linux/arch/powerpc/platforms/cell/spufs/sched.c

643 lines
16 KiB
C
Raw Normal View History

/* sched.c - SPU scheduler.
*
* Copyright (C) IBM 2005
* Author: Mark Nutter <mnutter@us.ibm.com>
*
* 2006-03-31 NUMA domains added.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#undef DEBUG
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/numa.h>
#include <linux/mutex.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
#include <asm/spu_priv1.h>
#include "spufs.h"
struct spu_prio_array {
DECLARE_BITMAP(bitmap, MAX_PRIO);
struct list_head runq[MAX_PRIO];
spinlock_t runq_lock;
struct list_head active_list[MAX_NUMNODES];
struct mutex active_mutex[MAX_NUMNODES];
};
static struct spu_prio_array *spu_prio;
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
/*
* Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
*/
#define NORMAL_PRIO 120
/*
* Frequency of the spu scheduler tick. By default we do one SPU scheduler
* tick for every 10 CPU scheduler ticks.
*/
#define SPUSCHED_TICK (10)
/*
* These are the 'tuning knobs' of the scheduler:
*
* Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
* larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
*/
#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
#define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
/*
* scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
* [800ms ... 100ms ... 5ms]
*
* The higher a thread's priority, the bigger timeslices
* it gets during one round of execution. But even the lowest
* priority thread gets MIN_TIMESLICE worth of execution time.
*/
void spu_set_timeslice(struct spu_context *ctx)
{
if (ctx->prio < NORMAL_PRIO)
ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
else
ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}
/*
* Update scheduling information from the owning thread.
*/
void __spu_update_sched_info(struct spu_context *ctx)
{
/*
* We do our own priority calculations, so we normally want
* ->static_prio to start with. Unfortunately thies field
* contains junk for threads with a realtime scheduling
* policy so we have to look at ->prio in this case.
*/
if (rt_prio(current->prio))
ctx->prio = current->prio;
else
ctx->prio = current->static_prio;
ctx->policy = current->policy;
/*
* A lot of places that don't hold active_mutex poke into
* cpus_allowed, including grab_runnable_context which
* already holds the runq_lock. So abuse runq_lock
* to protect this field aswell.
*/
spin_lock(&spu_prio->runq_lock);
ctx->cpus_allowed = current->cpus_allowed;
spin_unlock(&spu_prio->runq_lock);
}
void spu_update_sched_info(struct spu_context *ctx)
{
int node = ctx->spu->node;
mutex_lock(&spu_prio->active_mutex[node]);
__spu_update_sched_info(ctx);
mutex_unlock(&spu_prio->active_mutex[node]);
}
static int __node_allowed(struct spu_context *ctx, int node)
{
if (nr_cpus_node(node)) {
cpumask_t mask = node_to_cpumask(node);
if (cpus_intersects(mask, ctx->cpus_allowed))
return 1;
}
return 0;
}
static int node_allowed(struct spu_context *ctx, int node)
{
int rval;
spin_lock(&spu_prio->runq_lock);
rval = __node_allowed(ctx, node);
spin_unlock(&spu_prio->runq_lock);
return rval;
}
/**
* spu_add_to_active_list - add spu to active list
* @spu: spu to add to the active list
*/
static void spu_add_to_active_list(struct spu *spu)
{
mutex_lock(&spu_prio->active_mutex[spu->node]);
list_add_tail(&spu->list, &spu_prio->active_list[spu->node]);
mutex_unlock(&spu_prio->active_mutex[spu->node]);
}
static void __spu_remove_from_active_list(struct spu *spu)
{
list_del_init(&spu->list);
}
/**
* spu_remove_from_active_list - remove spu from active list
