linux/arch/ia64/kernel/entry.S

1430 lines
38 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* arch/ia64/kernel/entry.S
*
* Kernel entry points.
*
* Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 1999, 2002-2003
* Asit Mallick <Asit.K.Mallick@intel.com>
* Don Dugger <Don.Dugger@intel.com>
* Suresh Siddha <suresh.b.siddha@intel.com>
* Fenghua Yu <fenghua.yu@intel.com>
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
*/
/*
* ia64_switch_to now places correct virtual mapping in in TR2 for
* kernel stack. This allows us to handle interrupts without changing
* to physical mode.
*
* Jonathan Nicklin <nicklin@missioncriticallinux.com>
* Patrick O'Rourke <orourke@missioncriticallinux.com>
* 11/07/2000
*/
/*
* Copyright (c) 2008 Isaku Yamahata <yamahata at valinux co jp>
* VA Linux Systems Japan K.K.
* pv_ops.
*/
/*
* Global (preserved) predicate usage on syscall entry/exit path:
*
* pKStk: See entry.h.
* pUStk: See entry.h.
* pSys: See entry.h.
* pNonSys: !pSys
*/
mm: reorder includes after introduction of linux/pgtable.h The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include of the latter in the middle of asm includes. Fix this up with the aid of the below script and manual adjustments here and there. import sys import re if len(sys.argv) is not 3: print "USAGE: %s <file> <header>" % (sys.argv[0]) sys.exit(1) hdr_to_move="#include <linux/%s>" % sys.argv[2] moved = False in_hdrs = False with open(sys.argv[1], "r") as f: lines = f.readlines() for _line in lines: line = _line.rstrip(' ') if line == hdr_to_move: continue if line.startswith("#include <linux/"): in_hdrs = True elif not moved and in_hdrs: moved = True print hdr_to_move print line Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 12:32:42 +08:00
#include <linux/pgtable.h>
#include <asm/asmmacro.h>
#include <asm/cache.h>
#include <asm/errno.h>
#include <asm/kregs.h>
#include <asm/asm-offsets.h>
#include <asm/percpu.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
#include <asm/unistd.h>
#include <asm/ftrace.h>
#include <asm/export.h>
#include "minstate.h"
/*
* execve() is special because in case of success, we need to
* setup a null register window frame.
*/
ENTRY(ia64_execve)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,3,0
mov loc0=rp
.body
mov out0=in0 // filename
;; // stop bit between alloc and call
mov out1=in1 // argv
mov out2=in2 // envp
br.call.sptk.many rp=sys_execve
.ret0:
cmp4.ge p6,p7=r8,r0
mov ar.pfs=loc1 // restore ar.pfs
sxt4 r8=r8 // return 64-bit result
;;
stf.spill [sp]=f0
mov rp=loc0
(p6) mov ar.pfs=r0 // clear ar.pfs on success
(p7) br.ret.sptk.many rp
/*
* In theory, we'd have to zap this state only to prevent leaking of
* security sensitive state (e.g., if current->mm->dumpable is zero). However,
* this executes in less than 20 cycles even on Itanium, so it's not worth
* optimizing for...).
*/
mov ar.unat=0; mov ar.lc=0
mov r4=0; mov f2=f0; mov b1=r0
mov r5=0; mov f3=f0; mov b2=r0
mov r6=0; mov f4=f0; mov b3=r0
mov r7=0; mov f5=f0; mov b4=r0
ldf.fill f12=[sp]; mov f13=f0; mov b5=r0
ldf.fill f14=[sp]; ldf.fill f15=[sp]; mov f16=f0
ldf.fill f17=[sp]; ldf.fill f18=[sp]; mov f19=f0
ldf.fill f20=[sp]; ldf.fill f21=[sp]; mov f22=f0
ldf.fill f23=[sp]; ldf.fill f24=[sp]; mov f25=f0
ldf.fill f26=[sp]; ldf.fill f27=[sp]; mov f28=f0
ldf.fill f29=[sp]; ldf.fill f30=[sp]; mov f31=f0
br.ret.sptk.many rp
END(ia64_execve)
/*
* sys_clone2(u64 flags, u64 ustack_base, u64 ustack_size, u64 parent_tidptr, u64 child_tidptr,
* u64 tls)
*/
GLOBAL_ENTRY(sys_clone2)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc r16=ar.pfs,8,2,6,0
DO_SAVE_SWITCH_STACK
mov loc0=rp
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. I'm converting all the remaining arches that haven't yet switched and am collecting individual acks. Once I have them, I'll send the whole series removing the copy_thread()/copy_thread_tls() split, the HAVE_COPY_THREAD_TLS define and the legacy do_fork() helper. The only kernel-wide process creation entry point for anything not going directly through the syscall path will then be based on struct kernel_clone_args. No more danger of weird process creation abi quirks between architectures hopefully, and easier to maintain overall. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since ia64 does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and ia64 is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on ia64. Once that is done we can get of another ARCH_WANTS_* macro. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, ia64 joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Well, the first version I nothing to test this with. I don't know how to reasonably explain what happened but thanks to Adrian I'm now sitting at home next to a HP Integrity RX2600. I've done some testing and my initial version had a bug that became obvious when I took a closer look. The switch stack logic assumes that ar.pfs is stored in r16 and I changed that to r2. So with that fixed the following test program runs without any problems: #ifndef _GNU_SOURCE #define _GNU_SOURCE 1 #endif #include <errno.h> #include <fcntl.h> #include <linux/sched.h> #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <syscall.h> #include <unistd.h> #define IA64_SYSCALL_OFFSET 1024 #ifndef __NR_clone #define __NR_clone (104 + IA64_SYSCALL_OFFSET) #endif #ifndef __NR_clone2 #define __NR_clone2 (189 + IA64_SYSCALL_OFFSET) #endif /* * sys_clone(unsigned long flags, * unsigned long stack, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone(void) { return syscall(__NR_clone, SIGCHLD, 0, NULL, NULL, 0); } /* * sys_clone2(unsigned long flags, * unsigned long stack, * unsigned long stack_size, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone2(void) { return syscall(__NR_clone2, SIGCHLD, 0, 0, NULL, NULL, 0); } /* * Let's use the "standard stack limit" (i.e. glibc thread size default) for * stack sizes: 8MB. */ #define __STACK_SIZE (8 * 1024 * 1024) /* This is not always defined in sched.h. */ extern int __clone2 (int (*__fn) (void *__arg), void *__child_stack_base, size_t __child_stack_size, int __flags, void *__arg, ...); pid_t libc_clone2(int (*fn)(void *), void *arg) { pid_t ret; void *stack; stack = malloc(__STACK_SIZE); if (!stack) return -ENOMEM; return __clone2(fn, stack, __STACK_SIZE, SIGCHLD, arg, NULL, NULL, NULL); } static int libc_clone2_child(void *data) { fprintf(stderr, "I'll just see myself out\n"); _exit(EXIT_SUCCESS); } int main(void) { for (int i = 0; i < 1000; i++) { pid_t pid = ia64_raw_clone(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone() passed\n"); pid = ia64_raw_clone2(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone2() passed\n"); pid = libc_clone2(libc_clone2_child, NULL); if (pid < 0) _exit(EXIT_FAILURE); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "libc_clone2() passed\n"); } _exit(EXIT_SUCCESS); } For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. And I've got sparc patches acked by Dave, too. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Qais Yousef <qais.yousef@arm.com> Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: https://lore.kernel.org/r/20200517151635.3085756-1-christian.brauner@ubuntu.com
2020-05-17 23:16:35 +08:00
mov loc1=r16 // save ar.pfs across ia64_clone
.body
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. I'm converting all the remaining arches that haven't yet switched and am collecting individual acks. Once I have them, I'll send the whole series removing the copy_thread()/copy_thread_tls() split, the HAVE_COPY_THREAD_TLS define and the legacy do_fork() helper. The only kernel-wide process creation entry point for anything not going directly through the syscall path will then be based on struct kernel_clone_args. No more danger of weird process creation abi quirks between architectures hopefully, and easier to maintain overall. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since ia64 does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and ia64 is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on ia64. Once that is done we can get of another ARCH_WANTS_* macro. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, ia64 joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Well, the first version I nothing to test this with. I don't know how to reasonably explain what happened but thanks to Adrian I'm now sitting at home next to a HP Integrity RX2600. I've done some testing and my initial version had a bug that became obvious when I took a closer look. The switch stack logic assumes that ar.pfs is stored in r16 and I changed that to r2. So with that fixed the following test program runs without any problems: #ifndef _GNU_SOURCE #define _GNU_SOURCE 1 #endif #include <errno.h> #include <fcntl.h> #include <linux/sched.h> #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <syscall.h> #include <unistd.h> #define IA64_SYSCALL_OFFSET 1024 #ifndef __NR_clone #define __NR_clone (104 + IA64_SYSCALL_OFFSET) #endif #ifndef __NR_clone2 #define __NR_clone2 (189 + IA64_SYSCALL_OFFSET) #endif /* * sys_clone(unsigned long flags, * unsigned long stack, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone(void) { return syscall(__NR_clone, SIGCHLD, 0, NULL, NULL, 0); } /* * sys_clone2(unsigned long flags, * unsigned long stack, * unsigned long stack_size, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone2(void) { return syscall(__NR_clone2, SIGCHLD, 0, 0, NULL, NULL, 0); } /* * Let's use the "standard stack limit" (i.e. glibc thread size default) for * stack sizes: 8MB. */ #define __STACK_SIZE (8 * 1024 * 1024) /* This is not always defined in sched.h. */ extern int __clone2 (int (*__fn) (void *__arg), void *__child_stack_base, size_t __child_stack_size, int __flags, void *__arg, ...); pid_t libc_clone2(int (*fn)(void *), void *arg) { pid_t ret; void *stack; stack = malloc(__STACK_SIZE); if (!stack) return -ENOMEM; return __clone2(fn, stack, __STACK_SIZE, SIGCHLD, arg, NULL, NULL, NULL); } static int libc_clone2_child(void *data) { fprintf(stderr, "I'll just see myself out\n"); _exit(EXIT_SUCCESS); } int main(void) { for (int i = 0; i < 1000; i++) { pid_t pid = ia64_raw_clone(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone() passed\n"); pid = ia64_raw_clone2(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone2() passed\n"); pid = libc_clone2(libc_clone2_child, NULL); if (pid < 0) _exit(EXIT_FAILURE); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "libc_clone2() passed\n"); } _exit(EXIT_SUCCESS); } For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. And I've got sparc patches acked by Dave, too. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Qais Yousef <qais.yousef@arm.com> Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: https://lore.kernel.org/r/20200517151635.3085756-1-christian.brauner@ubuntu.com
