2008-04-17 12:28:09 +08:00
|
|
|
/*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
*
|
|
|
|
* Copyright IBM Corp. 2007
|
|
|
|
*
|
|
|
|
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __POWERPC_KVM_HOST_H__
|
|
|
|
#define __POWERPC_KVM_HOST_H__
|
|
|
|
|
|
|
|
#include <linux/mutex.h>
|
2009-11-02 20:02:31 +08:00
|
|
|
#include <linux/hrtimer.h>
|
|
|
|
#include <linux/interrupt.h>
|
2008-04-17 12:28:09 +08:00
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kvm_types.h>
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
#include <linux/threads.h>
|
|
|
|
#include <linux/spinlock.h>
|
2010-07-29 20:47:42 +08:00
|
|
|
#include <linux/kvm_para.h>
|
KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility. These processors require a physically
contiguous, aligned area of memory for each guest. When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access. The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.
Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator. The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.
KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs. The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.
This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA. It
also returns the size of the RMA in the argument structure.
Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace. To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory. Subsequently we will get rid of this
array and use memory associated with each memslot instead.
This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region. Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB. However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.
Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest. This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:25:44 +08:00
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/atomic.h>
|
2008-04-17 12:28:09 +08:00
|
|
|
#include <asm/kvm_asm.h>
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
#include <asm/processor.h>
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
#include <asm/page.h>
|
2012-08-03 19:56:33 +08:00
|
|
|
#include <asm/cacheflush.h>
|
2014-06-02 09:02:59 +08:00
|
|
|
#include <asm/hvcall.h>
|
2008-04-17 12:28:09 +08:00
|
|
|
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
#define KVM_MAX_VCPUS NR_CPUS
|
|
|
|
#define KVM_MAX_VCORES NR_CPUS
|
2012-12-11 01:33:09 +08:00
|
|
|
#define KVM_USER_MEM_SLOTS 32
|
2012-12-11 01:33:15 +08:00
|
|
|
#define KVM_MEM_SLOTS_NUM KVM_USER_MEM_SLOTS
|
2008-04-17 12:28:09 +08:00
|
|
|
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
#ifdef CONFIG_KVM_MMIO
|
2008-05-30 22:05:56 +08:00
|
|
|
#define KVM_COALESCED_MMIO_PAGE_OFFSET 1
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
#endif
|
2008-05-30 22:05:56 +08:00
|
|
|
|
2013-04-16 23:42:19 +08:00
|
|
|
/* These values are internal and can be increased later */
|
|
|
|
#define KVM_NR_IRQCHIPS 1
|
|
|
|
#define KVM_IRQCHIP_NUM_PINS 256
|
|
|
|
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
#include <linux/mmu_notifier.h>
|
|
|
|
|
|
|
|
#define KVM_ARCH_WANT_MMU_NOTIFIER
|
|
|
|
|
|
|
|
extern int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
|
2012-07-02 16:56:33 +08:00
|
|
|
extern int kvm_unmap_hva_range(struct kvm *kvm,
|
|
|
|
unsigned long start, unsigned long end);
|
2014-09-23 05:54:42 +08:00
|
|
|
extern int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
extern int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
|
|
|
|
extern void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
|
|
|
|
|
2014-09-24 15:57:57 +08:00
|
|
|
static inline void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
|
|
|
|
unsigned long address)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2010-06-30 21:18:46 +08:00
|
|
|
#define HPTEG_CACHE_NUM (1 << 15)
|
|
|
|
#define HPTEG_HASH_BITS_PTE 13
|
2010-07-29 21:04:19 +08:00
|
|
|
#define HPTEG_HASH_BITS_PTE_LONG 12
|
2010-06-30 21:18:46 +08:00
|
|
|
#define HPTEG_HASH_BITS_VPTE 13
|
|
|
|
#define HPTEG_HASH_BITS_VPTE_LONG 5
|
2013-09-20 12:52:44 +08:00
|
|
|
#define HPTEG_HASH_BITS_VPTE_64K 11
|
2010-06-30 21:18:46 +08:00
|
|
|
#define HPTEG_HASH_NUM_PTE (1 << HPTEG_HASH_BITS_PTE)
|
2010-07-29 21:04:19 +08:00
|
|
|
#define HPTEG_HASH_NUM_PTE_LONG (1 << HPTEG_HASH_BITS_PTE_LONG)
|
2010-06-30 21:18:46 +08:00
|
|
|
#define HPTEG_HASH_NUM_VPTE (1 << HPTEG_HASH_BITS_VPTE)
|
|
|
|
#define HPTEG_HASH_NUM_VPTE_LONG (1 << HPTEG_HASH_BITS_VPTE_LONG)
|
2013-09-20 12:52:44 +08:00
|
|
|
#define HPTEG_HASH_NUM_VPTE_64K (1 << HPTEG_HASH_BITS_VPTE_64K)
|
2009-10-30 13:47:04 +08:00
|
|
|
|
2010-07-29 20:47:52 +08:00
|
|
|
/* Physical Address Mask - allowed range of real mode RAM access */
|
|
|
|
#define KVM_PAM 0x0fffffffffffffffULL
|
|
|
|
|
2011-06-29 08:22:05 +08:00
|
|
|
struct lppaca;
|
|
|
|
struct slb_shadow;
|
KVM: PPC: Book3S HV: Make virtual processor area registration more robust
The PAPR API allows three sorts of per-virtual-processor areas to be
registered (VPA, SLB shadow buffer, and dispatch trace log), and
furthermore, these can be registered and unregistered for another
virtual CPU. Currently we just update the vcpu fields pointing to
these areas at the time of registration or unregistration. If this
is done on another vcpu, there is the possibility that the target vcpu
is using those fields at the time and could end up using a bogus
pointer and corrupting memory.
