linux/arch/arc/include/asm/perf_event.h

216 lines
6.3 KiB
C
Raw Normal View History

/*
* Linux performance counter support for ARC
*
* Copyright (C) 2011-2013 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#ifndef __ASM_PERF_EVENT_H
#define __ASM_PERF_EVENT_H
/* real maximum varies per CPU, this is the maximum supported by the driver */
#define ARC_PMU_MAX_HWEVENTS 64
#define ARC_REG_CC_BUILD 0xF6
#define ARC_REG_CC_INDEX 0x240
#define ARC_REG_CC_NAME0 0x241
#define ARC_REG_CC_NAME1 0x242
#define ARC_REG_PCT_BUILD 0xF5
#define ARC_REG_PCT_COUNTL 0x250
#define ARC_REG_PCT_COUNTH 0x251
#define ARC_REG_PCT_SNAPL 0x252
#define ARC_REG_PCT_SNAPH 0x253
#define ARC_REG_PCT_CONFIG 0x254
#define ARC_REG_PCT_CONTROL 0x255
#define ARC_REG_PCT_INDEX 0x256
#define ARC_REG_PCT_CONTROL_CC (1 << 16) /* clear counts */
#define ARC_REG_PCT_CONTROL_SN (1 << 17) /* snapshot */
struct arc_reg_pct_build {
#ifdef CONFIG_CPU_BIG_ENDIAN
unsigned int m:8, c:8, r:6, s:2, v:8;
#else
unsigned int v:8, s:2, r:6, c:8, m:8;
#endif
};
struct arc_reg_cc_build {
#ifdef CONFIG_CPU_BIG_ENDIAN
unsigned int c:16, r:8, v:8;
#else
unsigned int v:8, r:8, c:16;
#endif
};
#define PERF_COUNT_ARC_DCLM (PERF_COUNT_HW_MAX + 0)
#define PERF_COUNT_ARC_DCSM (PERF_COUNT_HW_MAX + 1)
#define PERF_COUNT_ARC_ICM (PERF_COUNT_HW_MAX + 2)
#define PERF_COUNT_ARC_BPOK (PERF_COUNT_HW_MAX + 3)
#define PERF_COUNT_ARC_EDTLB (PERF_COUNT_HW_MAX + 4)
#define PERF_COUNT_ARC_EITLB (PERF_COUNT_HW_MAX + 5)
#define PERF_COUNT_ARC_HW_MAX (PERF_COUNT_HW_MAX + 6)
/*
* The "generalized" performance events seem to really be a copy
* of the available events on x86 processors; the mapping to ARC
* events is not always possible 1-to-1. Fortunately, there doesn't
* seem to be an exact definition for these events, so we can cheat
* a bit where necessary.
*
* In particular, the following PERF events may behave a bit differently
* compared to other architectures:
*
* PERF_COUNT_HW_CPU_CYCLES
* Cycles not in halted state
*
* PERF_COUNT_HW_REF_CPU_CYCLES
* Reference cycles not in halted state, same as PERF_COUNT_HW_CPU_CYCLES
* for now as we don't do Dynamic Voltage/Frequency Scaling (yet)
*
* PERF_COUNT_HW_BUS_CYCLES
* Unclear what this means, Intel uses 0x013c, which according to
* their datasheet means "unhalted reference cycles". It sounds similar
* to PERF_COUNT_HW_REF_CPU_CYCLES, and we use the same counter for it.
*
* PERF_COUNT_HW_STALLED_CYCLES_BACKEND
* PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
* The ARC 700 can either measure stalls per pipeline stage, or all stalls
* combined; for now we assign all stalls to STALLED_CYCLES_BACKEND
* and all pipeline flushes (e.g. caused by mispredicts, etc.) to
* STALLED_CYCLES_FRONTEND.
*
* We could start multiple performance counters and combine everything
* afterwards, but that makes it complicated.
*
* Note that I$ cache misses aren't counted by either of the two!
*/
static const char * const arc_pmu_ev_hw_map[] = {
[PERF_COUNT_HW_CPU_CYCLES] = "crun",
[PERF_COUNT_HW_REF_CPU_CYCLES] = "crun",
[PERF_COUNT_HW_BUS_CYCLES] = "crun",
[PERF_COUNT_HW_INSTRUCTIONS] = "iall",
[PERF_COUNT_HW_BRANCH_MISSES] = "bpfail",
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = "ijmp",
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = "bflush",
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = "bstall",
[PERF_COUNT_ARC_DCLM] = "dclm",
[PERF_COUNT_ARC_DCSM] = "dcsm",
[PERF_COUNT_ARC_ICM] = "icm",
[PERF_COUNT_ARC_BPOK] = "bpok",
[PERF_COUNT_ARC_EDTLB] = "edtlb",
[PERF_COUNT_ARC_EITLB] = "eitlb",
};
#define C(_x) PERF_COUNT_HW_CACHE_##_x
#define CACHE_OP_UNSUPPORTED 0xffff
static const unsigned arc_pmu_cache_map[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = PERF_COUNT_ARC_DCLM,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = PERF_COUNT_ARC_DCSM,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = PERF_COUNT_ARC_ICM,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = PERF_COUNT_ARC_EDTLB,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = PERF_COUNT_ARC_EITLB,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,
[C(RESULT_MISS)] = PERF_COUNT_HW_BRANCH_MISSES,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(NODE)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
#endif /* __ASM_PERF_EVENT_H */