2020-05-17 23:16:35 +08:00
mov out0=in0
mov out1=in1
mov out2=in2
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. I'm converting all the remaining arches that haven't yet switched and am collecting individual acks. Once I have them, I'll send the whole series removing the copy_thread()/copy_thread_tls() split, the HAVE_COPY_THREAD_TLS define and the legacy do_fork() helper. The only kernel-wide process creation entry point for anything not going directly through the syscall path will then be based on struct kernel_clone_args. No more danger of weird process creation abi quirks between architectures hopefully, and easier to maintain overall. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since ia64 does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and ia64 is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on ia64. Once that is done we can get of another ARCH_WANTS_* macro. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, ia64 joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Well, the first version I nothing to test this with. I don't know how to reasonably explain what happened but thanks to Adrian I'm now sitting at home next to a HP Integrity RX2600. I've done some testing and my initial version had a bug that became obvious when I took a closer look. The switch stack logic assumes that ar.pfs is stored in r16 and I changed that to r2. So with that fixed the following test program runs without any problems: #ifndef _GNU_SOURCE #define _GNU_SOURCE 1 #endif #include <errno.h> #include <fcntl.h> #include <linux/sched.h> #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <syscall.h> #include <unistd.h> #define IA64_SYSCALL_OFFSET 1024 #ifndef __NR_clone #define __NR_clone (104 + IA64_SYSCALL_OFFSET) #endif #ifndef __NR_clone2 #define __NR_clone2 (189 + IA64_SYSCALL_OFFSET) #endif /* * sys_clone(unsigned long flags, * unsigned long stack, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone(void) { return syscall(__NR_clone, SIGCHLD, 0, NULL, NULL, 0); } /* * sys_clone2(unsigned long flags, * unsigned long stack, * unsigned long stack_size, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone2(void) { return syscall(__NR_clone2, SIGCHLD, 0, 0, NULL, NULL, 0); } /* * Let's use the "standard stack limit" (i.e. glibc thread size default) for * stack sizes: 8MB. */ #define __STACK_SIZE (8 * 1024 * 1024) /* This is not always defined in sched.h. */ extern int __clone2 (int (*__fn) (void *__arg), void *__child_stack_base, size_t __child_stack_size, int __flags, void *__arg, ...); pid_t libc_clone2(int (*fn)(void *), void *arg) { pid_t ret; void *stack; stack = malloc(__STACK_SIZE); if (!stack) return -ENOMEM; return __clone2(fn, stack, __STACK_SIZE, SIGCHLD, arg, NULL, NULL, NULL); } static int libc_clone2_child(void *data) { fprintf(stderr, "I'll just see myself out\n"); _exit(EXIT_SUCCESS); } int main(void) { for (int i = 0; i < 1000; i++) { pid_t pid = ia64_raw_clone(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone() passed\n"); pid = ia64_raw_clone2(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone2() passed\n"); pid = libc_clone2(libc_clone2_child, NULL); if (pid < 0) _exit(EXIT_FAILURE); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "libc_clone2() passed\n"); } _exit(EXIT_SUCCESS); } For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. And I've got sparc patches acked by Dave, too. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Qais Yousef <qais.yousef@arm.com> Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: https://lore.kernel.org/r/20200517151635.3085756-1-christian.brauner@ubuntu.com
2020-05-17 23:16:35 +08:00
mov out3=in3
mov out4=in4
mov out5=in5
br.call.sptk.many rp=ia64_clone
.ret1: .restore sp
adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(sys_clone2)
/*
* sys_clone(u64 flags, u64 ustack_base, u64 parent_tidptr, u64 child_tidptr, u64 tls)
* Deprecated. Use sys_clone2() instead.
*/
GLOBAL_ENTRY(sys_clone)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc r16=ar.pfs,8,2,6,0
DO_SAVE_SWITCH_STACK
mov loc0=rp
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. I'm converting all the remaining arches that haven't yet switched and am collecting individual acks. Once I have them, I'll send the whole series removing the copy_thread()/copy_thread_tls() split, the HAVE_COPY_THREAD_TLS define and the legacy do_fork() helper. The only kernel-wide process creation entry point for anything not going directly through the syscall path will then be based on struct kernel_clone_args. No more danger of weird process creation abi quirks between architectures hopefully, and easier to maintain overall. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since ia64 does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and ia64 is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on ia64. Once that is done we can get of another ARCH_WANTS_* macro. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, ia64 joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Well, the first version I nothing to test this with. I don't know how to reasonably explain what happened but thanks to Adrian I'm now sitting at home next to a HP Integrity RX2600. I've done some testing and my initial version had a bug that became obvious when I took a closer look. The switch stack logic assumes that ar.pfs is stored in r16 and I changed that to r2. So with that fixed the following test program runs without any problems: #ifndef _GNU_SOURCE #define _GNU_SOURCE 1 #endif #include <errno.h> #include <fcntl.h> #include <linux/sched.h> #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <syscall.h> #include <unistd.h> #define IA64_SYSCALL_OFFSET 1024 #ifndef __NR_clone #define __NR_clone (104 + IA64_SYSCALL_OFFSET) #endif #ifndef __NR_clone2 #define __NR_clone2 (189 + IA64_SYSCALL_OFFSET) #endif /* * sys_clone(unsigned long flags, * unsigned long stack, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone(void) { return syscall(__NR_clone, SIGCHLD, 0, NULL, NULL, 0); } /* * sys_clone2(unsigned long flags, * unsigned long stack, * unsigned long stack_size, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone2(void) { return syscall(__NR_clone2, SIGCHLD, 0, 0, NULL, NULL, 0); } /* * Let's use the "standard stack limit" (i.e. glibc thread size default) for * stack sizes: 8MB. */ #define __STACK_SIZE (8 * 1024 * 1024) /* This is not always defined in sched.h. */ extern int __clone2 (int (*__fn) (void *__arg), void *__child_stack_base, size_t __child_stack_size, int __flags, void *__arg, ...); pid_t libc_clone2(int (*fn)(void *), void *arg) { pid_t ret; void *stack; stack = malloc(__STACK_SIZE); if (!stack) return -ENOMEM; return __clone2(fn, stack, __STACK_SIZE, SIGCHLD, arg, NULL, NULL, NULL); } static int libc_clone2_child(void *data) { fprintf(stderr, "I'll just see myself out\n"); _exit(EXIT_SUCCESS); } int main(void) { for (int i = 0; i < 1000; i++) { pid_t pid = ia64_raw_clone(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone() passed\n"); pid = ia64_raw_clone2(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone2() passed\n"); pid = libc_clone2(libc_clone2_child, NULL); if (pid < 0) _exit(EXIT_FAILURE); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "libc_clone2() passed\n"); } _exit(EXIT_SUCCESS); } For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. And I've got sparc patches acked by Dave, too. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Qais Yousef <qais.yousef@arm.com> Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: https://lore.kernel.org/r/20200517151635.3085756-1-christian.brauner@ubuntu.com
2020-05-17 23:16:35 +08:00
mov loc1=r16 // save ar.pfs across ia64_clone
.body