This fixes the race by making the target cpu itself do the update, so
we can be sure that the update happens at a time when the fields
aren't being used. Each area now has a struct kvmppc_vpa which is
used to manage these updates. There is also a spinlock which protects
access to all of the kvmppc_vpa structs, other than to the pinned_addr
fields. (We could have just taken the spinlock when using the vpa,
slb_shadow or dtl fields, but that would mean taking the spinlock on
every guest entry and exit.)
This also changes 'struct dtl' (which was undefined) to 'struct dtl_entry',
which is what the rest of the kernel uses.
Thanks to Michael Ellerman <michael@ellerman.id.au> for pointing out
the need to initialize vcpu->arch.vpa_update_lock.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-02-20 01:46:32 +08:00
|
|
|
struct dtl_entry;
|
2011-06-29 08:22:05 +08:00
|
|
|
|
2013-09-20 12:52:49 +08:00
|
|
|
struct kvmppc_vcpu_book3s;
|
|
|
|
struct kvmppc_book3s_shadow_vcpu;
|
|
|
|
|
2008-04-17 12:28:09 +08:00
|
|
|
struct kvm_vm_stat {
|
|
|
|
u32 remote_tlb_flush;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct kvm_vcpu_stat {
|
|
|
|
u32 sum_exits;
|
|
|
|
u32 mmio_exits;
|
|
|
|
u32 signal_exits;
|
|
|
|
u32 light_exits;
|
|
|
|
/* Account for special types of light exits: */
|
|
|
|
u32 itlb_real_miss_exits;
|
|
|
|
u32 itlb_virt_miss_exits;
|
|
|
|
u32 dtlb_real_miss_exits;
|
|
|
|
u32 dtlb_virt_miss_exits;
|
|
|
|
u32 syscall_exits;
|
|
|
|
u32 isi_exits;
|
|
|
|
u32 dsi_exits;
|
|
|
|
u32 emulated_inst_exits;
|
|
|
|
u32 dec_exits;
|
|
|
|
u32 ext_intr_exits;
|
2008-04-26 06:55:49 +08:00
|
|
|
u32 halt_wakeup;
|
2011-12-20 23:34:43 +08:00
|
|
|
u32 dbell_exits;
|
|
|
|
u32 gdbell_exits;
|
2014-06-20 19:58:16 +08:00
|
|
|
u32 ld;
|
|
|
|
u32 st;
|
2010-04-16 06:11:42 +08:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
2009-10-30 13:47:04 +08:00
|
|
|
u32 pf_storage;
|
|
|
|
u32 pf_instruc;
|
|
|
|
u32 sp_storage;
|
|
|
|
u32 sp_instruc;
|
|
|
|
u32 queue_intr;
|
|
|
|
u32 ld_slow;
|
|
|
|
u32 st_slow;
|
|
|
|
#endif
|
2008-04-17 12:28:09 +08:00
|
|
|
};
|
|
|
|
|
2008-12-03 05:51:57 +08:00
|
|
|
enum kvm_exit_types {
|
|
|
|
MMIO_EXITS,
|
|
|
|
SIGNAL_EXITS,
|
|
|
|
ITLB_REAL_MISS_EXITS,
|
|
|
|
ITLB_VIRT_MISS_EXITS,
|
|
|
|
DTLB_REAL_MISS_EXITS,
|
|
|
|
DTLB_VIRT_MISS_EXITS,
|
|
|
|
SYSCALL_EXITS,
|
|
|
|
ISI_EXITS,
|
|
|
|
DSI_EXITS,
|
|
|
|
EMULATED_INST_EXITS,
|
|
|
|
EMULATED_MTMSRWE_EXITS,
|
|
|
|
EMULATED_WRTEE_EXITS,
|
|
|
|
EMULATED_MTSPR_EXITS,
|
|
|
|
EMULATED_MFSPR_EXITS,
|
|
|
|
EMULATED_MTMSR_EXITS,
|
|
|
|
EMULATED_MFMSR_EXITS,
|
|
|
|
EMULATED_TLBSX_EXITS,
|
|
|
|
EMULATED_TLBWE_EXITS,
|
|
|
|
EMULATED_RFI_EXITS,
|
2011-12-20 23:34:43 +08:00
|
|
|
EMULATED_RFCI_EXITS,
|
2014-08-06 14:38:52 +08:00
|
|
|
EMULATED_RFDI_EXITS,
|
2008-12-03 05:51:57 +08:00
|
|
|
DEC_EXITS,
|
|
|
|
EXT_INTR_EXITS,
|
|
|
|
HALT_WAKEUP,
|
|
|
|
USR_PR_INST,
|
|
|
|
FP_UNAVAIL,
|
|
|
|
DEBUG_EXITS,
|
|
|
|
TIMEINGUEST,
|
2011-12-20 23:34:43 +08:00
|
|
|
DBELL_EXITS,
|
|
|
|
GDBELL_EXITS,
|
2008-12-03 05:51:57 +08:00
|
|
|
__NUMBER_OF_KVM_EXIT_TYPES
|
|
|
|
};
|
|
|
|
|
|
|
|
/* allow access to big endian 32bit upper/lower parts and 64bit var */
|
2008-12-03 05:51:58 +08:00
|
|
|
struct kvmppc_exit_timing {
|
2008-12-03 05:51:57 +08:00
|
|
|
union {
|
|
|
|
u64 tv64;
|
|
|
|
struct {
|
|
|
|
u32 tbu, tbl;
|
|
|
|
} tv32;
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
struct kvmppc_pginfo {
|
|
|
|
unsigned long pfn;
|
|
|
|
atomic_t refcnt;
|
|
|
|
};
|
|
|
|
|
2011-06-29 08:22:41 +08:00
|
|
|
struct kvmppc_spapr_tce_table {
|
|
|
|
struct list_head list;
|
|
|
|
struct kvm *kvm;
|
|
|
|
u64 liobn;
|
|
|
|
u32 window_size;
|
|
|
|
struct page *pages[0];
|
|
|
|
};
|
|
|
|
|
2013-04-18 04:30:26 +08:00
|
|
|
/* XICS components, defined in book3s_xics.c */
|
|
|
|
struct kvmppc_xics;
|
|
|
|
struct kvmppc_icp;
|
|
|
|
|
2011-12-12 20:27:39 +08:00
|
|
|
/*
|
|
|
|
* The reverse mapping array has one entry for each HPTE,
|
|
|
|
* which stores the guest's view of the second word of the HPTE
|
2011-12-12 20:33:07 +08:00
|
|
|
* (including the guest physical address of the mapping),
|
|
|
|
* plus forward and backward pointers in a doubly-linked ring
|
|
|
|
* of HPTEs that map the same host page. The pointers in this
|
|
|
|
* ring are 32-bit HPTE indexes, to save space.
