linux/arch/powerpc/sysdev/fsl_soc.c

752 lines
17 KiB
C
Raw Normal View History

/*
* FSL SoC setup code
*
* Maintained by Kumar Gala (see MAINTAINERS for contact information)
*
* 2006 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/spi/spi.h>
#include <linux/fsl_devices.h>
#include <linux/fs_enet_pd.h>
#include <linux/fs_uart_pd.h>
#include <asm/system.h>
#include <asm/atomic.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/time.h>
#include <asm/prom.h>
#include <sysdev/fsl_soc.h>
#include <mm/mmu_decl.h>
#include <asm/cpm2.h>
extern void init_fcc_ioports(struct fs_platform_info*);
extern void init_fec_ioports(struct fs_platform_info*);
extern void init_smc_ioports(struct fs_uart_platform_info*);
static phys_addr_t immrbase = -1;
phys_addr_t get_immrbase(void)
{
struct device_node *soc;
if (immrbase != -1)
return immrbase;
soc = of_find_node_by_type(NULL, "soc");
if (soc) {
int size;
u32 naddr;
const u32 *prop = of_get_property(soc, "#address-cells", &size);
if (prop && size == 4)
naddr = *prop;
else
naddr = 2;
prop = of_get_property(soc, "ranges", &size);
if (prop)
immrbase = of_translate_address(soc, prop + naddr);
of_node_put(soc);
}
return immrbase;
}
EXPORT_SYMBOL(get_immrbase);
static u32 sysfreq = -1;
u32 fsl_get_sys_freq(void)
{
struct device_node *soc;
const u32 *prop;
int size;
if (sysfreq != -1)
return sysfreq;
soc = of_find_node_by_type(NULL, "soc");
if (!soc)
return -1;
prop = of_get_property(soc, "clock-frequency", &size);
if (!prop || size != sizeof(*prop) || *prop == 0)
prop = of_get_property(soc, "bus-frequency", &size);
if (prop && size == sizeof(*prop))
sysfreq = *prop;
of_node_put(soc);
return sysfreq;
}
EXPORT_SYMBOL(fsl_get_sys_freq);
#if defined(CONFIG_CPM2) || defined(CONFIG_QUICC_ENGINE) || defined(CONFIG_8xx)
static u32 brgfreq = -1;
u32 get_brgfreq(void)
{
struct device_node *node;
const unsigned int *prop;
int size;
if (brgfreq != -1)
return brgfreq;
node = of_find_compatible_node(NULL, NULL, "fsl,cpm-brg");
if (node) {
prop = of_get_property(node, "clock-frequency", &size);
if (prop && size == 4)
brgfreq = *prop;
of_node_put(node);
return brgfreq;
}
/* Legacy device binding -- will go away when no users are left. */
node = of_find_node_by_type(NULL, "cpm");
if (!node)
node = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!node)
node = of_find_node_by_type(NULL, "qe");
if (node) {
prop = of_get_property(node, "brg-frequency", &size);
if (prop && size == 4)
brgfreq = *prop;
if (brgfreq == -1 || brgfreq == 0) {
prop = of_get_property(node, "bus-frequency", &size);
if (prop && size == 4)
brgfreq = *prop / 2;
}
of_node_put(node);
}
return brgfreq;
}
EXPORT_SYMBOL(get_brgfreq);
static u32 fs_baudrate = -1;
u32 get_baudrate(void)
{
struct device_node *node;
if (fs_baudrate != -1)
return fs_baudrate;
node = of_find_node_by_type(NULL, "serial");
if (node) {
int size;
const unsigned int *prop = of_get_property(node,
"current-speed", &size);
if (prop)
fs_baudrate = *prop;
of_node_put(node);
}
return fs_baudrate;
}
EXPORT_SYMBOL(get_baudrate);
#endif /* CONFIG_CPM2 */
#ifdef CONFIG_FIXED_PHY
static int __init of_add_fixed_phys(void)
{
int ret;
struct device_node *np;
u32 *fixed_link;
struct fixed_phy_status status = {};
for_each_node_by_name(np, "ethernet") {
fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
if (!fixed_link)
continue;
status.link = 1;
status.duplex = fixed_link[1];
status.speed = fixed_link[2];