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. I'm converting all the remaining arches that haven't yet switched and am collecting individual acks. Once I have them, I'll send the whole series removing the copy_thread()/copy_thread_tls() split, the HAVE_COPY_THREAD_TLS define and the legacy do_fork() helper. The only kernel-wide process creation entry point for anything not going directly through the syscall path will then be based on struct kernel_clone_args. No more danger of weird process creation abi quirks between architectures hopefully, and easier to maintain overall. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since ia64 does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and ia64 is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on ia64. Once that is done we can get of another ARCH_WANTS_* macro. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, ia64 joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Well, the first version I nothing to test this with. I don't know how to reasonably explain what happened but thanks to Adrian I'm now sitting at home next to a HP Integrity RX2600. I've done some testing and my initial version had a bug that became obvious when I took a closer look. The switch stack logic assumes that ar.pfs is stored in r16 and I changed that to r2. So with that fixed the following test program runs without any problems: #ifndef _GNU_SOURCE #define _GNU_SOURCE 1 #endif #include <errno.h> #include <fcntl.h> #include <linux/sched.h> #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <syscall.h> #include <unistd.h> #define IA64_SYSCALL_OFFSET 1024 #ifndef __NR_clone #define __NR_clone (104 + IA64_SYSCALL_OFFSET) #endif #ifndef __NR_clone2 #define __NR_clone2 (189 + IA64_SYSCALL_OFFSET) #endif /* * sys_clone(unsigned long flags, * unsigned long stack, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone(void) { return syscall(__NR_clone, SIGCHLD, 0, NULL, NULL, 0); } /* * sys_clone2(unsigned long flags, * unsigned long stack, * unsigned long stack_size, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone2(void) { return syscall(__NR_clone2, SIGCHLD, 0, 0, NULL, NULL, 0); } /* * Let's use the "standard stack limit" (i.e. glibc thread size default) for * stack sizes: 8MB. */ #define __STACK_SIZE (8 * 1024 * 1024) /* This is not always defined in sched.h. */ extern int __clone2 (int (*__fn) (void *__arg), void *__child_stack_base, size_t __child_stack_size, int __flags, void *__arg, ...); pid_t libc_clone2(int (*fn)(void *), void *arg) { pid_t ret; void *stack; stack = malloc(__STACK_SIZE); if (!stack) return -ENOMEM; return __clone2(fn, stack, __STACK_SIZE, SIGCHLD, arg, NULL, NULL, NULL); } static int libc_clone2_child(void *data) { fprintf(stderr, "I'll just see myself out\n"); _exit(EXIT_SUCCESS); } int main(void) { for (int i = 0; i < 1000; i++) { pid_t pid = ia64_raw_clone(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone() passed\n"); pid = ia64_raw_clone2(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone2() passed\n"); pid = libc_clone2(libc_clone2_child, NULL); if (pid < 0) _exit(EXIT_FAILURE); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "libc_clone2() passed\n"); } _exit(EXIT_SUCCESS); } For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. And I've got sparc patches acked by Dave, too. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Qais Yousef <qais.yousef@arm.com> Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: https://lore.kernel.org/r/20200517151635.3085756-1-christian.brauner@ubuntu.com
2020-05-17 23:16:35 +08:00
mov out0=in0
mov out1=in1
mov out2=16 // stacksize (compensates for 16-byte scratch area)
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. I'm converting all the remaining arches that haven't yet switched and am collecting individual acks. Once I have them, I'll send the whole series removing the copy_thread()/copy_thread_tls() split, the HAVE_COPY_THREAD_TLS define and the legacy do_fork() helper. The only kernel-wide process creation entry point for anything not going directly through the syscall path will then be based on struct kernel_clone_args. No more danger of weird process creation abi quirks between architectures hopefully, and easier to maintain overall. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since ia64 does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and ia64 is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on ia64. Once that is done we can get of another ARCH_WANTS_* macro. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, ia64 joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Well, the first version I nothing to test this with. I don't know how to reasonably explain what happened but thanks to Adrian I'm now sitting at home next to a HP Integrity RX2600. I've done some testing and my initial version had a bug that became obvious when I took a closer look. The switch stack logic assumes that ar.pfs is stored in r16 and I changed that to r2. So with that fixed the following test program runs without any problems: #ifndef _GNU_SOURCE #define _GNU_SOURCE 1 #endif #include <errno.h> #include <fcntl.h> #include <linux/sched.h> #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <syscall.h> #include <unistd.h> #define IA64_SYSCALL_OFFSET 1024 #ifndef __NR_clone #define __NR_clone (104 + IA64_SYSCALL_OFFSET) #endif #ifndef __NR_clone2 #define __NR_clone2 (189 + IA64_SYSCALL_OFFSET) #endif /* * sys_clone(unsigned long flags, * unsigned long stack, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone(void) { return syscall(__NR_clone, SIGCHLD, 0, NULL, NULL, 0); } /* * sys_clone2(unsigned long flags, * unsigned long stack, * unsigned long stack_size, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone2(void) { return syscall(__NR_clone2, SIGCHLD, 0, 0, NULL, NULL, 0); } /* * Let's use the "standard stack limit" (i.e. glibc thread size default) for * stack sizes: 8MB. */ #define __STACK_SIZE (8 * 1024 * 1024) /* This is not always defined in sched.h. */ extern int __clone2 (int (*__fn) (void *__arg), void *__child_stack_base, size_t __child_stack_size, int __flags, void *__arg, ...); pid_t libc_clone2(int (*fn)(void *), void *arg) { pid_t ret; void *stack; stack = malloc(__STACK_SIZE); if (!stack) return -ENOMEM; return __clone2(fn, stack, __STACK_SIZE, SIGCHLD, arg, NULL, NULL, NULL); } static int libc_clone2_child(void *data) { fprintf(stderr, "I'll just see myself out\n"); _exit(EXIT_SUCCESS); } int main(void) { for (int i = 0; i < 1000; i++) { pid_t pid = ia64_raw_clone(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone() passed\n"); pid = ia64_raw_clone2(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone2() passed\n"); pid = libc_clone2(libc_clone2_child, NULL); if (pid < 0) _exit(EXIT_FAILURE); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "libc_clone2() passed\n"); } _exit(EXIT_SUCCESS); } For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. And I've got sparc patches acked by Dave, too. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Qais Yousef <qais.yousef@arm.com> Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: https://lore.kernel.org/r/20200517151635.3085756-1-christian.brauner@ubuntu.com
2020-05-17 23:16:35 +08:00
mov out3=in3
mov out4=in4
mov out5=in5
br.call.sptk.many rp=ia64_clone
.ret2: .restore sp
adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(sys_clone)
/*
* prev_task <- ia64_switch_to(struct task_struct *next)
* With Ingo's new scheduler, interrupts are disabled when this routine gets
* called. The code starting at .map relies on this. The rest of the code
* doesn't care about the interrupt masking status.
*/
GLOBAL_ENTRY(ia64_switch_to)
.prologue
alloc r16=ar.pfs,1,0,0,0
DO_SAVE_SWITCH_STACK
.body
adds r22=IA64_TASK_THREAD_KSP_OFFSET,r13
movl r25=init_task
mov r27=IA64_KR(CURRENT_STACK)
adds r21=IA64_TASK_THREAD_KSP_OFFSET,in0
dep r20=0,in0,61,3 // physical address of "next"
;;
st8 [r22]=sp // save kernel stack pointer of old task
shr.u r26=r20,IA64_GRANULE_SHIFT
cmp.eq p7,p6=r25,in0
;;
/*
* If we've already mapped this task's page, we can skip doing it again.
*/
(p6) cmp.eq p7,p6=r26,r27
(p6) br.cond.dpnt .map
;;
.done:
ld8 sp=[r21] // load kernel stack pointer of new task
MOV_TO_KR(CURRENT, in0, r8, r9) // update "current" application register
mov r8=r13 // return pointer to previously running task
mov r13=in0 // set "current" pointer
;;
DO_LOAD_SWITCH_STACK
#ifdef CONFIG_SMP
sync.i // ensure "fc"s done by this CPU are visible on other CPUs
#endif
br.ret.sptk.many rp // boogie on out in new context
.map:
RSM_PSR_IC(r25) // interrupts (psr.i) are already disabled here
movl r25=PAGE_KERNEL
;;
srlz.d
or r23=r25,r20 // construct PA | page properties
mov r25=IA64_GRANULE_SHIFT<<2
;;
MOV_TO_ITIR(p0, r25, r8)
MOV_TO_IFA(in0, r8) // VA of next task...
;;
mov r25=IA64_TR_CURRENT_STACK
MOV_TO_KR(CURRENT_STACK, r26, r8, r9) // remember last page we mapped...
;;
itr.d dtr[r25]=r23 // wire in new mapping...
SSM_PSR_IC_AND_SRLZ_D(r8, r9) // reenable the psr.ic bit
br.cond.sptk .done
END(ia64_switch_to)
/*
* Note that interrupts are enabled during save_switch_stack and load_switch_stack. This
* means that we may get an interrupt with "sp" pointing to the new kernel stack while
* ar.bspstore is still pointing to the old kernel backing store area. Since ar.rsc,
* ar.rnat, ar.bsp, and ar.bspstore are all preserved by interrupts, this is not a
* problem. Also, we don't need to specify unwind information for preserved registers
* that are not modified in save_switch_stack as the right unwind information is already
* specified at the call-site of save_switch_stack.
*/
/*
* save_switch_stack:
* - r16 holds ar.pfs
* - b7 holds address to return to
* - rp (b0) holds return address to save
*/
GLOBAL_ENTRY(save_switch_stack)
.prologue
.altrp b7
flushrs // flush dirty regs to backing store (must be first in insn group)
.save @priunat,r17
mov r17=ar.unat // preserve caller's
.body
#ifdef CONFIG_ITANIUM
adds r2=16+128,sp
adds r3=16+64,sp
adds r14=SW(R4)+16,sp
;;
st8.spill [r14]=r4,16 // spill r4