|
2011-12-12 20:27:39 +08:00
|
|
|
*/
|
|
|
|
struct revmap_entry {
|
|
|
|
unsigned long guest_rpte;
|
2011-12-12 20:33:07 +08:00
|
|
|
unsigned int forw, back;
|
2011-12-12 20:27:39 +08:00
|
|
|
};
|
|
|
|
|
2011-12-12 20:33:07 +08:00
|
|
|
/*
|
2012-09-11 21:27:46 +08:00
|
|
|
* We use the top bit of each memslot->arch.rmap entry as a lock bit,
|
2011-12-12 20:33:07 +08:00
|
|
|
* and bit 32 as a present flag. The bottom 32 bits are the
|
|
|
|
* index in the guest HPT of a HPTE that points to the page.
|
|
|
|
*/
|
|
|
|
#define KVMPPC_RMAP_LOCK_BIT 63
|
2011-12-15 10:02:02 +08:00
|
|
|
#define KVMPPC_RMAP_RC_SHIFT 32
|
|
|
|
#define KVMPPC_RMAP_REFERENCED (HPTE_R_R << KVMPPC_RMAP_RC_SHIFT)
|
|
|
|
#define KVMPPC_RMAP_CHANGED (HPTE_R_C << KVMPPC_RMAP_RC_SHIFT)
|
2011-12-12 20:33:07 +08:00
|
|
|
#define KVMPPC_RMAP_PRESENT 0x100000000ul
|
|
|
|
#define KVMPPC_RMAP_INDEX 0xfffffffful
|
|
|
|
|
2012-02-08 12:02:18 +08:00
|
|
|
struct kvm_arch_memory_slot {
|
2013-10-08 00:47:52 +08:00
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
2012-08-01 17:03:28 +08:00
|
|
|
unsigned long *rmap;
|
2013-10-08 00:47:52 +08:00
|
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
|
2012-02-08 12:02:18 +08:00
|
|
|
};
|
|
|
|
|
2008-04-17 12:28:09 +08:00
|
|
|
struct kvm_arch {
|
2011-12-20 23:34:43 +08:00
|
|
|
unsigned int lpid;
|
2013-10-08 00:47:52 +08:00
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
unsigned long hpt_virt;
|
2011-12-12 20:27:39 +08:00
|
|
|
struct revmap_entry *revmap;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
unsigned int host_lpid;
|
|
|
|
unsigned long host_lpcr;
|
|
|
|
unsigned long sdr1;
|
|
|
|
unsigned long host_sdr1;
|
|
|
|
int tlbie_lock;
|
KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility. These processors require a physically
contiguous, aligned area of memory for each guest. When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access. The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.
Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator. The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.
KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs. The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.
This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA. It
also returns the size of the RMA in the argument structure.
Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace. To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory. Subsequently we will get rid of this
array and use memory associated with each memslot instead.
This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region. Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB. However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.
Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest. This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:25:44 +08:00
|
|
|
unsigned long lpcr;
|
|
|
|
unsigned long rmor;
|
2013-07-02 13:45:17 +08:00
|
|
|
struct kvm_rma_info *rma;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
unsigned long vrma_slb_v;
|
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region()
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:31:00 +08:00
|
|
|
int rma_setup_done;
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
u32 hpt_order;
|
|
|
|
atomic_t vcpus_running;
|
KVM: PPC: Book3S HV: Improve handling of local vs. global TLB invalidations
When we change or remove a HPT (hashed page table) entry, we can do
either a global TLB invalidation (tlbie) that works across the whole
machine, or a local invalidation (tlbiel) that only affects this core.
Currently we do local invalidations if the VM has only one vcpu or if
the guest requests it with the H_LOCAL flag, though the guest Linux
kernel currently doesn't ever use H_LOCAL. Then, to cope with the
possibility that vcpus moving around to different physical cores might
expose stale TLB entries, there is some code in kvmppc_hv_entry to
flush the whole TLB of entries for this VM if either this vcpu is now
running on a different physical core from where it last ran, or if this
physical core last ran a different vcpu.
There are a number of problems on POWER7 with this as it stands:
- The TLB invalidation is done per thread, whereas it only needs to be
done per core, since the TLB is shared between the threads.
- With the possibility of the host paging out guest pages, the use of
H_LOCAL by an SMP guest is dangerous since the guest could possibly
retain and use a stale TLB entry pointing to a page that had been
removed from the guest.
- The TLB invalidations that we do when a vcpu moves from one physical
core to another are unnecessary in the case of an SMP guest that isn't
using H_LOCAL.
- The optimization of using local invalidations rather than global should
apply to guests with one virtual core, not just one vcpu.
(None of this applies on PPC970, since there we always have to
invalidate the whole TLB when entering and leaving the guest, and we
can't support paging out guest memory.)