* @spu: spu to remove from the active list
*/
static void spu_remove_from_active_list(struct spu *spu)
{
int node = spu->node;
mutex_lock(&spu_prio->active_mutex[node]);
__spu_remove_from_active_list(spu);
mutex_unlock(&spu_prio->active_mutex[node]);
}
static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
{
blocking_notifier_call_chain(&spu_switch_notifier,
ctx ? ctx->object_id : 0, spu);
}
int spu_switch_event_register(struct notifier_block * n)
{
return blocking_notifier_chain_register(&spu_switch_notifier, n);
}
int spu_switch_event_unregister(struct notifier_block * n)
{
return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
}
/**
* spu_bind_context - bind spu context to physical spu
* @spu: physical spu to bind to
* @ctx: context to bind
*/
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
{
pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
spu->number, spu->node);
spu->ctx = ctx;
spu->flags = 0;
ctx->spu = spu;
ctx->ops = &spu_hw_ops;
spu->pid = current->pid;
spu_associate_mm(spu, ctx->owner);
spu->ibox_callback = spufs_ibox_callback;
spu->wbox_callback = spufs_wbox_callback;
spu->stop_callback = spufs_stop_callback;
spu->mfc_callback = spufs_mfc_callback;
spu->dma_callback = spufs_dma_callback;
mb();
spu_unmap_mappings(ctx);
spu_restore(&ctx->csa, spu);
spu->timestamp = jiffies;
spu_cpu_affinity_set(spu, raw_smp_processor_id());
spu_switch_notify(spu, ctx);
ctx->state = SPU_STATE_RUNNABLE;
}
/**
* spu_unbind_context - unbind spu context from physical spu
* @spu: physical spu to unbind from
* @ctx: context to unbind
*/
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
{
pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
spu->pid, spu->number, spu->node);
spu_switch_notify(spu, NULL);
spu_unmap_mappings(ctx);
spu_save(&ctx->csa, spu);
spu->timestamp = jiffies;
ctx->state = SPU_STATE_SAVED;
spu->ibox_callback = NULL;
spu->wbox_callback = NULL;
spu->stop_callback = NULL;
spu->mfc_callback = NULL;
spu->dma_callback = NULL;
spu_associate_mm(spu, NULL);
spu->pid = 0;
ctx->ops = &spu_backing_ops;
ctx->spu = NULL;
spu->flags = 0;
spu->ctx = NULL;
}
/**
* spu_add_to_rq - add a context to the runqueue
* @ctx: context to add
*/
static void __spu_add_to_rq(struct spu_context *ctx)
{
int prio = ctx->prio;
list_add_tail(&ctx->rq, &spu_prio->runq[prio]);
set_bit(prio, spu_prio->bitmap);
}
static void __spu_del_from_rq(struct spu_context *ctx)
{
int prio = ctx->prio;
if (!list_empty(&ctx->rq))
list_del_init(&ctx->rq);
if (list_empty(&spu_prio->runq[prio]))
clear_bit(prio, spu_prio->bitmap);
}
static void spu_prio_wait(struct spu_context *ctx)
{
DEFINE_WAIT(wait);
spin_lock(&spu_prio->runq_lock);
prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
if (!signal_pending(current)) {
__spu_add_to_rq(ctx);
spin_unlock(&spu_prio->runq_lock);
mutex_unlock(&ctx->state_mutex);
schedule();
mutex_lock(&ctx->state_mutex);
spin_lock(&spu_prio->runq_lock);
__spu_del_from_rq(ctx);
}
spin_unlock(&spu_prio->runq_lock);
__set_current_state(TASK_RUNNING);
remove_wait_queue(&ctx->stop_wq, &wait);
}
static struct spu *spu_get_idle(struct spu_context *ctx)
{
struct spu *spu = NULL;
int node = cpu_to_node(raw_smp_processor_id());
int n;
for (n = 0; n < MAX_NUMNODES; n++, node++) {
node = (node < MAX_NUMNODES) ? node : 0;
if (!node_allowed(ctx, node))
continue;
spu = spu_alloc_node(node);
if (spu)
break;
}
return spu;
}
/**
* find_victim - find a lower priority context to preempt
* @ctx: canidate context for running
*
* Returns the freed physical spu to run the new context on.
