linux/fs/cifs/asn1.c

624 lines
14 KiB
C
Raw Normal View History

/*
* The ASB.1/BER parsing code is derived from ip_nat_snmp_basic.c which was in
* turn derived from the gxsnmp package by Gregory McLean & Jochen Friedrich
*
* Copyright (c) 2000 RP Internet (www.rpi.net.au).
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include "cifspdu.h"
#include "cifsglob.h"
#include "cifs_debug.h"
#include "cifsproto.h"
/*****************************************************************************
*
* Basic ASN.1 decoding routines (gxsnmp author Dirk Wisse)
*
*****************************************************************************/
/* Class */
#define ASN1_UNI 0 /* Universal */
#define ASN1_APL 1 /* Application */
#define ASN1_CTX 2 /* Context */
#define ASN1_PRV 3 /* Private */
/* Tag */
#define ASN1_EOC 0 /* End Of Contents or N/A */
#define ASN1_BOL 1 /* Boolean */
#define ASN1_INT 2 /* Integer */
#define ASN1_BTS 3 /* Bit String */
#define ASN1_OTS 4 /* Octet String */
#define ASN1_NUL 5 /* Null */
#define ASN1_OJI 6 /* Object Identifier */
#define ASN1_OJD 7 /* Object Description */
#define ASN1_EXT 8 /* External */
#define ASN1_ENUM 10 /* Enumerated */
#define ASN1_SEQ 16 /* Sequence */
#define ASN1_SET 17 /* Set */
#define ASN1_NUMSTR 18 /* Numerical String */
#define ASN1_PRNSTR 19 /* Printable String */
#define ASN1_TEXSTR 20 /* Teletext String */
#define ASN1_VIDSTR 21 /* Video String */
#define ASN1_IA5STR 22 /* IA5 String */
#define ASN1_UNITIM 23 /* Universal Time */
#define ASN1_GENTIM 24 /* General Time */
#define ASN1_GRASTR 25 /* Graphical String */
#define ASN1_VISSTR 26 /* Visible String */
#define ASN1_GENSTR 27 /* General String */
/* Primitive / Constructed methods*/
#define ASN1_PRI 0 /* Primitive */
#define ASN1_CON 1 /* Constructed */
/*
* Error codes.
*/
#define ASN1_ERR_NOERROR 0
#define ASN1_ERR_DEC_EMPTY 2
#define ASN1_ERR_DEC_EOC_MISMATCH 3
#define ASN1_ERR_DEC_LENGTH_MISMATCH 4
#define ASN1_ERR_DEC_BADVALUE 5
#define SPNEGO_OID_LEN 7
#define NTLMSSP_OID_LEN 10
#define KRB5_OID_LEN 7
#define KRB5U2U_OID_LEN 8
#define MSKRB5_OID_LEN 7
static unsigned long SPNEGO_OID[7] = { 1, 3, 6, 1, 5, 5, 2 };
static unsigned long NTLMSSP_OID[10] = { 1, 3, 6, 1, 4, 1, 311, 2, 2, 10 };
static unsigned long KRB5_OID[7] = { 1, 2, 840, 113554, 1, 2, 2 };
static unsigned long KRB5U2U_OID[8] = { 1, 2, 840, 113554, 1, 2, 2, 3 };
static unsigned long MSKRB5_OID[7] = { 1, 2, 840, 48018, 1, 2, 2 };
/*
* ASN.1 context.