To fix these problems and simplify the code, we now maintain a simple
cpumask of which cpus need to flush the TLB on entry to the guest.
(This is indexed by cpu, though we only ever use the bits for thread
0 of each core.) Whenever we do a local TLB invalidation, we set the
bits for every cpu except the bit for thread 0 of the core that we're
currently running on. Whenever we enter a guest, we test and clear the
bit for our core, and flush the TLB if it was set.
On initial startup of the VM, and when resetting the HPT, we set all the
bits in the need_tlb_flush cpumask, since any core could potentially have
stale TLB entries from the previous VM to use the same LPID, or the
previous contents of the HPT.
Then, we maintain a count of the number of online virtual cores, and use
that when deciding whether to use a local invalidation rather than the
number of online vcpus. The code to make that decision is extracted out
into a new function, global_invalidates(). For multi-core guests on
POWER7 (i.e. when we are using mmu notifiers), we now never do local
invalidations regardless of the H_LOCAL flag.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-22 07:28:08 +08:00
|
|
|
u32 online_vcores;
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
unsigned long hpt_npte;
|
|
|
|
unsigned long hpt_mask;
|
2012-11-20 06:52:49 +08:00
|
|
|
atomic_t hpte_mod_interest;
|
KVM: PPC: Book3S HV: Improve handling of local vs. global TLB invalidations
When we change or remove a HPT (hashed page table) entry, we can do
either a global TLB invalidation (tlbie) that works across the whole
machine, or a local invalidation (tlbiel) that only affects this core.
Currently we do local invalidations if the VM has only one vcpu or if
the guest requests it with the H_LOCAL flag, though the guest Linux
kernel currently doesn't ever use H_LOCAL. Then, to cope with the
possibility that vcpus moving around to different physical cores might
expose stale TLB entries, there is some code in kvmppc_hv_entry to
flush the whole TLB of entries for this VM if either this vcpu is now
running on a different physical core from where it last ran, or if this
physical core last ran a different vcpu.
There are a number of problems on POWER7 with this as it stands:
- The TLB invalidation is done per thread, whereas it only needs to be
done per core, since the TLB is shared between the threads.
- With the possibility of the host paging out guest pages, the use of
H_LOCAL by an SMP guest is dangerous since the guest could possibly
retain and use a stale TLB entry pointing to a page that had been
removed from the guest.
- The TLB invalidations that we do when a vcpu moves from one physical
core to another are unnecessary in the case of an SMP guest that isn't
using H_LOCAL.
- The optimization of using local invalidations rather than global should
apply to guests with one virtual core, not just one vcpu.
(None of this applies on PPC970, since there we always have to
invalidate the whole TLB when entering and leaving the guest, and we
can't support paging out guest memory.)
To fix these problems and simplify the code, we now maintain a simple
cpumask of which cpus need to flush the TLB on entry to the guest.
(This is indexed by cpu, though we only ever use the bits for thread
0 of each core.) Whenever we do a local TLB invalidation, we set the
bits for every cpu except the bit for thread 0 of the core that we're
currently running on. Whenever we enter a guest, we test and clear the
bit for our core, and flush the TLB if it was set.
On initial startup of the VM, and when resetting the HPT, we set all the
bits in the need_tlb_flush cpumask, since any core could potentially have
stale TLB entries from the previous VM to use the same LPID, or the
previous contents of the HPT.
Then, we maintain a count of the number of online virtual cores, and use
that when deciding whether to use a local invalidation rather than the
number of online vcpus. The code to make that decision is extracted out
into a new function, global_invalidates(). For multi-core guests on
POWER7 (i.e. when we are using mmu notifiers), we now never do local
invalidations regardless of the H_LOCAL flag.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-22 07:28:08 +08:00
|
|
|
cpumask_t need_tlb_flush;
|
2013-07-02 13:45:16 +08:00
|
|
|
int hpt_cma_alloc;
|
2013-10-08 00:47:52 +08:00
|
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
|
2013-10-08 00:47:51 +08:00
|
|
|
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
|
KVM: PPC: Book3S PR: Make HPT accesses and updates SMP-safe
This adds a per-VM mutex to provide mutual exclusion between vcpus
for accesses to and updates of the guest hashed page table (HPT).
This also makes the code use single-byte writes to the HPT entry
when updating of the reference (R) and change (C) bits. The reason
for doing this, rather than writing back the whole HPTE, is that on
non-PAPR virtual machines, the guest OS might be writing to the HPTE
concurrently, and writing back the whole HPTE might conflict with
that. Also, real hardware does single-byte writes to update R and C.
The new mutex is taken in kvmppc_mmu_book3s_64_xlate() when reading
the HPT and updating R and/or C, and in the PAPR HPT update hcalls
(H_ENTER, H_REMOVE, etc.). Having the mutex means that we don't need
to use a hypervisor lock bit in the HPT update hcalls, and we don't
need to be careful about the order in which the bytes of the HPTE are
updated by those hcalls.
The other change here is to make emulated TLB invalidations (tlbie)
effective across all vcpus. To do this we call kvmppc_mmu_pte_vflush
for all vcpus in kvmppc_ppc_book3s_64_tlbie().
For 32-bit, this makes the setting of the accessed and dirty bits use
single-byte writes, and makes tlbie invalidate shadow HPTEs for all
vcpus.