*/
static struct spu *find_victim(struct spu_context *ctx)
{
struct spu_context *victim = NULL;
struct spu *spu;
int node, n;
/*
* Look for a possible preemption candidate on the local node first.
* If there is no candidate look at the other nodes. This isn't
* exactly fair, but so far the whole spu schedule tries to keep
* a strong node affinity. We might want to fine-tune this in
* the future.
*/
restart:
node = cpu_to_node(raw_smp_processor_id());
for (n = 0; n < MAX_NUMNODES; n++, node++) {
node = (node < MAX_NUMNODES) ? node : 0;
if (!node_allowed(ctx, node))
continue;
mutex_lock(&spu_prio->active_mutex[node]);
list_for_each_entry(spu, &spu_prio->active_list[node], list) {
struct spu_context *tmp = spu->ctx;
if (tmp->prio > ctx->prio &&
(!victim || tmp->prio > victim->prio))
victim = spu->ctx;
}
mutex_unlock(&spu_prio->active_mutex[node]);
if (victim) {
/*
* This nests ctx->state_mutex, but we always lock
* higher priority contexts before lower priority
* ones, so this is safe until we introduce
* priority inheritance schemes.
*/
if (!mutex_trylock(&victim->state_mutex)) {
victim = NULL;
goto restart;
}
spu = victim->spu;
if (!spu) {
/*
* This race can happen because we've dropped
* the active list mutex. No a problem, just
* restart the search.
*/
mutex_unlock(&victim->state_mutex);
victim = NULL;
goto restart;
}
spu_remove_from_active_list(spu);
spu_unbind_context(spu, victim);
mutex_unlock(&victim->state_mutex);
/*
* We need to break out of the wait loop in spu_run
* manually to ensure this context gets put on the
* runqueue again ASAP.
*/
wake_up(&victim->stop_wq);
return spu;
}
}
return NULL;
}
/**
* spu_activate - find a free spu for a context and execute it
* @ctx: spu context to schedule
* @flags: flags (currently ignored)
*
* Tries to find a free spu to run @ctx. If no free spu is available
* add the context to the runqueue so it gets woken up once an spu
* is available.
*/
int spu_activate(struct spu_context *ctx, unsigned long flags)
{
if (ctx->spu)
return 0;
do {
struct spu *spu;
spu = spu_get_idle(ctx);
/*
* If this is a realtime thread we try to get it running by
* preempting a lower priority thread.
*/
if (!spu && rt_prio(ctx->prio))
spu = find_victim(ctx);
if (spu) {
spu_bind_context(spu, ctx);
spu_add_to_active_list(spu);
return 0;
}
spu_prio_wait(ctx);
} while (!signal_pending(current));
return -ERESTARTSYS;
}
/**
* grab_runnable_context - try to find a runnable context
*
* Remove the highest priority context on the runqueue and return it
* to the caller. Returns %NULL if no runnable context was found.
*/
static struct spu_context *grab_runnable_context(int prio, int node)
{
struct spu_context *ctx;
int best;
spin_lock(&spu_prio->runq_lock);
best = sched_find_first_bit(spu_prio->bitmap);
while (best < prio) {
struct list_head *rq = &spu_prio->runq[best];
list_for_each_entry(ctx, rq, rq) {
/* XXX(hch): check for affinity here aswell */
if (__node_allowed(ctx, node)) {
__spu_del_from_rq(ctx);
goto found;
}
}
best++;
}
ctx = NULL;
found:
spin_unlock(&spu_prio->runq_lock);
return ctx;
}
static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
struct spu *spu = ctx->spu;
struct spu_context *new = NULL;
if (spu) {
new = grab_runnable_context(max_prio, spu->node);
if (new || force) {
spu_remove_from_active_list(spu);
spu_unbind_context(spu, ctx);
spu_free(spu);
if (new)
wake_up(&new->stop_wq);
}
}
return new != NULL;
}
/**
* spu_deactivate - unbind a context from it's physical spu
* @ctx: spu context to unbind
*
* Unbind @ctx from the physical spu it is running on and schedule
* the highest priority context to run on the freed physical spu.