status.pause = fixed_link[3];
status.asym_pause = fixed_link[4];
ret = fixed_phy_add(PHY_POLL, fixed_link[0], &status);
if (ret) {
of_node_put(np);
return ret;
}
}
return 0;
}
arch_initcall(of_add_fixed_phys);
#endif /* CONFIG_FIXED_PHY */
static int gfar_mdio_of_init_one(struct device_node *np)
{
int k;
struct device_node *child = NULL;
struct gianfar_mdio_data mdio_data;
struct platform_device *mdio_dev;
struct resource res;
int ret;
memset(&res, 0, sizeof(res));
memset(&mdio_data, 0, sizeof(mdio_data));
ret = of_address_to_resource(np, 0, &res);
if (ret)
return ret;
gianfar: Fix race in TBI/SerDes configuration The init_phy() function attaches to the PHY, then configures the SerDes<->TBI link (in SGMII mode). The TBI is on the MDIO bus with the PHY (sort of) and is accessed via the gianfar's MDIO registers, using the functions gfar_local_mdio_read/write(), which don't do any locking. The previously attached PHY will start a work-queue on a timer, and probably an irq handler as well, which will talk to the PHY and thus use the MDIO bus. This uses phy_read/write(), which have locking, but not against the gfar_local_mdio versions. The result is that PHY code will try to use the MDIO bus at the same time as the SerDes setup code, corrupting the transfers. Setting up the SerDes before attaching to the PHY will insure that there is no race between the SerDes code and *our* PHY, but doesn't fix everything. Typically the PHYs for all gianfar devices are on the same MDIO bus, which is associated with the first gianfar device. This means that the first gianfar's SerDes code could corrupt the MDIO transfers for a different gianfar's PHY. The lock used by phy_read/write() is contained in the mii_bus structure, which is pointed to by the PHY. This is difficult to access from the gianfar drivers, as there is no link between a gianfar device and the mii_bus which shares the same MDIO registers. As far as the device layer and drivers are concerned they are two unrelated devices (which happen to share registers). Generally all gianfar devices' PHYs will be on the bus associated with the first gianfar. But this might not be the case, so simply locking the gianfar's PHY's mii bus might not lock the mii bus that the SerDes setup code is going to use. We solve this by having the code that creates the gianfar platform device look in the device tree for an mdio device that shares the gianfar's registers. If one is found the ID of its platform device is saved in the gianfar's platform data. A new function in the gianfar mii code, gfar_get_miibus(), can use the bus ID to search through the platform devices for a gianfar_mdio device with the right ID. The platform device's driver data is the mii_bus structure, which the SerDes setup code can use to lock the current bus. Signed-off-by: Trent Piepho <tpiepho@freescale.com> CC: Andy Fleming <afleming@freescale.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-10-31 09:17:06 +08:00
/* The gianfar device will try to use the same ID created below to find
* this bus, to coordinate register access (since they share). */
mdio_dev = platform_device_register_simple("fsl-gianfar_mdio",
res.start&0xfffff, &res, 1);
if (IS_ERR(mdio_dev))
return PTR_ERR(mdio_dev);
for (k = 0; k < 32; k++)
mdio_data.irq[k] = PHY_POLL;
while ((child = of_get_next_child(np, child)) != NULL) {
int irq = irq_of_parse_and_map(child, 0);
if (irq != NO_IRQ) {