With this, PR KVM can successfully run SMP guests.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:48 +08:00
|
|
|
struct mutex hpt_mutex;
|
|
|
|
#endif
|
2012-03-16 05:58:34 +08:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
|
|
struct list_head spapr_tce_tables;
|
2013-04-18 04:30:00 +08:00
|
|
|
struct list_head rtas_tokens;
|
2014-06-02 09:02:59 +08:00
|
|
|
DECLARE_BITMAP(enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
|
2012-03-16 05:58:34 +08:00
|
|
|
#endif
|
2013-04-16 23:42:19 +08:00
|
|
|
#ifdef CONFIG_KVM_MPIC
|
|
|
|
struct openpic *mpic;
|
|
|
|
#endif
|
2013-04-18 04:30:26 +08:00
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
|
|
struct kvmppc_xics *xics;
|
|
|
|
#endif
|
2013-10-08 00:48:01 +08:00
|
|
|
struct kvmppc_ops *kvm_ops;
|
2014-07-04 18:52:51 +08:00
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
|
|
/* This array can grow quite large, keep it at the end */
|
|
|
|
struct kvmppc_vcore *vcores[KVM_MAX_VCORES];
|
|
|
|
#endif
|
2008-04-17 12:28:09 +08:00
|
|
|
};
|
|
|
|
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
/*
|
|
|
|
* Struct for a virtual core.
|
|
|
|
* Note: entry_exit_count combines an entry count in the bottom 8 bits
|
|
|
|
* and an exit count in the next 8 bits. This is so that we can
|
|
|
|
* atomically increment the entry count iff the exit count is 0
|
|
|
|
* without taking the lock.
|
|
|
|
*/
|
|
|
|
struct kvmppc_vcore {
|
|
|
|
int n_runnable;
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
int n_busy;
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
int num_threads;
|
|
|
|
int entry_exit_count;
|
|
|
|
int n_woken;
|
|
|
|
int nap_count;
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
int napping_threads;
|
KVM: PPC: Book3S HV: Align physical and virtual CPU thread numbers
On a threaded processor such as POWER7, we group VCPUs into virtual
cores and arrange that the VCPUs in a virtual core run on the same
physical core. Currently we don't enforce any correspondence between
virtual thread numbers within a virtual core and physical thread
numbers. Physical threads are allocated starting at 0 on a first-come
first-served basis to runnable virtual threads (VCPUs).
POWER8 implements a new "msgsndp" instruction which guest kernels can
use to interrupt other threads in the same core or sub-core. Since
the instruction takes the destination physical thread ID as a parameter,
it becomes necessary to align the physical thread IDs with the virtual
thread IDs, that is, to make sure virtual thread N within a virtual
core always runs on physical thread N.
This means that it's possible that thread 0, which is where we call
__kvmppc_vcore_entry, may end up running some other vcpu than the
one whose task called kvmppc_run_core(), or it may end up running
no vcpu at all, if for example thread 0 of the virtual core is
currently executing in userspace. However, we do need thread 0
to be responsible for switching the MMU -- a previous version of
this patch that had other threads switching the MMU was found to
be responsible for occasional memory corruption and machine check
interrupts in the guest on POWER7 machines.
To accommodate this, we no longer pass the vcpu pointer to
__kvmppc_vcore_entry, but instead let the assembly code load it from
the PACA. Since the assembly code will need to know the kvm pointer
and the thread ID for threads which don't have a vcpu, we move the
thread ID into the PACA and we add a kvm pointer to the virtual core
structure.
In the case where thread 0 has no vcpu to run, it still calls into
kvmppc_hv_entry in order to do the MMU switch, and then naps until
either its vcpu is ready to run in the guest, or some other thread
needs to exit the guest. In the latter case, thread 0 jumps to the
code that switches the MMU back to the host. This control flow means
that now we switch the MMU before loading any guest vcpu state.
Similarly, on guest exit we now save all the guest vcpu state before
switching the MMU back to the host. This has required substantial
code movement, making the diff rather large.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-08 18:25:20 +08:00
|
|
|
int first_vcpuid;
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
u16 pcpu;
|
KVM: PPC: Book3S HV: Improve handling of local vs. global TLB invalidations
When we change or remove a HPT (hashed page table) entry, we can do
either a global TLB invalidation (tlbie) that works across the whole
machine, or a local invalidation (tlbiel) that only affects this core.
Currently we do local invalidations if the VM has only one vcpu or if
the guest requests it with the H_LOCAL flag, though the guest Linux
kernel currently doesn't ever use H_LOCAL. Then, to cope with the
possibility that vcpus moving around to different physical cores might
expose stale TLB entries, there is some code in kvmppc_hv_entry to
flush the whole TLB of entries for this VM if either this vcpu is now
running on a different physical core from where it last ran, or if this
physical core last ran a different vcpu.
There are a number of problems on POWER7 with this as it stands:
- The TLB invalidation is done per thread, whereas it only needs to be
done per core, since the TLB is shared between the threads.
- With the possibility of the host paging out guest pages, the use of
H_LOCAL by an SMP guest is dangerous since the guest could possibly
retain and use a stale TLB entry pointing to a page that had been
removed from the guest.
- The TLB invalidations that we do when a vcpu moves from one physical
core to another are unnecessary in the case of an SMP guest that isn't
using H_LOCAL.
- The optimization of using local invalidations rather than global should
apply to guests with one virtual core, not just one vcpu.
(None of this applies on PPC970, since there we always have to
invalidate the whole TLB when entering and leaving the guest, and we
can't support paging out guest memory.)
To fix these problems and simplify the code, we now maintain a simple
cpumask of which cpus need to flush the TLB on entry to the guest.
(This is indexed by cpu, though we only ever use the bits for thread
0 of each core.) Whenever we do a local TLB invalidation, we set the
bits for every cpu except the bit for thread 0 of the core that we're
currently running on. Whenever we enter a guest, we test and clear the
bit for our core, and flush the TLB if it was set.
On initial startup of the VM, and when resetting the HPT, we set all the
bits in the need_tlb_flush cpumask, since any core could potentially have
stale TLB entries from the previous VM to use the same LPID, or the
previous contents of the HPT.
