tbl->hashwlock[hash_idx]);
read_unlock_bh(&pathtbl_resize_lock);
kfree(new_node);
err_node_alloc:
kfree(new_mpath);
err_path_alloc:
return err;
}
/**
* mesh_plink_broken - deactivates paths and sends perr when a link breaks
*
* @sta: broken peer link
*
* This function must be called from the rate control algorithm if enough
* delivery errors suggest that a peer link is no longer usable.
*/
void mesh_plink_broken(struct sta_info *sta)
{
struct mesh_table *tbl;
static const u8 bcast[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
struct mesh_path *mpath;
struct mpath_node *node;
struct hlist_node *p;
struct ieee80211_sub_if_data *sdata = sta->sdata;
int i;
__le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_DEST_UNREACHABLE);
rcu_read_lock();
tbl = rcu_dereference(mesh_paths);
for_each_mesh_entry(tbl, p, node, i) {
mpath = node->mpath;
if (rcu_dereference(mpath->next_hop) == sta &&
mpath->flags & MESH_PATH_ACTIVE &&
!(mpath->flags & MESH_PATH_FIXED)) {
spin_lock_bh(&mpath->state_lock);
mpath->flags &= ~MESH_PATH_ACTIVE;
++mpath->sn;
spin_unlock_bh(&mpath->state_lock);
mesh_path_error_tx(sdata->u.mesh.mshcfg.element_ttl,
mpath->dst, cpu_to_le32(mpath->sn),
reason, bcast, sdata);
}
}
rcu_read_unlock();
}
/**
* mesh_path_flush_by_nexthop - Deletes mesh paths if their next hop matches
*
* @sta - mesh peer to match
*
* RCU notes: this function is called when a mesh plink transitions from
* PLINK_ESTAB to any other state, since PLINK_ESTAB state is the only one that
* allows path creation. This will happen before the sta can be freed (because
* sta_info_destroy() calls this) so any reader in a rcu read block will be
* protected against the plink disappearing.
*/
void mesh_path_flush_by_nexthop(struct sta_info *sta)
{
struct mesh_table *tbl;
struct mesh_path *mpath;
struct mpath_node *node;
struct hlist_node *p;
int i;
rcu_read_lock();
tbl = rcu_dereference(mesh_paths);
for_each_mesh_entry(tbl, p, node, i) {
mpath = node->mpath;
if (rcu_dereference(mpath->next_hop) == sta)
mesh_path_del(mpath->dst, mpath->sdata);
}
rcu_read_unlock();
}
static void mesh_path_flush(struct ieee80211_sub_if_data *sdata)
{
struct mesh_table *tbl;
struct mesh_path *mpath;
struct mpath_node *node;
struct hlist_node *p;
int i;
rcu_read_lock();
tbl = rcu_dereference(mesh_paths);
for_each_mesh_entry(tbl, p, node, i) {
mpath = node->mpath;
if (mpath->sdata == sdata)
mesh_path_del(mpath->dst, mpath->sdata);
}
rcu_read_unlock();
}
static void mesh_path_node_reclaim(struct rcu_head *rp)
{
struct mpath_node *node = container_of(rp, struct mpath_node, rcu);
struct ieee80211_sub_if_data *sdata = node->mpath->sdata;
del_timer_sync(&node->mpath->timer);
atomic_dec(&sdata->u.mesh.mpaths);
kfree(node->mpath);
kfree(node);
}
static void mpp_path_flush(struct ieee80211_sub_if_data *sdata)
{
struct mesh_table *tbl;
struct mesh_path *mpath;
struct mpath_node *node;
struct hlist_node *p;
int i;
read_lock_bh(&pathtbl_resize_lock);
tbl = rcu_dereference_protected(mpp_paths,
lockdep_is_held(pathtbl_resize_lock));
for_each_mesh_entry(tbl, p, node, i) {
mpath = node->mpath;
if (mpath->sdata != sdata)
continue;
spin_lock_bh(&tbl->hashwlock[i]);
hlist_del_rcu(&node->list);
call_rcu(&node->rcu, mesh_path_node_reclaim);
atomic_dec(&tbl->entries);
spin_unlock_bh(&tbl->hashwlock[i]);
}
read_unlock_bh(&pathtbl_resize_lock);
}
/**
* mesh_path_flush_by_iface - Deletes all mesh paths associated with a given iface
*
* This function deletes both mesh paths as well as mesh portal paths.