*/
struct asn1_ctx {
int error; /* Error condition */
unsigned char *pointer; /* Octet just to be decoded */
unsigned char *begin; /* First octet */
unsigned char *end; /* Octet after last octet */
};
/*
* Octet string (not null terminated)
*/
struct asn1_octstr {
unsigned char *data;
unsigned int len;
};
static void
asn1_open(struct asn1_ctx *ctx, unsigned char *buf, unsigned int len)
{
ctx->begin = buf;
ctx->end = buf + len;
ctx->pointer = buf;
ctx->error = ASN1_ERR_NOERROR;
}
static unsigned char
asn1_octet_decode(struct asn1_ctx *ctx, unsigned char *ch)
{
if (ctx->pointer >= ctx->end) {
ctx->error = ASN1_ERR_DEC_EMPTY;
return 0;
}
*ch = *(ctx->pointer)++;
return 1;
}
#if 0 /* will be needed later by spnego decoding/encoding of ntlmssp */
static unsigned char
asn1_enum_decode(struct asn1_ctx *ctx, __le32 *val)
{
unsigned char ch;
if (ctx->pointer >= ctx->end) {
ctx->error = ASN1_ERR_DEC_EMPTY;
return 0;
}
ch = *(ctx->pointer)++; /* ch has 0xa, ptr points to length octet */
if ((ch) == ASN1_ENUM) /* if ch value is ENUM, 0xa */
*val = *(++(ctx->pointer)); /* value has enum value */
else
return 0;
ctx->pointer++;
return 1;
}
#endif
static unsigned char
asn1_tag_decode(struct asn1_ctx *ctx, unsigned int *tag)
{
unsigned char ch;
*tag = 0;
do {
if (!asn1_octet_decode(ctx, &ch))
return 0;
*tag <<= 7;
*tag |= ch & 0x7F;
} while ((ch & 0x80) == 0x80);
return 1;
}
static unsigned char
asn1_id_decode(struct asn1_ctx *ctx,
unsigned int *cls, unsigned int *con, unsigned int *tag)
{
unsigned char ch;
if (!asn1_octet_decode(ctx, &ch))
return 0;
*cls = (ch & 0xC0) >> 6;
*con = (ch & 0x20) >> 5;
*tag = (ch & 0x1F);
if (*tag == 0x1F) {
if (!asn1_tag_decode(ctx, tag))
return 0;
}
return 1;
}
static unsigned char
asn1_length_decode(struct asn1_ctx *ctx, unsigned int *def, unsigned int *len)
{
unsigned char ch, cnt;
if (!asn1_octet_decode(ctx, &ch))
return 0;
if (ch == 0x80)
*def = 0;
else {
*def = 1;
if (ch < 0x80)
*len = ch;
else {
cnt = (unsigned char) (ch & 0x7F);
*len = 0;
while (cnt > 0) {
if (!asn1_octet_decode(ctx, &ch))
return 0;
*len <<= 8;
*len |= ch;
cnt--;
}
}
}
/* don't trust len bigger than ctx buffer */
if (*len > ctx->end - ctx->pointer)
return 0;
return 1;
}
static unsigned char
asn1_header_decode(struct asn1_ctx *ctx,
unsigned char **eoc,
unsigned int *cls, unsigned int *con, unsigned int *tag)
{
unsigned int def = 0;
unsigned int len = 0;
if (!asn1_id_decode(ctx, cls, con, tag))
return 0;
if (!asn1_length_decode(ctx, &def, &len))
return 0;
/* primitive shall be definite, indefinite shall be constructed */
if (*con == ASN1_PRI && !def)
return 0;
if (def)
*eoc = ctx->pointer + len;
else
*eoc = NULL;
return 1;
}
static unsigned char
asn1_eoc_decode(struct asn1_ctx *ctx, unsigned char *eoc)
{
unsigned char ch;
if (eoc == NULL) {
if (!asn1_octet_decode(ctx, &ch))
return 0;
if (ch != 0x00) {
ctx->error = ASN1_ERR_DEC_EOC_MISMATCH;
return 0;
}
if (!asn1_octet_decode(ctx, &ch))
return 0;
if (ch != 0x00) {
ctx->error = ASN1_ERR_DEC_EOC_MISMATCH;
return 0;
}
return 1;
} else {
if (ctx->pointer != eoc) {
ctx->error = ASN1_ERR_DEC_LENGTH_MISMATCH;
return 0;
}
return 1;
}
}
/* static unsigned char asn1_null_decode(struct asn1_ctx *ctx,
unsigned char *eoc)
{
ctx->pointer = eoc;
return 1;
}
static unsigned char asn1_long_decode(struct asn1_ctx *ctx,