Then, we maintain a count of the number of online virtual cores, and use
that when deciding whether to use a local invalidation rather than the
number of online vcpus. The code to make that decision is extracted out
into a new function, global_invalidates(). For multi-core guests on
POWER7 (i.e. when we are using mmu notifiers), we now never do local
invalidations regardless of the H_LOCAL flag.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-22 07:28:08 +08:00
|
|
|
u16 last_cpu;
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
u8 vcore_state;
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
u8 in_guest;
|
|
|
|
struct list_head runnable_threads;
|
|
|
|
spinlock_t lock;
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
wait_queue_head_t wq;
|
KVM: PPC: Book3S HV: Simplify locking around stolen time calculations
Currently the calculations of stolen time for PPC Book3S HV guests
uses fields in both the vcpu struct and the kvmppc_vcore struct. The
fields in the kvmppc_vcore struct are protected by the
vcpu->arch.tbacct_lock of the vcpu that has taken responsibility for
running the virtual core. This works correctly but confuses lockdep,
because it sees that the code takes the tbacct_lock for a vcpu in
kvmppc_remove_runnable() and then takes another vcpu's tbacct_lock in
vcore_stolen_time(), and it thinks there is a possibility of deadlock,
causing it to print reports like this:
=============================================
[ INFO: possible recursive locking detected ]
3.18.0-rc7-kvm-00016-g8db4bc6 #89 Not tainted
---------------------------------------------
qemu-system-ppc/6188 is trying to acquire lock:
(&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb1fe8>] .vcore_stolen_time+0x48/0xd0 [kvm_hv]
but task is already holding lock:
(&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(&vcpu->arch.tbacct_lock)->rlock);
lock(&(&vcpu->arch.tbacct_lock)->rlock);
*** DEADLOCK ***
May be due to missing lock nesting notation
3 locks held by qemu-system-ppc/6188:
#0: (&vcpu->mutex){+.+.+.}, at: [<d00000000eb93f98>] .vcpu_load+0x28/0xe0 [kvm]
#1: (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecb41b0>] .kvmppc_vcpu_run_hv+0x530/0x1530 [kvm_hv]
#2: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]
stack backtrace:
CPU: 40 PID: 6188 Comm: qemu-system-ppc Not tainted 3.18.0-rc7-kvm-00016-g8db4bc6 #89
Call Trace:
[c000000b2754f3f0] [c000000000b31b6c] .dump_stack+0x88/0xb4 (unreliable)
[c000000b2754f470] [c0000000000faeb8] .__lock_acquire+0x1878/0x2190
[c000000b2754f600] [c0000000000fbf0c] .lock_acquire+0xcc/0x1a0
[c000000b2754f6d0] [c000000000b2954c] ._raw_spin_lock_irq+0x4c/0x70
[c000000b2754f760] [d00000000ecb1fe8] .vcore_stolen_time+0x48/0xd0 [kvm_hv]
[c000000b2754f7f0] [d00000000ecb25b4] .kvmppc_remove_runnable.part.3+0x44/0xd0 [kvm_hv]
[c000000b2754f880] [d00000000ecb43ec] .kvmppc_vcpu_run_hv+0x76c/0x1530 [kvm_hv]
[c000000b2754f9f0] [d00000000eb9f46c] .kvmppc_vcpu_run+0x2c/0x40 [kvm]
[c000000b2754fa60] [d00000000eb9c9a4] .kvm_arch_vcpu_ioctl_run+0x54/0x160 [kvm]
[c000000b2754faf0] [d00000000eb94538] .kvm_vcpu_ioctl+0x498/0x760 [kvm]
[c000000b2754fcb0] [c000000000267eb4] .do_vfs_ioctl+0x444/0x770
[c000000b2754fd90] [c0000000002682a4] .SyS_ioctl+0xc4/0xe0
[c000000b2754fe30] [c0000000000092e4] syscall_exit+0x0/0x98
In order to make the locking easier to analyse, we change the code to
use a spinlock in the kvmppc_vcore struct to protect the stolen_tb and
preempt_tb fields. This lock needs to be an irq-safe lock since it is
used in the kvmppc_core_vcpu_load_hv() and kvmppc_core_vcpu_put_hv()
functions, which are called with the scheduler rq lock held, which is
an irq-safe lock.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-04 13:43:28 +08:00
|
|
|
spinlock_t stoltb_lock; /* protects stolen_tb and preempt_tb */
|
2012-02-03 08:56:21 +08:00
|
|
|
u64 stolen_tb;
|
|
|
|
u64 preempt_tb;
|
|
|
|
struct kvm_vcpu *runner;
|
KVM: PPC: Book3S HV: Align physical and virtual CPU thread numbers
On a threaded processor such as POWER7, we group VCPUs into virtual
cores and arrange that the VCPUs in a virtual core run on the same
physical core. Currently we don't enforce any correspondence between
virtual thread numbers within a virtual core and physical thread
numbers. Physical threads are allocated starting at 0 on a first-come
first-served basis to runnable virtual threads (VCPUs).
POWER8 implements a new "msgsndp" instruction which guest kernels can
use to interrupt other threads in the same core or sub-core. Since
the instruction takes the destination physical thread ID as a parameter,
it becomes necessary to align the physical thread IDs with the virtual
thread IDs, that is, to make sure virtual thread N within a virtual
core always runs on physical thread N.
This means that it's possible that thread 0, which is where we call
__kvmppc_vcore_entry, may end up running some other vcpu than the
one whose task called kvmppc_run_core(), or it may end up running
no vcpu at all, if for example thread 0 of the virtual core is
currently executing in userspace. However, we do need thread 0
to be responsible for switching the MMU -- a previous version of
this patch that had other threads switching the MMU was found to
be responsible for occasional memory corruption and machine check
interrupts in the guest on POWER7 machines.