const u32 *id = of_get_property(child, "reg", NULL);
mdio_data.irq[*id] = irq;
}
}
ret = platform_device_add_data(mdio_dev, &mdio_data,
sizeof(struct gianfar_mdio_data));
if (ret)
platform_device_unregister(mdio_dev);
return ret;
}
static int __init gfar_mdio_of_init(void)
{
struct device_node *np = NULL;
for_each_compatible_node(np, NULL, "fsl,gianfar-mdio")
gfar_mdio_of_init_one(np);
/* try the deprecated version */
for_each_compatible_node(np, "mdio", "gianfar");
gfar_mdio_of_init_one(np);
return 0;
}
arch_initcall(gfar_mdio_of_init);
static const char *gfar_tx_intr = "tx";
static const char *gfar_rx_intr = "rx";
static const char *gfar_err_intr = "error";
static int __init gfar_of_init(void)
{
struct device_node *np;
unsigned int i;
struct platform_device *gfar_dev;
struct resource res;
int ret;
for (np = NULL, i = 0;
(np = of_find_compatible_node(np, "network", "gianfar")) != NULL;
i++) {
struct resource r[4];
struct device_node *phy, *mdio;
struct gianfar_platform_data gfar_data;
const unsigned int *id;
const char *model;
const char *ctype;
const void *mac_addr;
const phandle *ph;
int n_res = 2;
if (!of_device_is_available(np))
continue;
memset(r, 0, sizeof(r));
memset(&gfar_data, 0, sizeof(gfar_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
of_irq_to_resource(np, 0, &r[1]);
model = of_get_property(np, "model", NULL);
/* If we aren't the FEC we have multiple interrupts */
if (model && strcasecmp(model, "FEC")) {
r[1].name = gfar_tx_intr;
r[2].name = gfar_rx_intr;
of_irq_to_resource(np, 1, &r[2]);
r[3].name = gfar_err_intr;
of_irq_to_resource(np, 2, &r[3]);
n_res += 2;
}
gfar_dev =
platform_device_register_simple("fsl-gianfar", i, &r[0],
n_res);
if (IS_ERR(gfar_dev)) {
ret = PTR_ERR(gfar_dev);
goto err;
}
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(gfar_data.mac_addr, mac_addr, 6);
if (model && !strcasecmp(model, "TSEC"))
gfar_data.device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if (model && !strcasecmp(model, "eTSEC"))
gfar_data.device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_VLAN |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
ctype = of_get_property(np, "phy-connection-type", NULL);
/* We only care about rgmii-id. The rest are autodetected */
if (ctype && !strcmp(ctype, "rgmii-id"))
gfar_data.interface = PHY_INTERFACE_MODE_RGMII_ID;
else
gfar_data.interface = PHY_INTERFACE_MODE_MII;
if (of_get_property(np, "fsl,magic-packet", NULL))
gfar_data.device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
ph = of_get_property(np, "phy-handle", NULL);
if (ph == NULL) {
u32 *fixed_link;
fixed_link = (u32 *)of_get_property(np, "fixed-link",
NULL);
if (!fixed_link) {
ret = -ENODEV;
goto unreg;
}
snprintf(gfar_data.bus_id, MII_BUS_ID_SIZE, "0");
gfar_data.phy_id = fixed_link[0];
} else {
phy = of_find_node_by_phandle(*ph);
if (phy == NULL) {
ret = -ENODEV;
goto unreg;
}
mdio = of_get_parent(phy);
id = of_get_property(phy, "reg", NULL);
ret = of_address_to_resource(mdio, 0, &res);
if (ret) {
of_node_put(phy);
of_node_put(mdio);
goto unreg;
}
gfar_data.phy_id = *id;
snprintf(gfar_data.bus_id, MII_BUS_ID_SIZE, "%llx",
(unsigned long long)res.start&0xfffff);
of_node_put(phy);
of_node_put(mdio);
}