lfetch.fault.excl.nt1 [r3],128
;;
lfetch.fault.excl.nt1 [r2],128
lfetch.fault.excl.nt1 [r3],128
;;
lfetch.fault.excl [r2]
lfetch.fault.excl [r3]
adds r15=SW(R5)+16,sp
#else
add r2=16+3*128,sp
add r3=16,sp
add r14=SW(R4)+16,sp
;;
st8.spill [r14]=r4,SW(R6)-SW(R4) // spill r4 and prefetch offset 0x1c0
lfetch.fault.excl.nt1 [r3],128 // prefetch offset 0x010
;;
lfetch.fault.excl.nt1 [r3],128 // prefetch offset 0x090
lfetch.fault.excl.nt1 [r2],128 // prefetch offset 0x190
;;
lfetch.fault.excl.nt1 [r3] // prefetch offset 0x110
lfetch.fault.excl.nt1 [r2] // prefetch offset 0x210
adds r15=SW(R5)+16,sp
#endif
;;
st8.spill [r15]=r5,SW(R7)-SW(R5) // spill r5
mov.m ar.rsc=0 // put RSE in mode: enforced lazy, little endian, pl 0
add r2=SW(F2)+16,sp // r2 = &sw->f2
;;
st8.spill [r14]=r6,SW(B0)-SW(R6) // spill r6
mov.m r18=ar.fpsr // preserve fpsr
add r3=SW(F3)+16,sp // r3 = &sw->f3
;;
stf.spill [r2]=f2,32
mov.m r19=ar.rnat
mov r21=b0
stf.spill [r3]=f3,32
st8.spill [r15]=r7,SW(B2)-SW(R7) // spill r7
mov r22=b1
;;
// since we're done with the spills, read and save ar.unat:
mov.m r29=ar.unat
mov.m r20=ar.bspstore
mov r23=b2
stf.spill [r2]=f4,32
stf.spill [r3]=f5,32
mov r24=b3
;;
st8 [r14]=r21,SW(B1)-SW(B0) // save b0
st8 [r15]=r23,SW(B3)-SW(B2) // save b2
mov r25=b4
mov r26=b5
;;
st8 [r14]=r22,SW(B4)-SW(B1) // save b1
st8 [r15]=r24,SW(AR_PFS)-SW(B3) // save b3
mov r21=ar.lc // I-unit
stf.spill [r2]=f12,32
stf.spill [r3]=f13,32
;;
st8 [r14]=r25,SW(B5)-SW(B4) // save b4
st8 [r15]=r16,SW(AR_LC)-SW(AR_PFS) // save ar.pfs
stf.spill [r2]=f14,32
stf.spill [r3]=f15,32
;;
st8 [r14]=r26 // save b5
st8 [r15]=r21 // save ar.lc
stf.spill [r2]=f16,32
stf.spill [r3]=f17,32
;;
stf.spill [r2]=f18,32
stf.spill [r3]=f19,32
;;
stf.spill [r2]=f20,32
stf.spill [r3]=f21,32
;;
stf.spill [r2]=f22,32
stf.spill [r3]=f23,32
;;
stf.spill [r2]=f24,32
stf.spill [r3]=f25,32
;;
stf.spill [r2]=f26,32
stf.spill [r3]=f27,32
;;
stf.spill [r2]=f28,32
stf.spill [r3]=f29,32
;;
stf.spill [r2]=f30,SW(AR_UNAT)-SW(F30)
stf.spill [r3]=f31,SW(PR)-SW(F31)
add r14=SW(CALLER_UNAT)+16,sp
;;
st8 [r2]=r29,SW(AR_RNAT)-SW(AR_UNAT) // save ar.unat
st8 [r14]=r17,SW(AR_FPSR)-SW(CALLER_UNAT) // save caller_unat
mov r21=pr
;;
st8 [r2]=r19,SW(AR_BSPSTORE)-SW(AR_RNAT) // save ar.rnat
st8 [r3]=r21 // save predicate registers
;;
st8 [r2]=r20 // save ar.bspstore
st8 [r14]=r18 // save fpsr
mov ar.rsc=3 // put RSE back into eager mode, pl 0
br.cond.sptk.many b7
END(save_switch_stack)
/*
* load_switch_stack:
* - "invala" MUST be done at call site (normally in DO_LOAD_SWITCH_STACK)
* - b7 holds address to return to
* - must not touch r8-r11
*/
GLOBAL_ENTRY(load_switch_stack)
.prologue
.altrp b7
.body
lfetch.fault.nt1 [sp]
adds r2=SW(AR_BSPSTORE)+16,sp
adds r3=SW(AR_UNAT)+16,sp
mov ar.rsc=0 // put RSE into enforced lazy mode
adds r14=SW(CALLER_UNAT)+16,sp
adds r15=SW(AR_FPSR)+16,sp
;;
ld8 r27=[r2],(SW(B0)-SW(AR_BSPSTORE)) // bspstore
ld8 r29=[r3],(SW(B1)-SW(AR_UNAT)) // unat
;;
ld8 r21=[r2],16 // restore b0
ld8 r22=[r3],16 // restore b1
;;
ld8 r23=[r2],16 // restore b2
ld8 r24=[r3],16 // restore b3
;;
ld8 r25=[r2],16 // restore b4
ld8 r26=[r3],16 // restore b5
;;
ld8 r16=[r2],(SW(PR)-SW(AR_PFS)) // ar.pfs
ld8 r17=[r3],(SW(AR_RNAT)-SW(AR_LC)) // ar.lc
;;
ld8 r28=[r2] // restore pr
ld8 r30=[r3] // restore rnat
;;
ld8 r18=[r14],16 // restore caller's unat
ld8 r19=[r15],24 // restore fpsr
;;
ldf.fill f2=[r14],32
ldf.fill f3=[r15],32
;;
ldf.fill f4=[r14],32
ldf.fill f5=[r15],32
;;
ldf.fill f12=[r14],32
ldf.fill f13=[r15],32
;;
ldf.fill f14=[r14],32
ldf.fill f15=[r15],32
;;
ldf.fill f16=[r14],32
ldf.fill f17=[r15],32
;;
ldf.fill f18=[r14],32
ldf.fill f19=[r15],32
mov b0=r21
;;
ldf.fill f20=[r14],32
ldf.fill f21=[r15],32
mov b1=r22
;;
ldf.fill f22=[r14],32
ldf.fill f23=[r15],32
mov b2=r23
;;
mov ar.bspstore=r27
mov ar.unat=r29 // establish unat holding the NaT bits for r4-r7
mov b3=r24
;;
ldf.fill f24=[r14],32
ldf.fill f25=[r15],32
mov b4=r25
;;
ldf.fill f26=[r14],32
ldf.fill f27=[r15],32
mov b5=r26
;;
ldf.fill f28=[r14],32
ldf.fill f29=[r15],32
mov ar.pfs=r16
;;
ldf.fill f30=[r14],32
ldf.fill f31=[r15],24
mov ar.lc=r17
;;
ld8.fill r4=[r14],16
ld8.fill r5=[r15],16
mov pr=r28,-1
;;
ld8.fill r6=[r14],16
ld8.fill r7=[r15],16
mov ar.unat=r18 // restore caller's unat
mov ar.rnat=r30 // must restore after bspstore but before rsc!
mov ar.fpsr=r19 // restore fpsr
mov ar.rsc=3 // put RSE back into eager mode, pl 0
br.cond.sptk.many b7
END(load_switch_stack)
/*
* Invoke a system call, but do some tracing before and after the call.
* We MUST preserve the current register frame throughout this routine
* because some system calls (such as ia64_execve) directly
* manipulate ar.pfs.
*/
GLOBAL_ENTRY(ia64_trace_syscall)
PT_REGS_UNWIND_INFO(0)
/*
* We need to preserve the scratch registers f6-f11 in case the system
* call is sigreturn.
*/
adds r16=PT(F6)+16,sp
adds r17=PT(F7)+16,sp
;;
stf.spill [r16]=f6,32
stf.spill [r17]=f7,32
;;
stf.spill [r16]=f8,32
stf.spill [r17]=f9,32
;;
stf.spill [r16]=f10
stf.spill [r17]=f11
br.call.sptk.many rp=syscall_trace_enter // give parent a chance to catch syscall args
cmp.lt p6,p0=r8,r0 // check tracehook
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
mov r10=0
(p6) br.cond.sptk strace_error // syscall failed ->
adds r16=PT(F6)+16,sp
adds r17=PT(F7)+16,sp
;;
ldf.fill f6=[r16],32
ldf.fill f7=[r17],32
;;
ldf.fill f8=[r16],32
ldf.fill f9=[r17],32
;;
ldf.fill f10=[r16]
ldf.fill f11=[r17]
// the syscall number may have changed, so re-load it and re-calculate the
// syscall entry-point:
adds r15=PT(R15)+16,sp // r15 = &pt_regs.r15 (syscall #)
;;
ld8 r15=[r15]
mov r3=NR_syscalls - 1
;;
adds r15=-1024,r15
movl r16=sys_call_table
;;
shladd r20=r15,3,r16 // r20 = sys_call_table + 8*(syscall-1024)
cmp.leu p6,p7=r15,r3
;;
(p6) ld8 r20=[r20] // load address of syscall entry point
(p7) movl r20=sys_ni_syscall
;;
mov b6=r20
br.call.sptk.many rp=b6 // do the syscall
.strace_check_retval:
cmp.lt p6,p0=r8,r0 // syscall failed?
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
mov r10=0
(p6) br.cond.sptk strace_error // syscall failed ->
;; // avoid RAW on r10
.strace_save_retval:
.mem.offset 0,0; st8.spill [r2]=r8 // store return value in slot for r8
.mem.offset 8,0; st8.spill [r3]=r10 // clear error indication in slot for r10
br.call.sptk.many rp=syscall_trace_leave // give parent a chance to catch return value
.ret3:
(pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk
[IA64] disable interrupts on exit of ia64_trace_syscall While testing with CONFIG_VIRT_CPU_ACCOUNTING=y, I found that I occasionally get very huge system time in some threads. So I dug the issue and finally noticed that it was caused because of an interrupt which interrupt in the following window: > [arch/ia64/kernel/entry.S: (!CONFIG_PREEMPT && CONFIG_VIRT_CPU_ACCOUNTING)] > > ENTRY(ia64_leave_syscall) > : > (pUStk) rsm psr.i > cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall > (pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk > .work_processed_syscall: > adds r2=PT(LOADRS)+16,r12 > (pUStk) mov.m r22=ar.itc // fetch time at leave > adds r18=TI_FLAGS+IA64_TASK_SIZE,r13 > ;; > <<< window: from here >>> > (p6) ld4 r31=[r18] // load current_thread_info()->flags > ld8 r19=[r2],PT(B6)-PT(LOADRS) > adds r3=PT(AR_BSPSTORE)+16,r12 > ;; > mov r16=ar.bsp > ld8 r18=[r2],PT(R9)-PT(B6) > (p6) and r15=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE? > ;; > ld8 r23=[r3],PT(R11)-PT(AR_BSPSTORE) > (p6) cmp4.ne.unc p6,p0=r15, r0 // any special work pending? > (p6) br.cond.spnt .work_pending_syscall > ;; > ld8 r9=[r2],PT(CR_IPSR)-PT(R9) > ld8 r11=[r3],PT(CR_IIP)-PT(R11) > (pNonSys) break 0 // bug check: we shouldn't be here if pNonSys is TRUE! > ;; > invala > <<< window: to here >>> > rsm psr.i | psr.ic // turn off interrupts and interruption collection If pUStk is true, it means we are going to return user mode, hence we fetch ar.itc to get time at leave from system. It seems that it is not possible to interrupt the window if pUStk is true, because interrupts are disabled early. And also disabling interrupt makes sense because it is safe for referring current_thread_info()->flags. However interrupting the window while pUStk is true was possible. The route was: ia64_trace_syscall -> .work_pending_syscall_end -> .work_processed_syscall Only in case entering the window from this route, interrupts are enabled during in the window even if pUStk is true. I suppose interrupts must be disabled here anyway if pUStk is true. I'm not sure but afraid that what kind of bad effect were there, other than crazy system time which I found. FYI, there was a commit 6f6d75825dc49b082906b84537b4df28293c2977 that points out a bug at same point(exit of ia64_trace_syscall) in 2006. It can be said that there was an another bug. Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2008-04-22 05:34:39 +08:00
(pUStk) rsm psr.i // disable interrupts
br.cond.sptk ia64_work_pending_syscall_end
strace_error:
ld8 r3=[r2] // load pt_regs.r8
sub r9=0,r8 // negate return value to get errno value
;;
cmp.ne p6,p0=r3,r0 // is pt_regs.r8!=0?
adds r3=16,r2 // r3=&pt_regs.r10
;;
(p6) mov r10=-1
(p6) mov r8=r9
br.cond.sptk .strace_save_retval
END(ia64_trace_syscall)
/*
* When traced and returning from sigreturn, we invoke syscall_trace but then
* go straight to ia64_leave_kernel rather than ia64_leave_syscall.
*/
GLOBAL_ENTRY(ia64_strace_leave_kernel)
PT_REGS_UNWIND_INFO(0)
{ /*
* Some versions of gas generate bad unwind info if the first instruction of a
* procedure doesn't go into the first slot of a bundle. This is a workaround.
