linux/kernel/sched/membarrier.c

632 lines
19 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157 Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-27 14:55:06 +08:00
// SPDX-License-Identifier: GPL-2.0-or-later
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
/*
* Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
*
* membarrier system call
*/
#include "sched.h"
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
/*
* For documentation purposes, here are some membarrier ordering
* scenarios to keep in mind:
*
* A) Userspace thread execution after IPI vs membarrier's memory
* barrier before sending the IPI
*
* Userspace variables:
*
* int x = 0, y = 0;
*
* The memory barrier at the start of membarrier() on CPU0 is necessary in
* order to enforce the guarantee that any writes occurring on CPU0 before
* the membarrier() is executed will be visible to any code executing on
* CPU1 after the IPI-induced memory barrier:
*
* CPU0 CPU1
*
* x = 1
* membarrier():
* a: smp_mb()
* b: send IPI IPI-induced mb
* c: smp_mb()
* r2 = y
* y = 1
* barrier()
* r1 = x
*
* BUG_ON(r1 == 0 && r2 == 0)
*
* The write to y and load from x by CPU1 are unordered by the hardware,
* so it's possible to have "r1 = x" reordered before "y = 1" at any
* point after (b). If the memory barrier at (a) is omitted, then "x = 1"
* can be reordered after (a) (although not after (c)), so we get r1 == 0
* and r2 == 0. This violates the guarantee that membarrier() is
* supposed by provide.
*
* The timing of the memory barrier at (a) has to ensure that it executes
* before the IPI-induced memory barrier on CPU1.
*
* B) Userspace thread execution before IPI vs membarrier's memory
* barrier after completing the IPI
*
* Userspace variables:
*
* int x = 0, y = 0;
*
* The memory barrier at the end of membarrier() on CPU0 is necessary in
* order to enforce the guarantee that any writes occurring on CPU1 before
* the membarrier() is executed will be visible to any code executing on
* CPU0 after the membarrier():
*
* CPU0 CPU1
*
* x = 1
* barrier()
* y = 1
* r2 = y
* membarrier():
* a: smp_mb()
* b: send IPI IPI-induced mb
* c: smp_mb()
* r1 = x
* BUG_ON(r1 == 0 && r2 == 1)
*
* The writes to x and y are unordered by the hardware, so it's possible to
* have "r2 = 1" even though the write to x doesn't execute until (b). If
* the memory barrier at (c) is omitted then "r1 = x" can be reordered
* before (b) (although not before (a)), so we get "r1 = 0". This violates
* the guarantee that membarrier() is supposed to provide.
*
* The timing of the memory barrier at (c) has to ensure that it executes
* after the IPI-induced memory barrier on CPU1.
*
* C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
*
* CPU0 CPU1
*
* membarrier():
* a: smp_mb()
* d: switch to kthread (includes mb)
* b: read rq->curr->mm == NULL
* e: switch to user (includes mb)
* c: smp_mb()
*
* Using the scenario from (A), we can show that (a) needs to be paired
* with (e). Using the scenario from (B), we can show that (c) needs to
* be paired with (d).
*
* D) exit_mm vs membarrier
*
* Two thread groups are created, A and B. Thread group B is created by
* issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
* Let's assume we have a single thread within each thread group (Thread A
* and Thread B). Thread A runs on CPU0, Thread B runs on CPU1.
*
* CPU0 CPU1
*
* membarrier():
* a: smp_mb()
* exit_mm():
* d: smp_mb()
* e: current->mm = NULL
* b: read rq->curr->mm == NULL
* c: smp_mb()
*
* Using scenario (B), we can show that (c) needs to be paired with (d).
*
* E) kthread_{use,unuse}_mm vs membarrier
*
* CPU0 CPU1
*
* membarrier():
* a: smp_mb()
* kthread_unuse_mm()
* d: smp_mb()
* e: current->mm = NULL
* b: read rq->curr->mm == NULL
* kthread_use_mm()
* f: current->mm = mm
* g: smp_mb()
* c: smp_mb()
*
* Using the scenario from (A), we can show that (a) needs to be paired
* with (g). Using the scenario from (B), we can show that (c) needs to
* be paired with (d).