gianfar: Fix race in TBI/SerDes configuration The init_phy() function attaches to the PHY, then configures the SerDes<->TBI link (in SGMII mode). The TBI is on the MDIO bus with the PHY (sort of) and is accessed via the gianfar's MDIO registers, using the functions gfar_local_mdio_read/write(), which don't do any locking. The previously attached PHY will start a work-queue on a timer, and probably an irq handler as well, which will talk to the PHY and thus use the MDIO bus. This uses phy_read/write(), which have locking, but not against the gfar_local_mdio versions. The result is that PHY code will try to use the MDIO bus at the same time as the SerDes setup code, corrupting the transfers. Setting up the SerDes before attaching to the PHY will insure that there is no race between the SerDes code and *our* PHY, but doesn't fix everything. Typically the PHYs for all gianfar devices are on the same MDIO bus, which is associated with the first gianfar device. This means that the first gianfar's SerDes code could corrupt the MDIO transfers for a different gianfar's PHY. The lock used by phy_read/write() is contained in the mii_bus structure, which is pointed to by the PHY. This is difficult to access from the gianfar drivers, as there is no link between a gianfar device and the mii_bus which shares the same MDIO registers. As far as the device layer and drivers are concerned they are two unrelated devices (which happen to share registers). Generally all gianfar devices' PHYs will be on the bus associated with the first gianfar. But this might not be the case, so simply locking the gianfar's PHY's mii bus might not lock the mii bus that the SerDes setup code is going to use. We solve this by having the code that creates the gianfar platform device look in the device tree for an mdio device that shares the gianfar's registers. If one is found the ID of its platform device is saved in the gianfar's platform data. A new function in the gianfar mii code, gfar_get_miibus(), can use the bus ID to search through the platform devices for a gianfar_mdio device with the right ID. The platform device's driver data is the mii_bus structure, which the SerDes setup code can use to lock the current bus. Signed-off-by: Trent Piepho <tpiepho@freescale.com> CC: Andy Fleming <afleming@freescale.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-10-31 09:17:06 +08:00
/* Get MDIO bus controlled by this eTSEC, if any. Normally only
* eTSEC 1 will control an MDIO bus, not necessarily the same
* bus that its PHY is on ('mdio' above), so we can't just use
* that. What we do is look for a gianfar mdio device that has
* overlapping registers with this device. That's really the
* whole point, to find the device sharing our registers to
* coordinate access with it.
*/
for_each_compatible_node(mdio, NULL, "fsl,gianfar-mdio") {
if (of_address_to_resource(mdio, 0, &res))
continue;
if (res.start >= r[0].start && res.end <= r[0].end) {
/* Get the ID the mdio bus platform device was
* registered with. gfar_data.bus_id is
* different because it's for finding a PHY,
* while this is for finding a MII bus.
*/
gfar_data.mdio_bus = res.start&0xfffff;
of_node_put(mdio);
break;
}
}
ret =
platform_device_add_data(gfar_dev, &gfar_data,
sizeof(struct
gianfar_platform_data));
if (ret)
goto unreg;
}
return 0;
unreg:
platform_device_unregister(gfar_dev);
err:
return ret;
}
arch_initcall(gfar_of_init);
static enum fsl_usb2_phy_modes determine_usb_phy(const char *phy_type)
{
if (!phy_type)
return FSL_USB2_PHY_NONE;
if (!strcasecmp(phy_type, "ulpi"))
return FSL_USB2_PHY_ULPI;
if (!strcasecmp(phy_type, "utmi"))
return FSL_USB2_PHY_UTMI;