To accommodate this, we no longer pass the vcpu pointer to
__kvmppc_vcore_entry, but instead let the assembly code load it from
the PACA. Since the assembly code will need to know the kvm pointer
and the thread ID for threads which don't have a vcpu, we move the
thread ID into the PACA and we add a kvm pointer to the virtual core
structure.
In the case where thread 0 has no vcpu to run, it still calls into
kvmppc_hv_entry in order to do the MMU switch, and then naps until
either its vcpu is ready to run in the guest, or some other thread
needs to exit the guest. In the latter case, thread 0 jumps to the
code that switches the MMU back to the host. This control flow means
that now we switch the MMU before loading any guest vcpu state.
Similarly, on guest exit we now save all the guest vcpu state before
switching the MMU back to the host. This has required substantial
code movement, making the diff rather large.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-08 18:25:20 +08:00
|
|
|
struct kvm *kvm;
|
KVM: PPC: Book3S HV: Implement timebase offset for guests
This allows guests to have a different timebase origin from the host.
This is needed for migration, where a guest can migrate from one host
to another and the two hosts might have a different timebase origin.
However, the timebase seen by the guest must not go backwards, and
should go forwards only by a small amount corresponding to the time
taken for the migration.
Therefore this provides a new per-vcpu value accessed via the one_reg
interface using the new KVM_REG_PPC_TB_OFFSET identifier. This value
defaults to 0 and is not modified by KVM. On entering the guest, this
value is added onto the timebase, and on exiting the guest, it is
subtracted from the timebase.
This is only supported for recent POWER hardware which has the TBU40
(timebase upper 40 bits) register. Writing to the TBU40 register only
alters the upper 40 bits of the timebase, leaving the lower 24 bits
unchanged. This provides a way to modify the timebase for guest
migration without disturbing the synchronization of the timebase
registers across CPU cores. The kernel rounds up the value given
to a multiple of 2^24.
Timebase values stored in KVM structures (struct kvm_vcpu, struct
kvmppc_vcore, etc.) are stored as host timebase values. The timebase
values in the dispatch trace log need to be guest timebase values,
however, since that is read directly by the guest. This moves the
setting of vcpu->arch.dec_expires on guest exit to a point after we
have restored the host timebase so that vcpu->arch.dec_expires is a
host timebase value.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-06 11:17:46 +08:00
|
|
|
u64 tb_offset; /* guest timebase - host timebase */
|
2013-09-20 12:52:38 +08:00
|
|
|
ulong lpcr;
|
2013-09-21 12:35:02 +08:00
|
|
|
u32 arch_compat;
|
|
|
|
ulong pcr;
|
2014-01-08 18:25:21 +08:00
|
|
|
ulong dpdes; /* doorbell state (POWER8) */
|
Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8
The POWER8 processor has a Micro Partition Prefetch Engine, which is
a fancy way of saying "has way to store and load contents of L2 or
L2+MRU way of L3 cache". We initiate the storing of the log (list of
addresses) using the logmpp instruction and start restore by writing
to a SPR.
The logmpp instruction takes parameters in a single 64bit register:
- starting address of the table to store log of L2/L2+L3 cache contents
- 32kb for L2
- 128kb for L2+L3
- Aligned relative to maximum size of the table (32kb or 128kb)
- Log control (no-op, L2 only, L2 and L3, abort logout)
We should abort any ongoing logging before initiating one.
To initiate restore, we write to the MPPR SPR. The format of what to write
to the SPR is similar to the logmpp instruction parameter:
- starting address of the table to read from (same alignment requirements)
- table size (no data, until end of table)
- prefetch rate (from fastest possible to slower. about every 8, 16, 24 or
32 cycles)
The idea behind loading and storing the contents of L2/L3 cache is to
reduce memory latency in a system that is frequently swapping vcores on
a physical CPU.
The best case scenario for doing this is when some vcores are doing very
cache heavy workloads. The worst case is when they have about 0 cache hits,
so we just generate needless memory operations.
This implementation just does L2 store/load. In my benchmarks this proves
to be useful.
Benchmark 1:
- 16 core POWER8
- 3x Ubuntu 14.04LTS guests (LE) with 8 VCPUs each
- No split core/SMT
- two guests running sysbench memory test.
sysbench --test=memory --num-threads=8 run
- one guest running apache bench (of default HTML page)
ab -n 490000 -c 400 http://localhost/
This benchmark aims to measure performance of real world application (apache)
where other guests are cache hot with their own workloads. The sysbench memory
benchmark does pointer sized writes to a (small) memory buffer in a loop.
In this benchmark with this patch I can see an improvement both in requests
per second (~5%) and in mean and median response times (again, about 5%).
The spread of minimum and maximum response times were largely unchanged.
benchmark 2:
- Same VM config as benchmark 1
- all three guests running sysbench memory benchmark
This benchmark aims to see if there is a positive or negative affect to this
cache heavy benchmark. Although due to the nature of the benchmark (stores) we
may not see a difference in performance, but rather hopefully an improvement
in consistency of performance (when vcore switched in, don't have to wait
many times for cachelines to be pulled in)
The results of this benchmark are improvements in consistency of performance
rather than performance itself. With this patch, the few outliers in duration
go away and we get more consistent performance in each guest.
benchmark 3:
- same 3 guests and CPU configuration as benchmark 1 and 2.
- two idle guests
- 1 guest running STREAM benchmark
This scenario also saw performance improvement with this patch. On Copy and
Scale workloads from STREAM, I got 5-6% improvement with this patch. For
Add and triad, it was around 10% (or more).
benchmark 4:
- same 3 guests as previous benchmarks
- two guests running sysbench --memory, distinctly different cache heavy
workload
- one guest running STREAM benchmark.
Similar improvements to benchmark 3.
benchmark 5:
- 1 guest, 8 VCPUs, Ubuntu 14.04
- Host configured with split core (SMT8, subcores-per-core=4)
- STREAM benchmark
In this benchmark, we see a 10-20% performance improvement across the board
of STREAM benchmark results with this patch.