*
* @sdata - interface data to match
*
*/
void mesh_path_flush_by_iface(struct ieee80211_sub_if_data *sdata)
{
mesh_path_flush(sdata);
mpp_path_flush(sdata);
}
/**
* mesh_path_del - delete a mesh path from the table
*
* @addr: dst address (ETH_ALEN length)
* @sdata: local subif
*
* Returns: 0 if successful
*/
int mesh_path_del(u8 *addr, struct ieee80211_sub_if_data *sdata)
{
struct mesh_table *tbl;
struct mesh_path *mpath;
struct mpath_node *node;
struct hlist_head *bucket;
struct hlist_node *n;
int hash_idx;
int err = 0;
read_lock_bh(&pathtbl_resize_lock);
tbl = resize_dereference_mesh_paths();
hash_idx = mesh_table_hash(addr, sdata, tbl);
bucket = &tbl->hash_buckets[hash_idx];
spin_lock_bh(&tbl->hashwlock[hash_idx]);
hlist_for_each_entry(node, n, bucket, list) {
mpath = node->mpath;
if (mpath->sdata == sdata &&
memcmp(addr, mpath->dst, ETH_ALEN) == 0) {
spin_lock_bh(&mpath->state_lock);
if (mpath->is_gate)
mesh_gate_del(tbl, mpath);
mpath->flags |= MESH_PATH_RESOLVING;
hlist_del_rcu(&node->list);
call_rcu(&node->rcu, mesh_path_node_reclaim);
atomic_dec(&tbl->entries);
spin_unlock_bh(&mpath->state_lock);
goto enddel;
}
}
err = -ENXIO;
enddel:
mesh_paths_generation++;
spin_unlock_bh(&tbl->hashwlock[hash_idx]);
read_unlock_bh(&pathtbl_resize_lock);
return err;
}
/**
* mesh_path_tx_pending - sends pending frames in a mesh path queue
*
* @mpath: mesh path to activate
*
* Locking: the state_lock of the mpath structure must NOT be held when calling
* this function.
*/
void mesh_path_tx_pending(struct mesh_path *mpath)
{
if (mpath->flags & MESH_PATH_ACTIVE)
ieee80211_add_pending_skbs(mpath->sdata->local,
&mpath->frame_queue);
}
/**
* mesh_path_send_to_gates - sends pending frames to all known mesh gates
*
* @mpath: mesh path whose queue will be emptied
*
* If there is only one gate, the frames are transferred from the failed mpath
* queue to that gate's queue. If there are more than one gates, the frames
* are copied from each gate to the next. After frames are copied, the
* mpath queues are emptied onto the transmission queue.
*/
int mesh_path_send_to_gates(struct mesh_path *mpath)
{
struct ieee80211_sub_if_data *sdata = mpath->sdata;
struct hlist_node *n;
struct mesh_table *tbl;
struct mesh_path *from_mpath = mpath;
struct mpath_node *gate = NULL;
bool copy = false;
struct hlist_head *known_gates;
rcu_read_lock();
tbl = rcu_dereference(mesh_paths);
known_gates = tbl->known_gates;
rcu_read_unlock();
if (!known_gates)
return -EHOSTUNREACH;
hlist_for_each_entry_rcu(gate, n, known_gates, list) {
if (gate->mpath->sdata != sdata)
continue;
if (gate->mpath->flags & MESH_PATH_ACTIVE) {
mpath_dbg("Forwarding to %pM\n", gate->mpath->dst);
mesh_path_move_to_queue(gate->mpath, from_mpath, copy);
from_mpath = gate->mpath;
copy = true;
} else {
mpath_dbg("Not forwarding %p\n", gate->mpath);
mpath_dbg("flags %x\n", gate->mpath->flags);
}
}
hlist_for_each_entry_rcu(gate, n, known_gates, list)
if (gate->mpath->sdata == sdata) {
mpath_dbg("Sending to %pM\n", gate->mpath->dst);
mesh_path_tx_pending(gate->mpath);
}
return (from_mpath == mpath) ? -EHOSTUNREACH : 0;
}
/**
* mesh_path_discard_frame - discard a frame whose path could not be resolved
*
* @skb: frame to discard
* @sdata: network subif the frame was to be sent through
*
* If the frame was being forwarded from another MP, a PERR frame will be sent
* to the precursor. The precursor's address (i.e. the previous hop) was saved
* in addr1 of the frame-to-be-forwarded, and would only be overwritten once
* the destination is successfully resolved.