unsigned char *eoc, long *integer)
{
unsigned char ch;
unsigned int len;
if (!asn1_octet_decode(ctx, &ch))
return 0;
*integer = (signed char) ch;
len = 1;
while (ctx->pointer < eoc) {
if (++len > sizeof(long)) {
ctx->error = ASN1_ERR_DEC_BADVALUE;
return 0;
}
if (!asn1_octet_decode(ctx, &ch))
return 0;
*integer <<= 8;
*integer |= ch;
}
return 1;
}
static unsigned char asn1_uint_decode(struct asn1_ctx *ctx,
unsigned char *eoc,
unsigned int *integer)
{
unsigned char ch;
unsigned int len;
if (!asn1_octet_decode(ctx, &ch))
return 0;
*integer = ch;
if (ch == 0)
len = 0;
else
len = 1;
while (ctx->pointer < eoc) {
if (++len > sizeof(unsigned int)) {
ctx->error = ASN1_ERR_DEC_BADVALUE;
return 0;
}
if (!asn1_octet_decode(ctx, &ch))
return 0;
*integer <<= 8;
*integer |= ch;
}
return 1;
}
static unsigned char asn1_ulong_decode(struct asn1_ctx *ctx,
unsigned char *eoc,
unsigned long *integer)
{
unsigned char ch;
unsigned int len;
if (!asn1_octet_decode(ctx, &ch))
return 0;
*integer = ch;
if (ch == 0)
len = 0;
else
len = 1;
while (ctx->pointer < eoc) {
if (++len > sizeof(unsigned long)) {
ctx->error = ASN1_ERR_DEC_BADVALUE;
return 0;
}
if (!asn1_octet_decode(ctx, &ch))
return 0;
*integer <<= 8;
*integer |= ch;
}
return 1;
}
static unsigned char
asn1_octets_decode(struct asn1_ctx *ctx,
unsigned char *eoc,
unsigned char **octets, unsigned int *len)
{
unsigned char *ptr;
*len = 0;
*octets = kmalloc(eoc - ctx->pointer, GFP_ATOMIC);
if (*octets == NULL) {
return 0;
}
ptr = *octets;
while (ctx->pointer < eoc) {
if (!asn1_octet_decode(ctx, (unsigned char *) ptr++)) {
kfree(*octets);
*octets = NULL;
return 0;
}
(*len)++;
}
return 1;
} */
static unsigned char
asn1_subid_decode(struct asn1_ctx *ctx, unsigned long *subid)
{
unsigned char ch;
*subid = 0;
do {
if (!asn1_octet_decode(ctx, &ch))
return 0;
*subid <<= 7;
*subid |= ch & 0x7F;
} while ((ch & 0x80) == 0x80);
return 1;
}
static int
asn1_oid_decode(struct asn1_ctx *ctx,
unsigned char *eoc, unsigned long **oid, unsigned int *len)
{
unsigned long subid;
unsigned int size;
unsigned long *optr;
size = eoc - ctx->pointer + 1;
/* first subid actually encodes first two subids */
if (size < 2 || size > UINT_MAX/sizeof(unsigned long))
return 0;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
*oid = kmalloc_array(size, sizeof(unsigned long), GFP_ATOMIC);
if (*oid == NULL)
return 0;
optr = *oid;
if (!asn1_subid_decode(ctx, &subid)) {
kfree(*oid);
*oid = NULL;
return 0;
}
if (subid < 40) {
optr[0] = 0;
optr[1] = subid;
} else if (subid < 80) {
optr[0] = 1;
optr[1] = subid - 40;
} else {
optr[0] = 2;
optr[1] = subid - 80;
}
*len = 2;
optr += 2;
while (ctx->pointer < eoc) {
if (++(*len) > size) {
ctx->error = ASN1_ERR_DEC_BADVALUE;
kfree(*oid);
*oid = NULL;
return 0;
}
if (!asn1_subid_decode(ctx, optr++)) {
kfree(*oid);
*oid = NULL;
return 0;
}
}
return 1;
}
static int
compare_oid(unsigned long *oid1, unsigned int oid1len,
unsigned long *oid2, unsigned int oid2len)
{
unsigned int i;
if (oid1len != oid2len)
return 0;
else {
for (i = 0; i < oid1len; i++) {
if (oid1[i] != oid2[i])
return 0;
}
return 1;
}
}
/* BB check for endian conversion issues here */
int
decode_negTokenInit(unsigned char *security_blob, int length,
struct TCP_Server_Info *server)
{
struct asn1_ctx ctx;
unsigned char *end;