*/
nop.m 0
nop.i 0
br.call.sptk.many rp=syscall_trace_leave // give parent a chance to catch return value
}
.ret4: br.cond.sptk ia64_leave_kernel
END(ia64_strace_leave_kernel)
ENTRY(call_payload)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(0)
/* call the kernel_thread payload; fn is in r4, arg - in r5 */
alloc loc1=ar.pfs,0,3,1,0
mov loc0=rp
mov loc2=gp
mov out0=r5 // arg
ld8 r14 = [r4], 8 // fn.address
;;
mov b6 = r14
ld8 gp = [r4] // fn.gp
;;
br.call.sptk.many rp=b6 // fn(arg)
.ret12: mov gp=loc2
mov rp=loc0
mov ar.pfs=loc1
/* ... and if it has returned, we are going to userland */
cmp.ne pKStk,pUStk=r0,r0
br.ret.sptk.many rp
END(call_payload)
GLOBAL_ENTRY(ia64_ret_from_clone)
PT_REGS_UNWIND_INFO(0)
{ /*
* Some versions of gas generate bad unwind info if the first instruction of a
* procedure doesn't go into the first slot of a bundle. This is a workaround.
*/
nop.m 0
nop.i 0
/*
* We need to call schedule_tail() to complete the scheduling process.
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args This is part of a larger series that aims at getting rid of the copy_thread()/copy_thread_tls() split that makes the process creation codepaths in the kernel more convoluted and error-prone than they need to be. I'm converting all the remaining arches that haven't yet switched and am collecting individual acks. Once I have them, I'll send the whole series removing the copy_thread()/copy_thread_tls() split, the HAVE_COPY_THREAD_TLS define and the legacy do_fork() helper. The only kernel-wide process creation entry point for anything not going directly through the syscall path will then be based on struct kernel_clone_args. No more danger of weird process creation abi quirks between architectures hopefully, and easier to maintain overall. It also unblocks implementing clone3() on architectures not support copy_thread_tls(). Any architecture that wants to implement clone3() will need to select HAVE_COPY_THREAD_TLS and thus need to implement copy_thread_tls(). So both goals are connected but independently beneficial. HAVE_COPY_THREAD_TLS means that a given architecture supports CLONE_SETTLS and not setting it should usually mean that the architectures doesn't implement it but that's not how things are. In fact all architectures support CLONE_TLS it's just that they don't follow the calling convention that HAVE_COPY_THREAD_TLS implies. That means all architectures can be switched over to select HAVE_COPY_THREAD_TLS. Once that is done we can remove that macro (yay, less code), the unnecessary do_fork() export in kernel/fork.c, and also rename copy_thread_tls() back to copy_thread(). At this point copy_thread() becomes the main architecture specific part of process creation but it will be the same layout and calling convention for all architectures. (Once that is done we can probably cleanup each copy_thread() function even more but that's for the future.) Since ia64 does support CLONE_SETTLS there's no reason to not select HAVE_COPY_THREAD_TLS. This brings us one step closer to getting rid of the copy_thread()/copy_thread_tls() split we still have and ultimately the HAVE_COPY_THREAD_TLS define in general. A lot of architectures have already converted and ia64 is one of the few hat haven't yet. This also unblocks implementing the clone3() syscall on ia64. Once that is done we can get of another ARCH_WANTS_* macro. Once Any architecture that supports HAVE_COPY_THREAD_TLS cannot call the do_fork() helper anymore. This is fine and intended since it should be removed in favor of the new, cleaner _do_fork() calling convention based on struct kernel_clone_args. In fact, most architectures have already switched. With this patch, ia64 joins the other arches which can't use the fork(), vfork(), clone(), clone3() syscalls directly and who follow the new process creation calling convention that is based on struct kernel_clone_args which we introduced a while back. This means less custom assembly in the architectures entry path to set up the registers before calling into the process creation helper and it is easier to to support new features without having to adapt calling conventions. It also unifies all process creation paths between fork(), vfork(), clone(), and clone3(). (We can't fix the ABI nightmare that legacy clone() is but we can prevent stuff like this happening in the future.) Well, the first version I nothing to test this with. I don't know how to reasonably explain what happened but thanks to Adrian I'm now sitting at home next to a HP Integrity RX2600. I've done some testing and my initial version had a bug that became obvious when I took a closer look. The switch stack logic assumes that ar.pfs is stored in r16 and I changed that to r2. So with that fixed the following test program runs without any problems: #ifndef _GNU_SOURCE #define _GNU_SOURCE 1 #endif #include <errno.h> #include <fcntl.h> #include <linux/sched.h> #include <sched.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <syscall.h> #include <unistd.h> #define IA64_SYSCALL_OFFSET 1024 #ifndef __NR_clone #define __NR_clone (104 + IA64_SYSCALL_OFFSET) #endif #ifndef __NR_clone2 #define __NR_clone2 (189 + IA64_SYSCALL_OFFSET) #endif /* * sys_clone(unsigned long flags, * unsigned long stack, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone(void) { return syscall(__NR_clone, SIGCHLD, 0, NULL, NULL, 0); } /* * sys_clone2(unsigned long flags, * unsigned long stack, * unsigned long stack_size, * int *parent_tidptr, * int *child_tidptr, * unsigned long tls) */ static pid_t ia64_raw_clone2(void) { return syscall(__NR_clone2, SIGCHLD, 0, 0, NULL, NULL, 0); } /* * Let's use the "standard stack limit" (i.e. glibc thread size default) for * stack sizes: 8MB. */ #define __STACK_SIZE (8 * 1024 * 1024) /* This is not always defined in sched.h. */ extern int __clone2 (int (*__fn) (void *__arg), void *__child_stack_base, size_t __child_stack_size, int __flags, void *__arg, ...); pid_t libc_clone2(int (*fn)(void *), void *arg) { pid_t ret; void *stack; stack = malloc(__STACK_SIZE); if (!stack) return -ENOMEM; return __clone2(fn, stack, __STACK_SIZE, SIGCHLD, arg, NULL, NULL, NULL); } static int libc_clone2_child(void *data) { fprintf(stderr, "I'll just see myself out\n"); _exit(EXIT_SUCCESS); } int main(void) { for (int i = 0; i < 1000; i++) { pid_t pid = ia64_raw_clone(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone() passed\n"); pid = ia64_raw_clone2(); if (pid < 0) _exit(EXIT_FAILURE); if (pid == 0) _exit(EXIT_SUCCESS); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "ia64_raw_clone2() passed\n"); pid = libc_clone2(libc_clone2_child, NULL); if (pid < 0) _exit(EXIT_FAILURE); if (wait(NULL) != pid) _exit(EXIT_FAILURE); fprintf(stderr, "libc_clone2() passed\n"); } _exit(EXIT_SUCCESS); } For some more context, please see: commit 606e9ad20094f6d500166881d301f31a51bc8aa7 Merge: ac61145a725a 457677c70c76 Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sat Jan 11 15:33:48 2020 -0800 Merge tag 'clone3-tls-v5.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "This contains a series of patches to fix CLONE_SETTLS when used with clone3(). The clone3() syscall passes the tls argument through struct clone_args instead of a register. This means, all architectures that do not implement copy_thread_tls() but still support CLONE_SETTLS via copy_thread() expecting the tls to be located in a register argument based on clone() are currently unfortunately broken. Their tls value will be garbage. The patch series fixes this on all architectures that currently define __ARCH_WANT_SYS_CLONE3. It also adds a compile-time check to ensure that any architecture that enables clone3() in the future is forced to also implement copy_thread_tls(). My ultimate goal is to get rid of the copy_thread()/copy_thread_tls() split and just have copy_thread_tls() at some point in the not too distant future (Maybe even renaming copy_thread_tls() back to simply copy_thread() once the old function is ripped from all arches). This is dependent now on all arches supporting clone3(). While all relevant arches do that now there are still four missing: ia64, m68k, sh and sparc. They have the system call reserved, but not implemented. Once they all implement clone3() we can get rid of ARCH_WANT_SYS_CLONE3 and HAVE_COPY_THREAD_TLS. Note that in the meantime, m68k has already switched to the new calling convention. And I've got sparc patches acked by Dave, too. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Qais Yousef <qais.yousef@arm.com> Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: https://lore.kernel.org/r/20200517151635.3085756-1-christian.brauner@ubuntu.com
2020-05-17 23:16:35 +08:00
* Called by ia64_switch_to() after ia64_clone()->copy_thread(). r8 contains the
* address of the previously executing task.
*/
br.call.sptk.many rp=ia64_invoke_schedule_tail
}
.ret8:
(pKStk) br.call.sptk.many rp=call_payload
adds r2=TI_FLAGS+IA64_TASK_SIZE,r13
;;
ld4 r2=[r2]
;;
mov r8=0
and r2=_TIF_SYSCALL_TRACEAUDIT,r2
;;
cmp.ne p6,p0=r2,r0
(p6) br.cond.spnt .strace_check_retval
;; // added stop bits to prevent r8 dependency
END(ia64_ret_from_clone)
// fall through
GLOBAL_ENTRY(ia64_ret_from_syscall)
PT_REGS_UNWIND_INFO(0)
cmp.ge p6,p7=r8,r0 // syscall executed successfully?
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
mov r10=r0 // clear error indication in r10
(p7) br.cond.spnt handle_syscall_error // handle potential syscall failure
END(ia64_ret_from_syscall)
// fall through
/*
* ia64_leave_syscall(): Same as ia64_leave_kernel, except that it doesn't
* need to switch to bank 0 and doesn't restore the scratch registers.
* To avoid leaking kernel bits, the scratch registers are set to
* the following known-to-be-safe values:
*
* r1: restored (global pointer)
* r2: cleared
* r3: 1 (when returning to user-level)
* r8-r11: restored (syscall return value(s))
* r12: restored (user-level stack pointer)
* r13: restored (user-level thread pointer)
* r14: set to __kernel_syscall_via_epc
* r15: restored (syscall #)
* r16-r17: cleared
* r18: user-level b6
* r19: cleared
* r20: user-level ar.fpsr
* r21: user-level b0
* r22: cleared
* r23: user-level ar.bspstore
* r24: user-level ar.rnat
* r25: user-level ar.unat
* r26: user-level ar.pfs
* r27: user-level ar.rsc
* r28: user-level ip
* r29: user-level psr
* r30: user-level cfm
* r31: user-level pr
* f6-f11: cleared
* pr: restored (user-level pr)
* b0: restored (user-level rp)
* b6: restored
* b7: set to __kernel_syscall_via_epc
* ar.unat: restored (user-level ar.unat)
* ar.pfs: restored (user-level ar.pfs)
* ar.rsc: restored (user-level ar.rsc)
* ar.rnat: restored (user-level ar.rnat)
* ar.bspstore: restored (user-level ar.bspstore)
* ar.fpsr: restored (user-level ar.fpsr)
* ar.ccv: cleared
* ar.csd: cleared
* ar.ssd: cleared
*/
GLOBAL_ENTRY(ia64_leave_syscall)
PT_REGS_UNWIND_INFO(0)
/*
* work.need_resched etc. mustn't get changed by this CPU before it returns to
* user- or fsys-mode, hence we disable interrupts early on.