*/
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
/*
* Bitmask made from a "or" of all commands within enum membarrier_cmd,
* except MEMBARRIER_CMD_QUERY.
*/
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
#else
#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0
#endif
#ifdef CONFIG_RSEQ
#define MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ_BITMASK \
(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \
| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
#else
#define MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ_BITMASK 0
#endif
#define MEMBARRIER_CMD_BITMASK \
(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \
| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \
| MEMBARRIER_CMD_PRIVATE_EXPEDITED \
| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
| MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK)
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
static void ipi_mb(void *info)
{
smp_mb(); /* IPIs should be serializing but paranoid. */
}
static void ipi_sync_core(void *info)
{
/*
* The smp_mb() in membarrier after all the IPIs is supposed to
* ensure that memory on remote CPUs that occur before the IPI
* become visible to membarrier()'s caller -- see scenario B in
* the big comment at the top of this file.
*
* A sync_core() would provide this guarantee, but
* sync_core_before_usermode() might end up being deferred until
* after membarrier()'s smp_mb().
*/
smp_mb(); /* IPIs should be serializing but paranoid. */
sync_core_before_usermode();
}
static void ipi_rseq(void *info)
{
/*
* Ensure that all stores done by the calling thread are visible
* to the current task before the current task resumes. We could
* probably optimize this away on most architectures, but by the
* time we've already sent an IPI, the cost of the extra smp_mb()
* is negligible.
*/
smp_mb();
rseq_preempt(current);
}
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
static void ipi_sync_rq_state(void *info)
{
struct mm_struct *mm = (struct mm_struct *) info;
if (current->mm != mm)
return;
this_cpu_write(runqueues.membarrier_state,
atomic_read(&mm->membarrier_state));
/*
* Issue a memory barrier after setting
* MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
* guarantee that no memory access following registration is reordered
* before registration.
*/
smp_mb();
}
void membarrier_exec_mmap(struct mm_struct *mm)
{
/*
* Issue a memory barrier before clearing membarrier_state to
* guarantee that no memory access prior to exec is reordered after
* clearing this state.
*/
smp_mb();
atomic_set(&mm->membarrier_state, 0);
/*
* Keep the runqueue membarrier_state in sync with this mm
* membarrier_state.
*/
this_cpu_write(runqueues.membarrier_state, 0);
}
void membarrier_update_current_mm(struct mm_struct *next_mm)
{
struct rq *rq = this_rq();
int membarrier_state = 0;
if (next_mm)
membarrier_state = atomic_read(&next_mm->membarrier_state);
if (READ_ONCE(rq->membarrier_state) == membarrier_state)
return;
WRITE_ONCE(rq->membarrier_state, membarrier_state);
}
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
static int membarrier_global_expedited(void)
{
int cpu;
cpumask_var_t tmpmask;
if (num_online_cpus() == 1)
return 0;
/*
* Matches memory barriers around rq->curr modification in
* scheduler.
*/
smp_mb(); /* system call entry is not a mb. */
if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
return -ENOMEM;
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
cpus_read_lock();
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
rcu_read_lock();
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
for_each_online_cpu(cpu) {
struct task_struct *p;
/*
* Skipping the current CPU is OK even through we can be
* migrated at any point. The current CPU, at the point
* where we read raw_smp_processor_id(), is ensured to
* be in program order with respect to the caller
* thread. Therefore, we can skip this CPU from the
* iteration.
*/
if (cpu == raw_smp_processor_id())
continue;
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
MEMBARRIER_STATE_GLOBAL_EXPEDITED))
continue;
/*
* Skip the CPU if it runs a kernel thread which is not using
* a task mm.