*/
void spu_deactivate(struct spu_context *ctx)
{
/*
* We must never reach this for a nosched context,
* but handle the case gracefull instead of panicing.
*/
if (ctx->flags & SPU_CREATE_NOSCHED) {
WARN_ON(1);
return;
}
__spu_deactivate(ctx, 1, MAX_PRIO);
}
/**
* spu_yield - yield a physical spu if others are waiting
* @ctx: spu context to yield
*
* Check if there is a higher priority context waiting and if yes
* unbind @ctx from the physical spu and schedule the highest
* priority context to run on the freed physical spu instead.
*/
void spu_yield(struct spu_context *ctx)
{
if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
mutex_lock(&ctx->state_mutex);
__spu_deactivate(ctx, 0, MAX_PRIO);
mutex_unlock(&ctx->state_mutex);
}
}
static void spusched_tick(struct spu_context *ctx)
{
if (ctx->flags & SPU_CREATE_NOSCHED)
return;
if (ctx->policy == SCHED_FIFO)
return;
if (--ctx->time_slice)
return;
/*
* Unfortunately active_mutex ranks outside of state_mutex, so
* we have to trylock here. If we fail give the context another
* tick and try again.
*/
if (mutex_trylock(&ctx->state_mutex)) {
struct spu *spu = ctx->spu;
struct spu_context *new;
new = grab_runnable_context(ctx->prio + 1, spu->node);
if (new) {
__spu_remove_from_active_list(spu);
spu_unbind_context(spu, ctx);
spu_free(spu);
wake_up(&new->stop_wq);
/*
* We need to break out of the wait loop in
* spu_run manually to ensure this context
* gets put on the runqueue again ASAP.
*/
wake_up(&ctx->stop_wq);
}
spu_set_timeslice(ctx);
mutex_unlock(&ctx->state_mutex);
} else {
ctx->time_slice++;
}
}
static void spusched_wake(unsigned long data)
{
mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
wake_up_process(spusched_task);
}
static int spusched_thread(void *unused)
{
struct spu *spu, *next;
int node;
setup_timer(&spusched_timer, spusched_wake, 0);
__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
while (!kthread_should_stop()) {
set_current_state(TASK_INTERRUPTIBLE);
schedule();
for (node = 0; node < MAX_NUMNODES; node++) {
mutex_lock(&spu_prio->active_mutex[node]);
list_for_each_entry_safe(spu, next,
&spu_prio->active_list[node],
list)
spusched_tick(spu->ctx);
mutex_unlock(&spu_prio->active_mutex[node]);
}
}
del_timer_sync(&spusched_timer);
return 0;
}
int __init spu_sched_init(void)
{
int i;
spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
if (!spu_prio)
return -ENOMEM;
for (i = 0; i < MAX_PRIO; i++) {
INIT_LIST_HEAD(&spu_prio->runq[i]);
__clear_bit(i, spu_prio->bitmap);
}
__set_bit(MAX_PRIO, spu_prio->bitmap);
for (i = 0; i < MAX_NUMNODES; i++) {
mutex_init(&spu_prio->active_mutex[i]);
INIT_LIST_HEAD(&spu_prio->active_list[i]);
}
spin_lock_init(&spu_prio->runq_lock);
spusched_task = kthread_run(spusched_thread, NULL, "spusched");
if (IS_ERR(spusched_task)) {
kfree(spu_prio);
return PTR_ERR(spusched_task);
}
pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
return 0;
}
void __exit spu_sched_exit(void)
{
struct spu *spu, *tmp;
int node;
kthread_stop(spusched_task);
for (node = 0; node < MAX_NUMNODES; node++) {
mutex_lock(&spu_prio->active_mutex[node]);
list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
list) {
list_del_init(&spu->list);
spu_free(spu);
}
mutex_unlock(&spu_prio->active_mutex[node]);
}
kfree(spu_prio);
}