*
* p6 controls whether current_thread_info()->flags needs to be check for
* extra work. We always check for extra work when returning to user-level.
* With CONFIG_PREEMPTION, we also check for extra work when the preempt_count
* is 0. After extra work processing has been completed, execution
* resumes at ia64_work_processed_syscall with p6 set to 1 if the extra-work-check
* needs to be redone.
*/
#ifdef CONFIG_PREEMPTION
RSM_PSR_I(p0, r2, r18) // disable interrupts
cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall
(pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13
;;
.pred.rel.mutex pUStk,pKStk
(pKStk) ld4 r21=[r20] // r21 <- preempt_count
(pUStk) mov r21=0 // r21 <- 0
;;
cmp.eq p6,p0=r21,r0 // p6 <- pUStk || (preempt_count == 0)
#else /* !CONFIG_PREEMPTION */
RSM_PSR_I(pUStk, r2, r18)
cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall
(pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk
#endif
.global ia64_work_processed_syscall;
ia64_work_processed_syscall:
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
adds r2=PT(LOADRS)+16,r12
MOV_FROM_ITC(pUStk, p9, r22, r19) // fetch time at leave
adds r18=TI_FLAGS+IA64_TASK_SIZE,r13
;;
(p6) ld4 r31=[r18] // load current_thread_info()->flags
ld8 r19=[r2],PT(B6)-PT(LOADRS) // load ar.rsc value for "loadrs"
adds r3=PT(AR_BSPSTORE)+16,r12 // deferred
;;
#else
adds r2=PT(LOADRS)+16,r12
adds r3=PT(AR_BSPSTORE)+16,r12
adds r18=TI_FLAGS+IA64_TASK_SIZE,r13
;;
(p6) ld4 r31=[r18] // load current_thread_info()->flags
ld8 r19=[r2],PT(B6)-PT(LOADRS) // load ar.rsc value for "loadrs"
nop.i 0
;;
#endif
mov r16=ar.bsp // M2 get existing backing store pointer
ld8 r18=[r2],PT(R9)-PT(B6) // load b6
(p6) and r15=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE?
;;
ld8 r23=[r3],PT(R11)-PT(AR_BSPSTORE) // load ar.bspstore (may be garbage)
(p6) cmp4.ne.unc p6,p0=r15, r0 // any special work pending?
(p6) br.cond.spnt .work_pending_syscall
;;
// start restoring the state saved on the kernel stack (struct pt_regs):
ld8 r9=[r2],PT(CR_IPSR)-PT(R9)
ld8 r11=[r3],PT(CR_IIP)-PT(R11)
(pNonSys) break 0 // bug check: we shouldn't be here if pNonSys is TRUE!
;;
invala // M0|1 invalidate ALAT
RSM_PSR_I_IC(r28, r29, r30) // M2 turn off interrupts and interruption collection
cmp.eq p9,p0=r0,r0 // A set p9 to indicate that we should restore cr.ifs
ld8 r29=[r2],16 // M0|1 load cr.ipsr
ld8 r28=[r3],16 // M0|1 load cr.iip
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
(pUStk) add r14=TI_AC_LEAVE+IA64_TASK_SIZE,r13
;;
ld8 r30=[r2],16 // M0|1 load cr.ifs
ld8 r25=[r3],16 // M0|1 load ar.unat
(pUStk) add r15=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13
;;
#else
mov r22=r0 // A clear r22
;;
ld8 r30=[r2],16 // M0|1 load cr.ifs
ld8 r25=[r3],16 // M0|1 load ar.unat
(pUStk) add r14=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13
;;
#endif
ld8 r26=[r2],PT(B0)-PT(AR_PFS) // M0|1 load ar.pfs
MOV_FROM_PSR(pKStk, r22, r21) // M2 read PSR now that interrupts are disabled
nop 0
;;
ld8 r21=[r2],PT(AR_RNAT)-PT(B0) // M0|1 load b0
ld8 r27=[r3],PT(PR)-PT(AR_RSC) // M0|1 load ar.rsc
mov f6=f0 // F clear f6
;;
ld8 r24=[r2],PT(AR_FPSR)-PT(AR_RNAT) // M0|1 load ar.rnat (may be garbage)
ld8 r31=[r3],PT(R1)-PT(PR) // M0|1 load predicates
mov f7=f0 // F clear f7
;;
ld8 r20=[r2],PT(R12)-PT(AR_FPSR) // M0|1 load ar.fpsr
ld8.fill r1=[r3],16 // M0|1 load r1
(pUStk) mov r17=1 // A
;;
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
(pUStk) st1 [r15]=r17 // M2|3
#else
(pUStk) st1 [r14]=r17 // M2|3
#endif
ld8.fill r13=[r3],16 // M0|1
mov f8=f0 // F clear f8
;;
ld8.fill r12=[r2] // M0|1 restore r12 (sp)
ld8.fill r15=[r3] // M0|1 restore r15
mov b6=r18 // I0 restore b6
[IA64] remove per-cpu ia64_phys_stacked_size_p8 It's not efficient to use a per-cpu variable just to store how many physical stack register a cpu has. Ever since the incarnation of ia64 up till upcoming Montecito processor, that variable has "glued" to 96. Having a variable in memory means that the kernel is burning an extra cacheline access on every syscall and kernel exit path. Such "static" value is better served with the instruction patching utility exists today. Convert ia64_phys_stacked_size_p8 into dynamic insn patching. This also has a pleasant side effect of eliminating access to per-cpu area while psr.ic=0 in the kernel exit path. (fixable for per-cpu DTC work, but why bother?) There are some concerns with the default value that the instruc- tion encoded in the kernel image. It shouldn't be concerned. The reasons are: (1) cpu_init() is called at CPU initialization. In there, we find out physical stack register size from PAL and patch two instructions in kernel exit code. The code in question can not be executed before the patching is done. (2) current implementation stores zero in ia64_phys_stacked_size_p8, and that's what the current kernel exit path loads the value with. With the new code, it is equivalent that we store reg size 96 in ia64_phys_stacked_size_p8, thus creating a better safety net. Given (1) above can never fail, having (2) is just a bonus. All in all, this patch allow one less memory reference in the kernel exit path, thus reducing syscall and interrupt return latency; and avoid polluting potential useful data in the CPU cache. Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-10-14 01:05:45 +08:00
LOAD_PHYS_STACK_REG_SIZE(r17)
mov f9=f0 // F clear f9
(pKStk) br.cond.dpnt.many skip_rbs_switch // B
srlz.d // M0 ensure interruption collection is off (for cover)
shr.u r18=r19,16 // I0|1 get byte size of existing "dirty" partition
COVER // B add current frame into dirty partition & set cr.ifs
;;
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
mov r19=ar.bsp // M2 get new backing store pointer
st8 [r14]=r22 // M save time at leave
mov f10=f0 // F clear f10
mov r22=r0 // A clear r22
movl r14=__kernel_syscall_via_epc // X
;;
#else
mov r19=ar.bsp // M2 get new backing store pointer
mov f10=f0 // F clear f10
nop.m 0
movl r14=__kernel_syscall_via_epc // X
;;
#endif
mov.m ar.csd=r0 // M2 clear ar.csd
mov.m ar.ccv=r0 // M2 clear ar.ccv
mov b7=r14 // I0 clear b7 (hint with __kernel_syscall_via_epc)
mov.m ar.ssd=r0 // M2 clear ar.ssd
mov f11=f0 // F clear f11
br.cond.sptk.many rbs_switch // B
END(ia64_leave_syscall)
GLOBAL_ENTRY(ia64_leave_kernel)
PT_REGS_UNWIND_INFO(0)
/*
* work.need_resched etc. mustn't get changed by this CPU before it returns to
* user- or fsys-mode, hence we disable interrupts early on.
*
* p6 controls whether current_thread_info()->flags needs to be check for
* extra work. We always check for extra work when returning to user-level.
* With CONFIG_PREEMPTION, we also check for extra work when the preempt_count
* is 0. After extra work processing has been completed, execution
* resumes at .work_processed_syscall with p6 set to 1 if the extra-work-check
* needs to be redone.
*/
#ifdef CONFIG_PREEMPTION
RSM_PSR_I(p0, r17, r31) // disable interrupts
cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel
(pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13
;;
.pred.rel.mutex pUStk,pKStk
(pKStk) ld4 r21=[r20] // r21 <- preempt_count
(pUStk) mov r21=0 // r21 <- 0
;;
cmp.eq p6,p0=r21,r0 // p6 <- pUStk || (preempt_count == 0)
#else
RSM_PSR_I(pUStk, r17, r31)
cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel
(pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk
#endif
.work_processed_kernel:
adds r17=TI_FLAGS+IA64_TASK_SIZE,r13
;;
(p6) ld4 r31=[r17] // load current_thread_info()->flags
adds r21=PT(PR)+16,r12
;;
lfetch [r21],PT(CR_IPSR)-PT(PR)
adds r2=PT(B6)+16,r12
adds r3=PT(R16)+16,r12
;;
lfetch [r21]
ld8 r28=[r2],8 // load b6
adds r29=PT(R24)+16,r12
ld8.fill r16=[r3],PT(AR_CSD)-PT(R16)
adds r30=PT(AR_CCV)+16,r12
(p6) and r19=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE?
;;
ld8.fill r24=[r29]
ld8 r15=[r30] // load ar.ccv
(p6) cmp4.ne.unc p6,p0=r19, r0 // any special work pending?