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
*/
tasks, sched/core: With a grace period after finish_task_switch(), remove unnecessary code Remove work arounds that were written before there was a grace period after tasks left the runqueue in finish_task_switch(). In particular now that there tasks exiting the runqueue exprience a RCU grace period none of the work performed by task_rcu_dereference() excpet the rcu_dereference() is necessary so replace task_rcu_dereference() with rcu_dereference(). Remove the code in rcuwait_wait_event() that checks to ensure the current task has not exited. It is no longer necessary as it is guaranteed that any running task will experience a RCU grace period after it leaves the run queueue. Remove the comment in rcuwait_wake_up() as it is no longer relevant. Ref: 8f95c90ceb54 ("sched/wait, RCU: Introduce rcuwait machinery") Ref: 150593bf8693 ("sched/api: Introduce task_rcu_dereference() and try_get_task_struct()") Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/87lfurdpk9.fsf_-_@x220.int.ebiederm.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-14 20:34:30 +08:00
p = rcu_dereference(cpu_rq(cpu)->curr);
if (!p->mm)
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
continue;
__cpumask_set_cpu(cpu, tmpmask);
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
}
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
rcu_read_unlock();
preempt_disable();
smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
preempt_enable();
free_cpumask_var(tmpmask);
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
cpus_read_unlock();
/*
* Memory barrier on the caller thread _after_ we finished
* waiting for the last IPI. Matches memory barriers around
* rq->curr modification in scheduler.
*/
smp_mb(); /* exit from system call is not a mb */
return 0;
}
static int membarrier_private_expedited(int flags, int cpu_id)
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
{
cpumask_var_t tmpmask;
struct mm_struct *mm = current->mm;
smp_call_func_t ipi_func = ipi_mb;
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
return -EINVAL;
if (!(atomic_read(&mm->membarrier_state) &
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
return -EPERM;
ipi_func = ipi_sync_core;
} else if (flags == MEMBARRIER_FLAG_RSEQ) {
if (!IS_ENABLED(CONFIG_RSEQ))
return -EINVAL;
if (!(atomic_read(&mm->membarrier_state) &
MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
return -EPERM;
ipi_func = ipi_rseq;
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
} else {
WARN_ON_ONCE(flags);
if (!(atomic_read(&mm->membarrier_state) &
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
return -EPERM;
}
membarrier: Execute SYNC_CORE on the calling thread membarrier()'s MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE is documented as syncing the core on all sibling threads but not necessarily the calling thread. This behavior is fundamentally buggy and cannot be used safely. Suppose a user program has two threads. Thread A is on CPU 0 and thread B is on CPU 1. Thread A modifies some text and calls membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE). Then thread B executes the modified code. If, at any point after membarrier() decides which CPUs to target, thread A could be preempted and replaced by thread B on CPU 0. This could even happen on exit from the membarrier() syscall. If this happens, thread B will end up running on CPU 0 without having synced. In principle, this could be fixed by arranging for the scheduler to issue sync_core_before_usermode() whenever switching between two threads in the same mm if there is any possibility of a concurrent membarrier() call, but this would have considerable overhead. Instead, make membarrier() sync the calling CPU as well. As an optimization, this avoids an extra smp_mb() in the default barrier-only mode and an extra rseq preempt on the caller. Fixes: 70216e18e519 ("membarrier: Provide core serializing command, *_SYNC_CORE") Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/r/250ded637696d490c69bef1877148db86066881c.1607058304.git.luto@kernel.org
2020-12-04 13:07:06 +08:00
if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
(atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
return 0;
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
/*
* Matches memory barriers around rq->curr modification in
* scheduler.
