linux/mm/swap_state.c

408 lines
11 KiB
C
Raw Normal View History

/*
* linux/mm/swap_state.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
*
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/migrate.h>
#include <asm/pgtable.h>
/*
* swapper_space is a fiction, retained to simplify the path through
* vmscan's shrink_page_list, to make sync_page look nicer, and to allow
* future use of radix_tree tags in the swap cache.
*/
static const struct address_space_operations swap_aops = {
.writepage = swap_writepage,
.sync_page = block_sync_page,
.set_page_dirty = __set_page_dirty_nobuffers,
.migratepage = migrate_page,
};
static struct backing_dev_info swap_backing_dev_info = {
.capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
.unplug_io_fn = swap_unplug_io_fn,
};
struct address_space swapper_space = {
.page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
.tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
.a_ops = &swap_aops,
.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
.backing_dev_info = &swap_backing_dev_info,
};
#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
static struct {
unsigned long add_total;
unsigned long del_total;
unsigned long find_success;
unsigned long find_total;
} swap_cache_info;
void show_swap_cache_info(void)
{
printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n",
swap_cache_info.add_total, swap_cache_info.del_total,
swap_cache_info.find_success, swap_cache_info.find_total);
printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}
/*
* __add_to_swap_cache resembles add_to_page_cache on swapper_space,
* but sets SwapCache flag and private instead of mapping and index.
*/
static int __add_to_swap_cache(struct page *page, swp_entry_t entry,
gfp_t gfp_mask)
{
int error;
BUG_ON(!PageLocked(page));
BUG_ON(PageSwapCache(page));
BUG_ON(PagePrivate(page));
error = radix_tree_preload(gfp_mask);
if (!error) {
write_lock_irq(&swapper_space.tree_lock);
error = radix_tree_insert(&swapper_space.page_tree,
entry.val, page);
if (!error) {
page_cache_get(page);
SetPageSwapCache(page);
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
set_page_private(page, entry.val);
total_swapcache_pages++;
__inc_zone_page_state(page, NR_FILE_PAGES);
INC_CACHE_INFO(add_total);
}
write_unlock_irq(&swapper_space.tree_lock);
radix_tree_preload_end();
}
return error;
}
static int add_to_swap_cache(struct page *page, swp_entry_t entry,
gfp_t gfp_mask)
{
int error;
BUG_ON(PageLocked(page));
if (!swap_duplicate(entry))
return -ENOENT;
SetPageLocked(page);
error = __add_to_swap_cache(page, entry, gfp_mask & GFP_KERNEL);
/*
* Anon pages are already on the LRU, we don't run lru_cache_add here.
*/
if (error) {
ClearPageLocked(page);
swap_free(entry);
return error;
}
return 0;
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache.
*/
void __delete_from_swap_cache(struct page *page)
{
BUG_ON(!PageLocked(page));
BUG_ON(!PageSwapCache(page));
BUG_ON(PageWriteback(page));
BUG_ON(PagePrivate(page));
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
radix_tree_delete(&swapper_space.page_tree, page_private(page));
set_page_private(page, 0);
ClearPageSwapCache(page);
total_swapcache_pages--;
__dec_zone_page_state(page, NR_FILE_PAGES);
INC_CACHE_INFO(del_total);
}
/**
* add_to_swap - allocate swap space for a page
* @page: page we want to move to swap
*
* Allocate swap space for the page and add the page to the
* swap cache. Caller needs to hold the page lock.
*/
int add_to_swap(struct page * page, gfp_t gfp_mask)
{
swp_entry_t entry;
int err;
BUG_ON(!PageLocked(page));
for (;;) {
entry = get_swap_page();
if (!entry.val)
return 0;
/*
* Radix-tree node allocations from PF_MEMALLOC contexts could
* completely exhaust the page allocator. __GFP_NOMEMALLOC
* stops emergency reserves from being allocated.
*
* TODO: this could cause a theoretical memory reclaim
* deadlock in the swap out path.
*/
/*
* Add it to the swap cache and mark it dirty
*/
err = __add_to_swap_cache(page, entry,
gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
switch (err) {
case 0: /* Success */
SetPageUptodate(page);
SetPageDirty(page);
return 1;
case -EEXIST:
/* Raced with "speculative" read_swap_cache_async */
swap_free(entry);
continue;
default:
/* -ENOMEM radix-tree allocation failure */
swap_free(entry);
return 0;
}
}
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache and locked.
* It will never put the page into the free list,
* the caller has a reference on the page.