*
* Locking: the function must me called within a rcu_read_lock region
*/
void mesh_path_discard_frame(struct sk_buff *skb,
struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct mesh_path *mpath;
u32 sn = 0;
__le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
if (memcmp(hdr->addr4, sdata->vif.addr, ETH_ALEN) != 0) {
u8 *ra, *da;
da = hdr->addr3;
ra = hdr->addr1;
rcu_read_lock();
mpath = mesh_path_lookup(da, sdata);
if (mpath) {
spin_lock_bh(&mpath->state_lock);
sn = ++mpath->sn;
spin_unlock_bh(&mpath->state_lock);
}
rcu_read_unlock();
mesh_path_error_tx(sdata->u.mesh.mshcfg.element_ttl, skb->data,
cpu_to_le32(sn), reason, ra, sdata);
}
kfree_skb(skb);
sdata->u.mesh.mshstats.dropped_frames_no_route++;
}
/**
* mesh_path_flush_pending - free the pending queue of a mesh path
*
* @mpath: mesh path whose queue has to be freed
*
* Locking: the function must me called within a rcu_read_lock region
*/
void mesh_path_flush_pending(struct mesh_path *mpath)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(&mpath->frame_queue)) != NULL)
mesh_path_discard_frame(skb, mpath->sdata);
}
/**
* mesh_path_fix_nexthop - force a specific next hop for a mesh path
*
* @mpath: the mesh path to modify
* @next_hop: the next hop to force
*
* Locking: this function must be called holding mpath->state_lock
*/
void mesh_path_fix_nexthop(struct mesh_path *mpath, struct sta_info *next_hop)
{
spin_lock_bh(&mpath->state_lock);
mesh_path_assign_nexthop(mpath, next_hop);
mpath->sn = 0xffff;
mpath->metric = 0;
mpath->hop_count = 0;
mpath->exp_time = 0;
mpath->flags |= MESH_PATH_FIXED;
mesh_path_activate(mpath);
spin_unlock_bh(&mpath->state_lock);
mesh_path_tx_pending(mpath);
}
static void mesh_path_node_free(struct hlist_node *p, bool free_leafs)
{
struct mesh_path *mpath;
struct mpath_node *node = hlist_entry(p, struct mpath_node, list);
mpath = node->mpath;
hlist_del_rcu(p);
if (free_leafs) {
del_timer_sync(&mpath->timer);
kfree(mpath);
}
kfree(node);
}
static int mesh_path_node_copy(struct hlist_node *p, struct mesh_table *newtbl)
{
struct mesh_path *mpath;
struct mpath_node *node, *new_node;
u32 hash_idx;
new_node = kmalloc(sizeof(struct mpath_node), GFP_ATOMIC);
if (new_node == NULL)
return -ENOMEM;
node = hlist_entry(p, struct mpath_node, list);
mpath = node->mpath;
new_node->mpath = mpath;
hash_idx = mesh_table_hash(mpath->dst, mpath->sdata, newtbl);
hlist_add_head(&new_node->list,
&newtbl->hash_buckets[hash_idx]);
return 0;
}
int mesh_pathtbl_init(void)
{
struct mesh_table *tbl_path, *tbl_mpp;
tbl_path = mesh_table_alloc(INIT_PATHS_SIZE_ORDER);
if (!tbl_path)
return -ENOMEM;
tbl_path->free_node = &mesh_path_node_free;
tbl_path->copy_node = &mesh_path_node_copy;
tbl_path->mean_chain_len = MEAN_CHAIN_LEN;
tbl_path->known_gates = kzalloc(sizeof(struct hlist_head), GFP_ATOMIC);
INIT_HLIST_HEAD(tbl_path->known_gates);
tbl_mpp = mesh_table_alloc(INIT_PATHS_SIZE_ORDER);
if (!tbl_mpp) {
mesh_table_free(tbl_path, true);
return -ENOMEM;
}
tbl_mpp->free_node = &mesh_path_node_free;
tbl_mpp->copy_node = &mesh_path_node_copy;
tbl_mpp->mean_chain_len = MEAN_CHAIN_LEN;
tbl_mpp->known_gates = kzalloc(sizeof(struct hlist_head), GFP_ATOMIC);
INIT_HLIST_HEAD(tbl_mpp->known_gates);
/* Need no locking since this is during init */
RCU_INIT_POINTER(mesh_paths, tbl_path);
RCU_INIT_POINTER(mpp_paths, tbl_mpp);
return 0;
}
void mesh_path_expire(struct ieee80211_sub_if_data *sdata)
{
struct mesh_table *tbl;
struct mesh_path *mpath;
struct mpath_node *node;
struct hlist_node *p;
int i;
rcu_read_lock();
tbl = rcu_dereference(mesh_paths);
for_each_mesh_entry(tbl, p, node, i) {
if (node->mpath->sdata != sdata)
continue;
mpath = node->mpath;
if ((!(mpath->flags & MESH_PATH_RESOLVING)) &&
(!(mpath->flags & MESH_PATH_FIXED)) &&
time_after(jiffies, mpath->exp_time + MESH_PATH_EXPIRE))
mesh_path_del(mpath->dst, mpath->sdata);
rcu_read_unlock();
}
void mesh_pathtbl_unregister(void)
{
/* no need for locking during exit path */
mesh_table_free(rcu_dereference_raw(mesh_paths), true);
mesh_table_free(rcu_dereference_raw(mpp_paths), true);
}