*/
smp_mb(); /* system call entry is not a mb. */
if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
return -ENOMEM;
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
cpus_read_lock();
if (cpu_id >= 0) {
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
struct task_struct *p;
if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
goto out;
rcu_read_lock();
p = rcu_dereference(cpu_rq(cpu_id)->curr);
if (!p || p->mm != mm) {
rcu_read_unlock();
goto out;
}
rcu_read_unlock();
} else {
int cpu;
rcu_read_lock();
for_each_online_cpu(cpu) {
struct task_struct *p;
p = rcu_dereference(cpu_rq(cpu)->curr);
if (p && p->mm == mm)
__cpumask_set_cpu(cpu, tmpmask);
}
rcu_read_unlock();
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
}
membarrier: Execute SYNC_CORE on the calling thread membarrier()'s MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE is documented as syncing the core on all sibling threads but not necessarily the calling thread. This behavior is fundamentally buggy and cannot be used safely. Suppose a user program has two threads. Thread A is on CPU 0 and thread B is on CPU 1. Thread A modifies some text and calls membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE). Then thread B executes the modified code. If, at any point after membarrier() decides which CPUs to target, thread A could be preempted and replaced by thread B on CPU 0. This could even happen on exit from the membarrier() syscall. If this happens, thread B will end up running on CPU 0 without having synced. In principle, this could be fixed by arranging for the scheduler to issue sync_core_before_usermode() whenever switching between two threads in the same mm if there is any possibility of a concurrent membarrier() call, but this would have considerable overhead. Instead, make membarrier() sync the calling CPU as well. As an optimization, this avoids an extra smp_mb() in the default barrier-only mode and an extra rseq preempt on the caller. Fixes: 70216e18e519 ("membarrier: Provide core serializing command, *_SYNC_CORE") Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/r/250ded637696d490c69bef1877148db86066881c.1607058304.git.luto@kernel.org
2020-12-04 13:07:06 +08:00
if (cpu_id >= 0) {
/*
* smp_call_function_single() will call ipi_func() if cpu_id
* is the calling CPU.
*/
smp_call_function_single(cpu_id, ipi_func, NULL, 1);
membarrier: Execute SYNC_CORE on the calling thread membarrier()'s MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE is documented as syncing the core on all sibling threads but not necessarily the calling thread. This behavior is fundamentally buggy and cannot be used safely. Suppose a user program has two threads. Thread A is on CPU 0 and thread B is on CPU 1. Thread A modifies some text and calls membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE). Then thread B executes the modified code. If, at any point after membarrier() decides which CPUs to target, thread A could be preempted and replaced by thread B on CPU 0. This could even happen on exit from the membarrier() syscall. If this happens, thread B will end up running on CPU 0 without having synced. In principle, this could be fixed by arranging for the scheduler to issue sync_core_before_usermode() whenever switching between two threads in the same mm if there is any possibility of a concurrent membarrier() call, but this would have considerable overhead. Instead, make membarrier() sync the calling CPU as well. As an optimization, this avoids an extra smp_mb() in the default barrier-only mode and an extra rseq preempt on the caller. Fixes: 70216e18e519 ("membarrier: Provide core serializing command, *_SYNC_CORE") Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/r/250ded637696d490c69bef1877148db86066881c.1607058304.git.luto@kernel.org
2020-12-04 13:07:06 +08:00
} else {
/*
* For regular membarrier, we can save a few cycles by
* skipping the current cpu -- we're about to do smp_mb()
* below, and if we migrate to a different cpu, this cpu
* and the new cpu will execute a full barrier in the
* scheduler.
*
* For SYNC_CORE, we do need a barrier on the current cpu --
* otherwise, if we are migrated and replaced by a different
* task in the same mm just before, during, or after
* membarrier, we will end up with some thread in the mm
* running without a core sync.
*
* For RSEQ, don't rseq_preempt() the caller. User code
* is not supposed to issue syscalls at all from inside an
* rseq critical section.
*/
if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
preempt_disable();
smp_call_function_many(tmpmask, ipi_func, NULL, true);
preempt_enable();
} else {
on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
}
}
out:
if (cpu_id < 0)
free_cpumask_var(tmpmask);
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
cpus_read_unlock();
/*
* Memory barrier on the caller thread _after_ we finished
* waiting for the last IPI. Matches memory barriers around
* rq->curr modification in scheduler.