;;
ld8 r29=[r2],16 // load b7
ld8 r30=[r3],16 // load ar.csd
(p6) br.cond.spnt .work_pending
;;
ld8 r31=[r2],16 // load ar.ssd
ld8.fill r8=[r3],16
;;
ld8.fill r9=[r2],16
ld8.fill r10=[r3],PT(R17)-PT(R10)
;;
ld8.fill r11=[r2],PT(R18)-PT(R11)
ld8.fill r17=[r3],16
;;
ld8.fill r18=[r2],16
ld8.fill r19=[r3],16
;;
ld8.fill r20=[r2],16
ld8.fill r21=[r3],16
mov ar.csd=r30
mov ar.ssd=r31
;;
RSM_PSR_I_IC(r23, r22, r25) // initiate turning off of interrupt and interruption collection
invala // invalidate ALAT
;;
ld8.fill r22=[r2],24
ld8.fill r23=[r3],24
mov b6=r28
;;
ld8.fill r25=[r2],16
ld8.fill r26=[r3],16
mov b7=r29
;;
ld8.fill r27=[r2],16
ld8.fill r28=[r3],16
;;
ld8.fill r29=[r2],16
ld8.fill r30=[r3],24
;;
ld8.fill r31=[r2],PT(F9)-PT(R31)
adds r3=PT(F10)-PT(F6),r3
;;
ldf.fill f9=[r2],PT(F6)-PT(F9)
ldf.fill f10=[r3],PT(F8)-PT(F10)
;;
ldf.fill f6=[r2],PT(F7)-PT(F6)
;;
ldf.fill f7=[r2],PT(F11)-PT(F7)
ldf.fill f8=[r3],32
;;
srlz.d // ensure that inter. collection is off (VHPT is don't care, since text is pinned)
mov ar.ccv=r15
;;
ldf.fill f11=[r2]
BSW_0(r2, r3, r15) // switch back to bank 0 (no stop bit required beforehand...)
;;
(pUStk) mov r18=IA64_KR(CURRENT)// M2 (12 cycle read latency)
adds r16=PT(CR_IPSR)+16,r12
adds r17=PT(CR_IIP)+16,r12
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
.pred.rel.mutex pUStk,pKStk
MOV_FROM_PSR(pKStk, r22, r29) // M2 read PSR now that interrupts are disabled
MOV_FROM_ITC(pUStk, p9, r22, r29) // M fetch time at leave
nop.i 0
;;
#else
MOV_FROM_PSR(pKStk, r22, r29) // M2 read PSR now that interrupts are disabled
nop.i 0
nop.i 0
;;
#endif
ld8 r29=[r16],16 // load cr.ipsr
ld8 r28=[r17],16 // load cr.iip
;;
ld8 r30=[r16],16 // load cr.ifs
ld8 r25=[r17],16 // load ar.unat
;;
ld8 r26=[r16],16 // load ar.pfs
ld8 r27=[r17],16 // load ar.rsc
cmp.eq p9,p0=r0,r0 // set p9 to indicate that we should restore cr.ifs
;;
ld8 r24=[r16],16 // load ar.rnat (may be garbage)
ld8 r23=[r17],16 // load ar.bspstore (may be garbage)
;;
ld8 r31=[r16],16 // load predicates
ld8 r21=[r17],16 // load b0
;;
ld8 r19=[r16],16 // load ar.rsc value for "loadrs"
ld8.fill r1=[r17],16 // load r1
;;
ld8.fill r12=[r16],16
ld8.fill r13=[r17],16
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
(pUStk) adds r3=TI_AC_LEAVE+IA64_TASK_SIZE,r18
#else
(pUStk) adds r18=IA64_TASK_THREAD_ON_USTACK_OFFSET,r18
#endif
;;
ld8 r20=[r16],16 // ar.fpsr
ld8.fill r15=[r17],16
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
(pUStk) adds r18=IA64_TASK_THREAD_ON_USTACK_OFFSET,r18 // deferred
#endif
;;
ld8.fill r14=[r16],16
ld8.fill r2=[r17]
(pUStk) mov r17=1
;;
cputime: Generic on-demand virtual cputime accounting If we want to stop the tick further idle, we need to be able to account the cputime without using the tick. Virtual based cputime accounting solves that problem by hooking into kernel/user boundaries. However implementing CONFIG_VIRT_CPU_ACCOUNTING require low level hooks and involves more overhead. But we already have a generic context tracking subsystem that is required for RCU needs by archs which plan to shut down the tick outside idle. This patch implements a generic virtual based cputime accounting that relies on these generic kernel/user hooks. There are some upsides of doing this: - This requires no arch code to implement CONFIG_VIRT_CPU_ACCOUNTING if context tracking is already built (already necessary for RCU in full tickless mode). - We can rely on the generic context tracking subsystem to dynamically (de)activate the hooks, so that we can switch anytime between virtual and tick based accounting. This way we don't have the overhead of the virtual accounting when the tick is running periodically. And one downside: - There is probably more overhead than a native virtual based cputime accounting. But this relies on hooks that are already set anyway. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2012-07-25 13:56:04 +08:00
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
// mmi_ : ld8 st1 shr;; mmi_ : st8 st1 shr;;
// mib : mov add br -> mib : ld8 add br
// bbb_ : br nop cover;; mbb_ : mov br cover;;
//
// no one require bsp in r16 if (pKStk) branch is selected.
(pUStk) st8 [r3]=r22 // save time at leave
(pUStk) st1 [r18]=r17 // restore current->thread.on_ustack
shr.u r18=r19,16 // get byte size of existing "dirty" partition
;;
ld8.fill r3=[r16] // deferred
LOAD_PHYS_STACK_REG_SIZE(r17)
(pKStk) br.cond.dpnt skip_rbs_switch
mov r16=ar.bsp // get existing backing store pointer
#else
ld8.fill r3=[r16]
(pUStk) st1 [r18]=r17 // restore current->thread.on_ustack
shr.u r18=r19,16 // get byte size of existing "dirty" partition
;;
mov r16=ar.bsp // get existing backing store pointer
[IA64] remove per-cpu ia64_phys_stacked_size_p8 It's not efficient to use a per-cpu variable just to store how many physical stack register a cpu has. Ever since the incarnation of ia64 up till upcoming Montecito processor, that variable has "glued" to 96. Having a variable in memory means that the kernel is burning an extra cacheline access on every syscall and kernel exit path. Such "static" value is better served with the instruction patching utility exists today. Convert ia64_phys_stacked_size_p8 into dynamic insn patching. This also has a pleasant side effect of eliminating access to per-cpu area while psr.ic=0 in the kernel exit path. (fixable for per-cpu DTC work, but why bother?) There are some concerns with the default value that the instruc- tion encoded in the kernel image. It shouldn't be concerned. The reasons are: (1) cpu_init() is called at CPU initialization. In there, we find out physical stack register size from PAL and patch two instructions in kernel exit code. The code in question can not be executed before the patching is done. (2) current implementation stores zero in ia64_phys_stacked_size_p8, and that's what the current kernel exit path loads the value with. With the new code, it is equivalent that we store reg size 96 in ia64_phys_stacked_size_p8, thus creating a better safety net. Given (1) above can never fail, having (2) is just a bonus. All in all, this patch allow one less memory reference in the kernel exit path, thus reducing syscall and interrupt return latency; and avoid polluting potential useful data in the CPU cache. Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-10-14 01:05:45 +08:00
LOAD_PHYS_STACK_REG_SIZE(r17)
(pKStk) br.cond.dpnt skip_rbs_switch
#endif
/*
* Restore user backing store.
*
* NOTE: alloc, loadrs, and cover can't be predicated.
*/
(pNonSys) br.cond.dpnt dont_preserve_current_frame
COVER // add current frame into dirty partition and set cr.ifs
;;
mov r19=ar.bsp // get new backing store pointer
rbs_switch:
sub r16=r16,r18 // krbs = old bsp - size of dirty partition
cmp.ne p9,p0=r0,r0 // clear p9 to skip restore of cr.ifs
;;
sub r19=r19,r16 // calculate total byte size of dirty partition
add r18=64,r18 // don't force in0-in7 into memory...
;;
shl r19=r19,16 // shift size of dirty partition into loadrs position
;;
dont_preserve_current_frame:
/*
* To prevent leaking bits between the kernel and user-space,
* we must clear the stacked registers in the "invalid" partition here.
* Not pretty, but at least it's fast (3.34 registers/cycle on Itanium,
* 5 registers/cycle on McKinley).
*/
# define pRecurse p6
# define pReturn p7
#ifdef CONFIG_ITANIUM
# define Nregs 10
#else
# define Nregs 14
#endif
alloc loc0=ar.pfs,2,Nregs-2,2,0
shr.u loc1=r18,9 // RNaTslots <= floor(dirtySize / (64*8))
sub r17=r17,r18 // r17 = (physStackedSize + 8) - dirtySize
;;
mov ar.rsc=r19 // load ar.rsc to be used for "loadrs"
shladd in0=loc1,3,r17
mov in1=0
;;
TEXT_ALIGN(32)
rse_clear_invalid:
#ifdef CONFIG_ITANIUM
// cycle 0
{ .mii
alloc loc0=ar.pfs,2,Nregs-2,2,0
cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse
add out0=-Nregs*8,in0
}{ .mfb
add out1=1,in1 // increment recursion count
nop.f 0
nop.b 0 // can't do br.call here because of alloc (WAW on CFM)
;;
}{ .mfi // cycle 1
mov loc1=0
nop.f 0
mov loc2=0
}{ .mib
mov loc3=0
mov loc4=0
(pRecurse) br.call.sptk.many b0=rse_clear_invalid
}{ .mfi // cycle 2
mov loc5=0
nop.f 0
cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret
}{ .mib
mov loc6=0
mov loc7=0
(pReturn) br.ret.sptk.many b0
}
#else /* !CONFIG_ITANIUM */
alloc loc0=ar.pfs,2,Nregs-2,2,0
cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse
add out0=-Nregs*8,in0
add out1=1,in1 // increment recursion count
mov loc1=0
mov loc2=0
;;
mov loc3=0
mov loc4=0
mov loc5=0
mov loc6=0
mov loc7=0
(pRecurse) br.call.dptk.few b0=rse_clear_invalid
;;
mov loc8=0
mov loc9=0
cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret
mov loc10=0
mov loc11=0
(pReturn) br.ret.dptk.many b0
#endif /* !CONFIG_ITANIUM */
# undef pRecurse
# undef pReturn
;;
alloc r17=ar.pfs,0,0,0,0 // drop current register frame
;;
loadrs
;;
skip_rbs_switch:
mov ar.unat=r25 // M2
(pKStk) extr.u r22=r22,21,1 // I0 extract current value of psr.pp from r22
(pLvSys)mov r19=r0 // A clear r19 for leave_syscall, no-op otherwise
;;
(pUStk) mov ar.bspstore=r23 // M2
(pKStk) dep r29=r22,r29,21,1 // I0 update ipsr.pp with psr.pp
(pLvSys)mov r16=r0 // A clear r16 for leave_syscall, no-op otherwise
;;
MOV_TO_IPSR(p0, r29, r25) // M2
mov ar.pfs=r26 // I0
(pLvSys)mov r17=r0 // A clear r17 for leave_syscall, no-op otherwise
MOV_TO_IFS(p9, r30, r25)// M2
mov b0=r21 // I0
(pLvSys)mov r18=r0 // A clear r18 for leave_syscall, no-op otherwise
mov ar.fpsr=r20 // M2
MOV_TO_IIP(r28, r25) // M2
nop 0
;;
(pUStk) mov ar.rnat=r24 // M2 must happen with RSE in lazy mode
nop 0
(pLvSys)mov r2=r0
mov ar.rsc=r27 // M2
mov pr=r31,-1 // I0
RFI // B
/*
* On entry:
* r20 = &current->thread_info->pre_count (if CONFIG_PREEMPTION)
* r31 = current->thread_info->flags
* On exit:
* p6 = TRUE if work-pending-check needs to be redone
*
* Interrupts are disabled on entry, reenabled depend on work, and
* disabled on exit.