if (!strcasecmp(phy_type, "utmi_wide"))
return FSL_USB2_PHY_UTMI_WIDE;
if (!strcasecmp(phy_type, "serial"))
return FSL_USB2_PHY_SERIAL;
return FSL_USB2_PHY_NONE;
}
static int __init fsl_usb_of_init(void)
{
struct device_node *np;
unsigned int i = 0;
struct platform_device *usb_dev_mph = NULL, *usb_dev_dr_host = NULL,
*usb_dev_dr_client = NULL;
int ret;
for_each_compatible_node(np, NULL, "fsl-usb2-mph") {
struct resource r[2];
struct fsl_usb2_platform_data usb_data;
const unsigned char *prop = NULL;
memset(&r, 0, sizeof(r));
memset(&usb_data, 0, sizeof(usb_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
of_irq_to_resource(np, 0, &r[1]);
usb_dev_mph =
platform_device_register_simple("fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_mph)) {
ret = PTR_ERR(usb_dev_mph);
goto err;
}
usb_dev_mph->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_mph->dev.dma_mask = &usb_dev_mph->dev.coherent_dma_mask;
usb_data.operating_mode = FSL_USB2_MPH_HOST;
prop = of_get_property(np, "port0", NULL);
if (prop)
usb_data.port_enables |= FSL_USB2_PORT0_ENABLED;
prop = of_get_property(np, "port1", NULL);
if (prop)
usb_data.port_enables |= FSL_USB2_PORT1_ENABLED;
prop = of_get_property(np, "phy_type", NULL);
usb_data.phy_mode = determine_usb_phy(prop);
ret =
platform_device_add_data(usb_dev_mph, &usb_data,
sizeof(struct
fsl_usb2_platform_data));
if (ret)
goto unreg_mph;
i++;
}
for_each_compatible_node(np, NULL, "fsl-usb2-dr") {
struct resource r[2];
struct fsl_usb2_platform_data usb_data;
const unsigned char *prop = NULL;
memset(&r, 0, sizeof(r));
memset(&usb_data, 0, sizeof(usb_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto unreg_mph;
of_irq_to_resource(np, 0, &r[1]);
prop = of_get_property(np, "dr_mode", NULL);
if (!prop || !strcmp(prop, "host")) {
usb_data.operating_mode = FSL_USB2_DR_HOST;
usb_dev_dr_host = platform_device_register_simple(
"fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_dr_host)) {
ret = PTR_ERR(usb_dev_dr_host);
goto err;
}
} else if (prop && !strcmp(prop, "peripheral")) {
usb_data.operating_mode = FSL_USB2_DR_DEVICE;
usb_dev_dr_client = platform_device_register_simple(
"fsl-usb2-udc", i, r, 2);
if (IS_ERR(usb_dev_dr_client)) {
ret = PTR_ERR(usb_dev_dr_client);
goto err;
}
} else if (prop && !strcmp(prop, "otg")) {
usb_data.operating_mode = FSL_USB2_DR_OTG;
usb_dev_dr_host = platform_device_register_simple(
"fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_dr_host)) {
ret = PTR_ERR(usb_dev_dr_host);
goto err;
}
usb_dev_dr_client = platform_device_register_simple(
"fsl-usb2-udc", i, r, 2);
if (IS_ERR(usb_dev_dr_client)) {
ret = PTR_ERR(usb_dev_dr_client);
goto err;
}
} else {
ret = -EINVAL;
goto err;
}
prop = of_get_property(np, "phy_type", NULL);
usb_data.phy_mode = determine_usb_phy(prop);
if (usb_dev_dr_host) {
usb_dev_dr_host->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_dr_host->dev.dma_mask = &usb_dev_dr_host->
dev.coherent_dma_mask;
if ((ret = platform_device_add_data(usb_dev_dr_host,
&usb_data, sizeof(struct
fsl_usb2_platform_data))))
goto unreg_dr;
}
if (usb_dev_dr_client) {
usb_dev_dr_client->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_dr_client->dev.dma_mask = &usb_dev_dr_client->
dev.coherent_dma_mask;
if ((ret = platform_device_add_data(usb_dev_dr_client,
&usb_data, sizeof(struct
fsl_usb2_platform_data))))
goto unreg_dr;
}
i++;
}
return 0;
unreg_dr:
if (usb_dev_dr_host)