*/
smp_mb(); /* exit from system call is not a mb */
return 0;
}
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
static int sync_runqueues_membarrier_state(struct mm_struct *mm)
{
int membarrier_state = atomic_read(&mm->membarrier_state);
cpumask_var_t tmpmask;
int cpu;
if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
this_cpu_write(runqueues.membarrier_state, membarrier_state);
/*
* For single mm user, we can simply issue a memory barrier
* after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
* mm and in the current runqueue to guarantee that no memory
* access following registration is reordered before
* registration.
*/
smp_mb();
return 0;
}
if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
return -ENOMEM;
/*
* For mm with multiple users, we need to ensure all future
* scheduler executions will observe @mm's new membarrier
* state.
*/
synchronize_rcu();
/*
* For each cpu runqueue, if the task's mm match @mm, ensure that all
* @mm's membarrier state set bits are also set in in the runqueue's
* membarrier state. This ensures that a runqueue scheduling
* between threads which are users of @mm has its membarrier state
* updated.
*/
cpus_read_lock();
rcu_read_lock();
for_each_online_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
struct task_struct *p;
p = rcu_dereference(rq->curr);
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
if (p && p->mm == mm)
__cpumask_set_cpu(cpu, tmpmask);
}
rcu_read_unlock();
preempt_disable();
smp_call_function_many(tmpmask, ipi_sync_rq_state, mm, 1);
preempt_enable();
free_cpumask_var(tmpmask);
cpus_read_unlock();
return 0;
}
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
static int membarrier_register_global_expedited(void)
{
struct task_struct *p = current;
struct mm_struct *mm = p->mm;
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
int ret;
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
if (atomic_read(&mm->membarrier_state) &
MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
return 0;
atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
ret = sync_runqueues_membarrier_state(mm);
if (ret)
return ret;
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
&mm->membarrier_state);
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
return 0;
}
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
static int membarrier_register_private_expedited(int flags)
{
struct task_struct *p = current;
struct mm_struct *mm = p->mm;
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
ret;
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
return -EINVAL;
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
ready_state =
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
} else if (flags == MEMBARRIER_FLAG_RSEQ) {
if (!IS_ENABLED(CONFIG_RSEQ))
return -EINVAL;
ready_state =
MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
} else {
WARN_ON_ONCE(flags);
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
}
/*
* We need to consider threads belonging to different thread
* groups, which use the same mm. (CLONE_VM but not
* CLONE_THREAD).
*/
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
return 0;
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
if (flags & MEMBARRIER_FLAG_SYNC_CORE)
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
if (flags & MEMBARRIER_FLAG_RSEQ)
set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
atomic_or(set_state, &mm->membarrier_state);
ret = sync_runqueues_membarrier_state(mm);
if (ret)
return ret;
atomic_or(ready_state, &mm->membarrier_state);
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
return 0;
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
}
/**
* sys_membarrier - issue memory barriers on a set of threads
* @cmd: Takes command values defined in enum membarrier_cmd.
* @flags: Currently needs to be 0 for all commands other than
* MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
* case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
* contains the CPU on which to interrupt (= restart)
* the RSEQ critical section.
* @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
* RSEQ CS should be interrupted (@cmd must be
* MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
*
* If this system call is not implemented, -ENOSYS is returned. If the
* command specified does not exist, not available on the running
* kernel, or if the command argument is invalid, this system call
* returns -EINVAL. For a given command, with flags argument set to 0,
sched/membarrier: Fix p->mm->membarrier_state racy load The membarrier_state field is located within the mm_struct, which is not guaranteed to exist when used from runqueue-lock-free iteration on runqueues by the membarrier system call. Copy the membarrier_state from the mm_struct into the scheduler runqueue when the scheduler switches between mm. When registering membarrier for mm, after setting the registration bit in the mm membarrier state, issue a synchronize_rcu() to ensure the scheduler observes the change. In order to take care of the case where a runqueue keeps executing the target mm without swapping to other mm, iterate over each runqueue and issue an IPI to copy the membarrier_state from the mm_struct into each runqueue which have the same mm which state has just been modified. Move the mm membarrier_state field closer to pgd in mm_struct to use a cache line already touched by the scheduler switch_mm. The membarrier_execve() (now membarrier_exec_mmap) hook now needs to clear the runqueue's membarrier state in addition to clear the mm membarrier state, so move its implementation into the scheduler membarrier code so it can access the runqueue structure. Add memory barrier in membarrier_exec_mmap() prior to clearing the membarrier state, ensuring memory accesses executed prior to exec are not reordered with the stores clearing the membarrier state. As suggested by Linus, move all membarrier.c RCU read-side locks outside of the for each cpu loops. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-09-20 01:37:02 +08:00
* if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
* always return the same value until reboot. In addition, it can return
* -ENOMEM if there is not enough memory available to perform the system
* call.