*/
.work_pending_syscall:
add r2=-8,r2
add r3=-8,r3
;;
st8 [r2]=r8
st8 [r3]=r10
.work_pending:
tbit.z p6,p0=r31,TIF_NEED_RESCHED // is resched not needed?
(p6) br.cond.sptk.few .notify
br.call.spnt.many rp=preempt_schedule_irq
.ret9: cmp.eq p6,p0=r0,r0 // p6 <- 1 (re-check)
(pLvSys)br.cond.sptk.few ia64_work_pending_syscall_end
br.cond.sptk.many .work_processed_kernel
.notify:
(pUStk) br.call.spnt.many rp=notify_resume_user
.ret10: cmp.ne p6,p0=r0,r0 // p6 <- 0 (don't re-check)
(pLvSys)br.cond.sptk.few ia64_work_pending_syscall_end
br.cond.sptk.many .work_processed_kernel
.global ia64_work_pending_syscall_end;
ia64_work_pending_syscall_end:
adds r2=PT(R8)+16,r12
adds r3=PT(R10)+16,r12
;;
ld8 r8=[r2]
ld8 r10=[r3]
br.cond.sptk.many ia64_work_processed_syscall
END(ia64_leave_kernel)
ENTRY(handle_syscall_error)
/*
* Some system calls (e.g., ptrace, mmap) can return arbitrary values which could
* lead us to mistake a negative return value as a failed syscall. Those syscall
* must deposit a non-zero value in pt_regs.r8 to indicate an error. If
* pt_regs.r8 is zero, we assume that the call completed successfully.
*/
PT_REGS_UNWIND_INFO(0)
ld8 r3=[r2] // load pt_regs.r8
;;
cmp.eq p6,p7=r3,r0 // is pt_regs.r8==0?
;;
(p7) mov r10=-1
(p7) sub r8=0,r8 // negate return value to get errno
br.cond.sptk ia64_leave_syscall
END(handle_syscall_error)
/*
* Invoke schedule_tail(task) while preserving in0-in7, which may be needed
* in case a system call gets restarted.
*/
GLOBAL_ENTRY(ia64_invoke_schedule_tail)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,1,0
mov loc0=rp
mov out0=r8 // Address of previous task
;;
br.call.sptk.many rp=schedule_tail
.ret11: mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(ia64_invoke_schedule_tail)
/*
* Setup stack and call do_notify_resume_user(), keeping interrupts
* disabled.
*
* Note that pSys and pNonSys need to be set up by the caller.
* We declare 8 input registers so the system call args get preserved,
* in case we need to restart a system call.
*/
GLOBAL_ENTRY(notify_resume_user)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,3,0 // preserve all eight input regs in case of syscall restart!
mov r9=ar.unat
mov loc0=rp // save return address
mov out0=0 // there is no "oldset"
adds out1=8,sp // out1=&sigscratch->ar_pfs
(pSys) mov out2=1 // out2==1 => we're in a syscall
;;
(pNonSys) mov out2=0 // out2==0 => not a syscall
.fframe 16
.spillsp ar.unat, 16
st8 [sp]=r9,-16 // allocate space for ar.unat and save it
st8 [out1]=loc1,-8 // save ar.pfs, out1=&sigscratch
.body
br.call.sptk.many rp=do_notify_resume_user
.ret15: .restore sp
adds sp=16,sp // pop scratch stack space
;;
ld8 r9=[sp] // load new unat from sigscratch->scratch_unat
mov rp=loc0
;;
mov ar.unat=r9
mov ar.pfs=loc1
br.ret.sptk.many rp
END(notify_resume_user)
ENTRY(sys_rt_sigreturn)
PT_REGS_UNWIND_INFO(0)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
alloc r2=ar.pfs,8,0,1,0
.prologue
PT_REGS_SAVES(16)
adds sp=-16,sp
.body
cmp.eq pNonSys,pSys=r0,r0 // sigreturn isn't a normal syscall...
;;
/*
* leave_kernel() restores f6-f11 from pt_regs, but since the streamlined
* syscall-entry path does not save them we save them here instead. Note: we
* don't need to save any other registers that are not saved by the stream-lined
* syscall path, because restore_sigcontext() restores them.
*/
adds r16=PT(F6)+32,sp
adds r17=PT(F7)+32,sp
;;
stf.spill [r16]=f6,32
stf.spill [r17]=f7,32
;;
stf.spill [r16]=f8,32
stf.spill [r17]=f9,32
;;
stf.spill [r16]=f10
stf.spill [r17]=f11
adds out0=16,sp // out0 = &sigscratch
br.call.sptk.many rp=ia64_rt_sigreturn
.ret19: .restore sp,0
adds sp=16,sp
;;
ld8 r9=[sp] // load new ar.unat
mov.sptk b7=r8,ia64_leave_kernel
;;
mov ar.unat=r9
br.many b7
END(sys_rt_sigreturn)
GLOBAL_ENTRY(ia64_prepare_handle_unaligned)
.prologue
/*
* r16 = fake ar.pfs, we simply need to make sure privilege is still 0
*/
mov r16=r0
DO_SAVE_SWITCH_STACK
br.call.sptk.many rp=ia64_handle_unaligned // stack frame setup in ivt
.ret21: .body
DO_LOAD_SWITCH_STACK
br.cond.sptk.many rp // goes to ia64_leave_kernel
END(ia64_prepare_handle_unaligned)
//
// unw_init_running(void (*callback)(info, arg), void *arg)
//
# define EXTRA_FRAME_SIZE ((UNW_FRAME_INFO_SIZE+15)&~15)
GLOBAL_ENTRY(unw_init_running)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2)
alloc loc1=ar.pfs,2,3,3,0
;;
ld8 loc2=[in0],8
mov loc0=rp
mov r16=loc1
DO_SAVE_SWITCH_STACK
.body
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2)
.fframe IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE
SWITCH_STACK_SAVES(EXTRA_FRAME_SIZE)
adds sp=-EXTRA_FRAME_SIZE,sp
.body
;;
adds out0=16,sp // &info
mov out1=r13 // current
adds out2=16+EXTRA_FRAME_SIZE,sp // &switch_stack
br.call.sptk.many rp=unw_init_frame_info
1: adds out0=16,sp // &info
mov b6=loc2
mov loc2=gp // save gp across indirect function call
;;
ld8 gp=[in0]
mov out1=in1 // arg
br.call.sptk.many rp=b6 // invoke the callback function
1: mov gp=loc2 // restore gp
// For now, we don't allow changing registers from within
// unw_init_running; if we ever want to allow that, we'd
// have to do a load_switch_stack here:
.restore sp
adds sp=IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE,sp
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(unw_init_running)
EXPORT_SYMBOL(unw_init_running)
#ifdef CONFIG_FUNCTION_TRACER
#ifdef CONFIG_DYNAMIC_FTRACE
GLOBAL_ENTRY(_mcount)
br ftrace_stub
END(_mcount)
EXPORT_SYMBOL(_mcount)
.here:
br.ret.sptk.many b0
GLOBAL_ENTRY(ftrace_caller)
alloc out0 = ar.pfs, 8, 0, 4, 0
mov out3 = r0
;;
mov out2 = b0
add r3 = 0x20, r3
mov out1 = r1;
br.call.sptk.many b0 = ftrace_patch_gp
//this might be called from module, so we must patch gp
ftrace_patch_gp:
movl gp=__gp
mov b0 = r3
;;
.global ftrace_call;
ftrace_call:
{
.mlx
nop.m 0x0
movl r3 = .here;;
}
alloc loc0 = ar.pfs, 4, 4, 2, 0
;;
mov loc1 = b0
mov out0 = b0
mov loc2 = r8
mov loc3 = r15
;;
adds out0 = -MCOUNT_INSN_SIZE, out0
mov out1 = in2
mov b6 = r3
br.call.sptk.many b0 = b6
;;
mov ar.pfs = loc0
mov b0 = loc1
mov r8 = loc2
mov r15 = loc3
br ftrace_stub
;;
END(ftrace_caller)
#else
GLOBAL_ENTRY(_mcount)
movl r2 = ftrace_stub
movl r3 = ftrace_trace_function;;
ld8 r3 = [r3];;
ld8 r3 = [r3];;
cmp.eq p7,p0 = r2, r3
(p7) br.sptk.many ftrace_stub
;;
alloc loc0 = ar.pfs, 4, 4, 2, 0
;;
mov loc1 = b0
mov out0 = b0
mov loc2 = r8
mov loc3 = r15
;;
adds out0 = -MCOUNT_INSN_SIZE, out0
mov out1 = in2
mov b6 = r3
br.call.sptk.many b0 = b6
;;
mov ar.pfs = loc0
mov b0 = loc1
mov r8 = loc2
mov r15 = loc3
br ftrace_stub
;;
END(_mcount)
#endif
GLOBAL_ENTRY(ftrace_stub)
mov r3 = b0
movl r2 = _mcount_ret_helper
;;
mov b6 = r2
mov b7 = r3
br.ret.sptk.many b6
_mcount_ret_helper:
mov b0 = r42
mov r1 = r41
mov ar.pfs = r40
br b7
END(ftrace_stub)
#endif /* CONFIG_FUNCTION_TRACER */
#define __SYSCALL(nr, entry, nargs) data8 entry
.rodata
.align 8
.globl sys_call_table
sys_call_table:
#include <asm/syscall_table.h>
#undef __SYSCALL