unsigned char *sequence_end;
unsigned long *oid = NULL;
unsigned int cls, con, tag, oidlen, rc;
/* cifs_dump_mem(" Received SecBlob ", security_blob, length); */
asn1_open(&ctx, security_blob, length);
/* GSSAPI header */
if (asn1_header_decode(&ctx, &end, &cls, &con, &tag) == 0) {
cifs_dbg(FYI, "Error decoding negTokenInit header\n");
return 0;
} else if ((cls != ASN1_APL) || (con != ASN1_CON)
|| (tag != ASN1_EOC)) {
cifs_dbg(FYI, "cls = %d con = %d tag = %d\n", cls, con, tag);
return 0;
}
/* Check for SPNEGO OID -- remember to free obj->oid */
rc = asn1_header_decode(&ctx, &end, &cls, &con, &tag);
if (rc) {
if ((tag == ASN1_OJI) && (con == ASN1_PRI) &&
(cls == ASN1_UNI)) {
rc = asn1_oid_decode(&ctx, end, &oid, &oidlen);
if (rc) {
rc = compare_oid(oid, oidlen, SPNEGO_OID,
SPNEGO_OID_LEN);
kfree(oid);
}
} else
rc = 0;
}
/* SPNEGO OID not present or garbled -- bail out */
if (!rc) {
cifs_dbg(FYI, "Error decoding negTokenInit header\n");
return 0;
}
/* SPNEGO */
if (asn1_header_decode(&ctx, &end, &cls, &con, &tag) == 0) {
cifs_dbg(FYI, "Error decoding negTokenInit\n");
return 0;
} else if ((cls != ASN1_CTX) || (con != ASN1_CON)
|| (tag != ASN1_EOC)) {
cifs_dbg(FYI, "cls = %d con = %d tag = %d end = %p (%d) exit 0\n",
cls, con, tag, end, *end);
return 0;
}
/* negTokenInit */
if (asn1_header_decode(&ctx, &end, &cls, &con, &tag) == 0) {
cifs_dbg(FYI, "Error decoding negTokenInit\n");
return 0;
} else if ((cls != ASN1_UNI) || (con != ASN1_CON)
|| (tag != ASN1_SEQ)) {
cifs_dbg(FYI, "cls = %d con = %d tag = %d end = %p (%d) exit 1\n",
cls, con, tag, end, *end);
return 0;
}
/* sequence */
if (asn1_header_decode(&ctx, &end, &cls, &con, &tag) == 0) {
cifs_dbg(FYI, "Error decoding 2nd part of negTokenInit\n");
return 0;
} else if ((cls != ASN1_CTX) || (con != ASN1_CON)
|| (tag != ASN1_EOC)) {
cifs_dbg(FYI, "cls = %d con = %d tag = %d end = %p (%d) exit 0\n",
cls, con, tag, end, *end);
return 0;
}
/* sequence of */
if (asn1_header_decode
(&ctx, &sequence_end, &cls, &con, &tag) == 0) {
cifs_dbg(FYI, "Error decoding 2nd part of negTokenInit\n");
return 0;
} else if ((cls != ASN1_UNI) || (con != ASN1_CON)
|| (tag != ASN1_SEQ)) {
cifs_dbg(FYI, "cls = %d con = %d tag = %d end = %p (%d) exit 1\n",
cls, con, tag, end, *end);
return 0;
}
/* list of security mechanisms */
while (!asn1_eoc_decode(&ctx, sequence_end)) {
rc = asn1_header_decode(&ctx, &end, &cls, &con, &tag);
if (!rc) {
cifs_dbg(FYI, "Error decoding negTokenInit hdr exit2\n");
return 0;
}
if ((tag == ASN1_OJI) && (con == ASN1_PRI)) {
if (asn1_oid_decode(&ctx, end, &oid, &oidlen)) {
cifs_dbg(FYI, "OID len = %d oid = 0x%lx 0x%lx 0x%lx 0x%lx\n",
oidlen, *oid, *(oid + 1), *(oid + 2),
*(oid + 3));
if (compare_oid(oid, oidlen, MSKRB5_OID,
MSKRB5_OID_LEN))
server->sec_mskerberos = true;
else if (compare_oid(oid, oidlen, KRB5U2U_OID,
KRB5U2U_OID_LEN))
server->sec_kerberosu2u = true;
else if (compare_oid(oid, oidlen, KRB5_OID,
KRB5_OID_LEN))
server->sec_kerberos = true;
else if (compare_oid(oid, oidlen, NTLMSSP_OID,
NTLMSSP_OID_LEN))
server->sec_ntlmssp = true;
kfree(oid);
}
} else {
cifs_dbg(FYI, "Should be an oid what is going on?\n");
}
}
/*
* We currently ignore anything at the end of the SPNEGO blob after
* the mechTypes have been parsed, since none of that info is
* used at the moment.
*/
return 1;
}