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
*
* All memory accesses performed in program order from each targeted thread
* is guaranteed to be ordered with respect to sys_membarrier(). If we use
* the semantic "barrier()" to represent a compiler barrier forcing memory
* accesses to be performed in program order across the barrier, and
* smp_mb() to represent explicit memory barriers forcing full memory
* ordering across the barrier, we have the following ordering table for
* each pair of barrier(), sys_membarrier() and smp_mb():
*
* The pair ordering is detailed as (O: ordered, X: not ordered):
*
* barrier() smp_mb() sys_membarrier()
* barrier() X X O
* smp_mb() X O O
* sys_membarrier() O O O
*/
SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
{
switch (cmd) {
case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
return -EINVAL;
break;
default:
if (unlikely(flags))
return -EINVAL;
}
if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
cpu_id = -1;
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
switch (cmd) {
case MEMBARRIER_CMD_QUERY:
{
int cmd_mask = MEMBARRIER_CMD_BITMASK;
if (tick_nohz_full_enabled())
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
return cmd_mask;
}
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
case MEMBARRIER_CMD_GLOBAL:
/* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
if (tick_nohz_full_enabled())
return -EINVAL;
if (num_online_cpus() > 1)
synchronize_rcu();
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
return 0;
membarrier: Provide GLOBAL_EXPEDITED command Allow expedited membarrier to be used for data shared between processes through shared memory. Processes wishing to receive the membarriers register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. Those which want to issue membarrier invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED. This allows extremely simple kernel-level implementation: we have almost everything we need with the PRIVATE_EXPEDITED barrier code. All we need to do is to add a flag in the mm_struct that will be used to check whether we need to send the IPI to the current thread of each CPU. There is a slight downside to this approach compared to targeting specific shared memory users: when performing a membarrier operation, all registered "global" receivers will get the barrier, even if they don't share a memory mapping with the sender issuing MEMBARRIER_CMD_GLOBAL_EXPEDITED. This registration approach seems to fit the requirement of not disturbing processes that really deeply care about real-time: they simply should not register with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED. In order to align the membarrier command names, the "MEMBARRIER_CMD_SHARED" command is renamed to "MEMBARRIER_CMD_GLOBAL", keeping an alias of MEMBARRIER_CMD_SHARED to MEMBARRIER_CMD_GLOBAL for UAPI header backward compatibility. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-5-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:13 +08:00
case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
return membarrier_global_expedited();
case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
return membarrier_register_global_expedited();
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
return membarrier_private_expedited(0, cpu_id);
case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
return membarrier_register_private_expedited(0);
case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
membarrier: Provide core serializing command, *_SYNC_CORE Provide core serializing membarrier command to support memory reclaim by JIT. Each architecture needs to explicitly opt into that support by documenting in their architecture code how they provide the core serializing instructions required when returning from the membarrier IPI, and after the scheduler has updated the curr->mm pointer (before going back to user-space). They should then select ARCH_HAS_MEMBARRIER_SYNC_CORE to enable support for that command on their architecture. Architectures selecting this feature need to either document that they issue core serializing instructions when returning to user-space, or implement their architecture-specific sync_core_before_usermode(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: David Sehr <sehr@google.com> Cc: Greg Hackmann <ghackmann@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/20180129202020.8515-9-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 04:20:17 +08:00
case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
default:
return -EINVAL;
}
}