platform_device_unregister(usb_dev_dr_host);
if (usb_dev_dr_client)
platform_device_unregister(usb_dev_dr_client);
unreg_mph:
if (usb_dev_mph)
platform_device_unregister(usb_dev_mph);
err:
return ret;
}
arch_initcall(fsl_usb_of_init);
static int __init of_fsl_spi_probe(char *type, char *compatible, u32 sysclk,
struct spi_board_info *board_infos,
unsigned int num_board_infos,
void (*activate_cs)(u8 cs, u8 polarity),
void (*deactivate_cs)(u8 cs, u8 polarity))
{
struct device_node *np;
unsigned int i = 0;
for_each_compatible_node(np, type, compatible) {
int ret;
unsigned int j;
const void *prop;
struct resource res[2];
struct platform_device *pdev;
struct fsl_spi_platform_data pdata = {
.activate_cs = activate_cs,
.deactivate_cs = deactivate_cs,
};
memset(res, 0, sizeof(res));
pdata.sysclk = sysclk;
prop = of_get_property(np, "reg", NULL);
if (!prop)
goto err;
pdata.bus_num = *(u32 *)prop;
prop = of_get_property(np, "cell-index", NULL);
if (prop)
i = *(u32 *)prop;
prop = of_get_property(np, "mode", NULL);
if (prop && !strcmp(prop, "cpu-qe"))
pdata.qe_mode = 1;
for (j = 0; j < num_board_infos; j++) {
if (board_infos[j].bus_num == pdata.bus_num)
pdata.max_chipselect++;
}
if (!pdata.max_chipselect)
continue;
ret = of_address_to_resource(np, 0, &res[0]);
if (ret)
goto err;
ret = of_irq_to_resource(np, 0, &res[1]);
if (ret == NO_IRQ)
goto err;
pdev = platform_device_alloc("mpc83xx_spi", i);
if (!pdev)
goto err;
ret = platform_device_add_data(pdev, &pdata, sizeof(pdata));
if (ret)
goto unreg;
ret = platform_device_add_resources(pdev, res,
ARRAY_SIZE(res));
if (ret)
goto unreg;
ret = platform_device_add(pdev);
if (ret)
goto unreg;
goto next;
unreg:
platform_device_del(pdev);
err:
pr_err("%s: registration failed\n", np->full_name);
next:
i++;
}
return i;
}
int __init fsl_spi_init(struct spi_board_info *board_infos,
unsigned int num_board_infos,
void (*activate_cs)(u8 cs, u8 polarity),
void (*deactivate_cs)(u8 cs, u8 polarity))
{
u32 sysclk = -1;
int ret;
#ifdef CONFIG_QUICC_ENGINE
/* SPI controller is either clocked from QE or SoC clock */
sysclk = get_brgfreq();
#endif
if (sysclk == -1) {
sysclk = fsl_get_sys_freq();
if (sysclk == -1)
return -ENODEV;
}
ret = of_fsl_spi_probe(NULL, "fsl,spi", sysclk, board_infos,
num_board_infos, activate_cs, deactivate_cs);
if (!ret)
of_fsl_spi_probe("spi", "fsl_spi", sysclk, board_infos,
num_board_infos, activate_cs, deactivate_cs);
return spi_register_board_info(board_infos, num_board_infos);
}
#if defined(CONFIG_PPC_85xx) || defined(CONFIG_PPC_86xx)
static __be32 __iomem *rstcr;
static int __init setup_rstcr(void)
{
struct device_node *np;
np = of_find_node_by_name(NULL, "global-utilities");
if ((np && of_get_property(np, "fsl,has-rstcr", NULL))) {
const u32 *prop = of_get_property(np, "reg", NULL);
if (prop) {
/* map reset control register
* 0xE00B0 is offset of reset control register
*/
rstcr = ioremap(get_immrbase() + *prop + 0xB0, 0xff);
if (!rstcr)
printk (KERN_EMERG "Error: reset control "
"register not mapped!\n");
}
} else
printk (KERN_INFO "rstcr compatible register does not exist!\n");
if (np)
of_node_put(np);
return 0;
}
arch_initcall(setup_rstcr);
void fsl_rstcr_restart(char *cmd)
{
local_irq_disable();
if (rstcr)
/* set reset control register */
out_be32(rstcr, 0x2); /* HRESET_REQ */
while (1) ;
}
#endif
#if defined(CONFIG_FB_FSL_DIU) || defined(CONFIG_FB_FSL_DIU_MODULE)
struct platform_diu_data_ops diu_ops;
EXPORT_SYMBOL(diu_ops);
#endif