*/
void delete_from_swap_cache(struct page *page)
{
swp_entry_t entry;
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
entry.val = page_private(page);
write_lock_irq(&swapper_space.tree_lock);
__delete_from_swap_cache(page);
write_unlock_irq(&swapper_space.tree_lock);
swap_free(entry);
page_cache_release(page);
}
/*
* Strange swizzling function only for use by shmem_writepage
*/
int move_to_swap_cache(struct page *page, swp_entry_t entry)
{
int err = __add_to_swap_cache(page, entry, GFP_ATOMIC);
if (!err) {
remove_from_page_cache(page);
page_cache_release(page); /* pagecache ref */
if (!swap_duplicate(entry))
BUG();
SetPageDirty(page);
}
return err;
}
/*
* Strange swizzling function for shmem_getpage (and shmem_unuse)
*/
int move_from_swap_cache(struct page *page, unsigned long index,
struct address_space *mapping)
{
int err = add_to_page_cache(page, mapping, index, GFP_ATOMIC);
if (!err) {
delete_from_swap_cache(page);
/* shift page from clean_pages to dirty_pages list */
ClearPageDirty(page);
set_page_dirty(page);
}
return err;
}
/*
* If we are the only user, then try to free up the swap cache.
*
* Its ok to check for PageSwapCache without the page lock
* here because we are going to recheck again inside
* exclusive_swap_page() _with_ the lock.
* - Marcelo
*/
static inline void free_swap_cache(struct page *page)
{
if (PageSwapCache(page) && !TestSetPageLocked(page)) {
remove_exclusive_swap_page(page);
unlock_page(page);
}
}
/*
* Perform a free_page(), also freeing any swap cache associated with
* this page if it is the last user of the page.
*/
void free_page_and_swap_cache(struct page *page)
{
free_swap_cache(page);
page_cache_release(page);
}
/*
* Passed an array of pages, drop them all from swapcache and then release
* them. They are removed from the LRU and freed if this is their last use.
*/
void free_pages_and_swap_cache(struct page **pages, int nr)
{
struct page **pagep = pages;
lru_add_drain();
while (nr) {
int todo = min(nr, PAGEVEC_SIZE);
int i;
for (i = 0; i < todo; i++)
free_swap_cache(pagep[i]);
release_pages(pagep, todo, 0);
pagep += todo;
nr -= todo;
}
}
/*
* Lookup a swap entry in the swap cache. A found page will be returned
* unlocked and with its refcount incremented - we rely on the kernel
* lock getting page table operations atomic even if we drop the page
* lock before returning.
*/
struct page * lookup_swap_cache(swp_entry_t entry)
{
struct page *page;
page = find_get_page(&swapper_space, entry.val);
if (page)
INC_CACHE_INFO(find_success);
INC_CACHE_INFO(find_total);
return page;
}
/*
* Locate a page of swap in physical memory, reserving swap cache space
* and reading the disk if it is not already cached.
* A failure return means that either the page allocation failed or that
* the swap entry is no longer in use.
*/
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr)
{
struct page *found_page, *new_page = NULL;
int err;
do {
/*
* First check the swap cache. Since this is normally
* called after lookup_swap_cache() failed, re-calling
* that would confuse statistics.
*/
found_page = find_get_page(&swapper_space, entry.val);
if (found_page)
break;
/*
* Get a new page to read into from swap.
*/
if (!new_page) {
new_page = alloc_page_vma(gfp_mask, vma, addr);
if (!new_page)
break; /* Out of memory */
}
/*
* Associate the page with swap entry in the swap cache.
* May fail (-ENOENT) if swap entry has been freed since
* our caller observed it. May fail (-EEXIST) if there
* is already a page associated with this entry in the
* swap cache: added by a racing read_swap_cache_async,
* or by try_to_swap_out (or shmem_writepage) re-using
* the just freed swap entry for an existing page.
* May fail (-ENOMEM) if radix-tree node allocation failed.
*/
err = add_to_swap_cache(new_page, entry, gfp_mask);
if (!err) {
/*
* Initiate read into locked page and return.
*/
lru_cache_add_active(new_page);
swap_readpage(NULL, new_page);
return new_page;
}
} while (err != -ENOENT && err != -ENOMEM);
if (new_page)
page_cache_release(new_page);
return found_page;
}
/**
* swapin_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @vma: user vma this address belongs to
* @addr: target address for mempolicy
*
* Returns the struct page for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read an aligned block of
* (1 << page_cluster) entries in the swap area. This method is chosen
* because it doesn't cost us any seek time. We also make sure to queue
* the 'original' request together with the readahead ones...
*
* This has been extended to use the NUMA policies from the mm triggering
* the readahead.
*
* Caller must hold down_read on the vma->vm_mm if vma is not NULL.
*/
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr)
{
int nr_pages;
struct page *page;
unsigned long offset;
unsigned long end_offset;
/*
* Get starting offset for readaround, and number of pages to read.
* Adjust starting address by readbehind (for NUMA interleave case)?
* No, it's very unlikely that swap layout would follow vma layout,
* more likely that neighbouring swap pages came from the same node:
* so use the same "addr" to choose the same node for each swap read.
*/
nr_pages = valid_swaphandles(entry, &offset);
for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
/* Ok, do the async read-ahead now */
page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
gfp_mask, vma, addr);
if (!page)
break;
page_cache_release(page);
}
lru_add_drain(); /* Push any new pages onto the LRU now */
return read_swap_cache_async(entry, gfp_mask, vma, addr);
}