Based on preliminary investigation and microbenchmarks
by Prerna Saxena <prerna@linux.vnet.ibm.com>
Signed-off-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-18 12:18:43 +08:00
|
|
|
void *mpp_buffer; /* Micro Partition Prefetch buffer */
|
|
|
|
bool mpp_buffer_is_valid;
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
#define VCORE_ENTRY_COUNT(vc) ((vc)->entry_exit_count & 0xff)
|
|
|
|
#define VCORE_EXIT_COUNT(vc) ((vc)->entry_exit_count >> 8)
|
|
|
|
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
/* Values for vcore_state */
|
|
|
|
#define VCORE_INACTIVE 0
|
2012-10-15 09:17:17 +08:00
|
|
|
#define VCORE_SLEEPING 1
|
|
|
|
#define VCORE_STARTING 2
|
|
|
|
#define VCORE_RUNNING 3
|
|
|
|
#define VCORE_EXITING 4
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
|
KVM: PPC: Book3S HV: Make virtual processor area registration more robust
The PAPR API allows three sorts of per-virtual-processor areas to be
registered (VPA, SLB shadow buffer, and dispatch trace log), and
furthermore, these can be registered and unregistered for another
virtual CPU. Currently we just update the vcpu fields pointing to
these areas at the time of registration or unregistration. If this
is done on another vcpu, there is the possibility that the target vcpu
is using those fields at the time and could end up using a bogus
pointer and corrupting memory.
This fixes the race by making the target cpu itself do the update, so
we can be sure that the update happens at a time when the fields
aren't being used. Each area now has a struct kvmppc_vpa which is
used to manage these updates. There is also a spinlock which protects
access to all of the kvmppc_vpa structs, other than to the pinned_addr
fields. (We could have just taken the spinlock when using the vpa,
slb_shadow or dtl fields, but that would mean taking the spinlock on
every guest entry and exit.)
This also changes 'struct dtl' (which was undefined) to 'struct dtl_entry',
which is what the rest of the kernel uses.
Thanks to Michael Ellerman <michael@ellerman.id.au> for pointing out
the need to initialize vcpu->arch.vpa_update_lock.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-02-20 01:46:32 +08:00
|
|
|
/*
|
|
|
|
* Struct used to manage memory for a virtual processor area
|
|
|
|
* registered by a PAPR guest. There are three types of area
|
|
|
|
* that a guest can register.
|
|
|
|
*/
|
|
|
|
struct kvmppc_vpa {
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
unsigned long gpa; /* Current guest phys addr */
|
KVM: PPC: Book3S HV: Make virtual processor area registration more robust
The PAPR API allows three sorts of per-virtual-processor areas to be
registered (VPA, SLB shadow buffer, and dispatch trace log), and
furthermore, these can be registered and unregistered for another
virtual CPU. Currently we just update the vcpu fields pointing to
these areas at the time of registration or unregistration. If this
is done on another vcpu, there is the possibility that the target vcpu
is using those fields at the time and could end up using a bogus
pointer and corrupting memory.
This fixes the race by making the target cpu itself do the update, so
we can be sure that the update happens at a time when the fields
aren't being used. Each area now has a struct kvmppc_vpa which is
used to manage these updates. There is also a spinlock which protects
access to all of the kvmppc_vpa structs, other than to the pinned_addr
fields. (We could have just taken the spinlock when using the vpa,
slb_shadow or dtl fields, but that would mean taking the spinlock on
every guest entry and exit.)
This also changes 'struct dtl' (which was undefined) to 'struct dtl_entry',
which is what the rest of the kernel uses.
Thanks to Michael Ellerman <michael@ellerman.id.au> for pointing out
the need to initialize vcpu->arch.vpa_update_lock.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-02-20 01:46:32 +08:00
|
|
|
void *pinned_addr; /* Address in kernel linear mapping */
|
|
|
|
void *pinned_end; /* End of region */
|
|
|
|
unsigned long next_gpa; /* Guest phys addr for update */
|
|
|
|
unsigned long len; /* Number of bytes required */
|
|
|
|
u8 update_pending; /* 1 => update pinned_addr from next_gpa */
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
bool dirty; /* true => area has been modified by kernel */
|
KVM: PPC: Book3S HV: Make virtual processor area registration more robust
The PAPR API allows three sorts of per-virtual-processor areas to be
registered (VPA, SLB shadow buffer, and dispatch trace log), and
furthermore, these can be registered and unregistered for another
virtual CPU. Currently we just update the vcpu fields pointing to
these areas at the time of registration or unregistration. If this
is done on another vcpu, there is the possibility that the target vcpu
is using those fields at the time and could end up using a bogus
pointer and corrupting memory.
This fixes the race by making the target cpu itself do the update, so
we can be sure that the update happens at a time when the fields
aren't being used. Each area now has a struct kvmppc_vpa which is
used to manage these updates. There is also a spinlock which protects
access to all of the kvmppc_vpa structs, other than to the pinned_addr
fields. (We could have just taken the spinlock when using the vpa,
slb_shadow or dtl fields, but that would mean taking the spinlock on
every guest entry and exit.)
This also changes 'struct dtl' (which was undefined) to 'struct dtl_entry',
which is what the rest of the kernel uses.
Thanks to Michael Ellerman <michael@ellerman.id.au> for pointing out
the need to initialize vcpu->arch.vpa_update_lock.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-02-20 01:46:32 +08:00
|
|
|
};
|
|
|
|
|
2009-10-30 13:47:04 +08:00
|
|
|
struct kvmppc_pte {
|
2010-04-20 08:49:46 +08:00
|
|
|
ulong eaddr;
|
2009-10-30 13:47:04 +08:00
|
|
|
u64 vpage;
|
2010-04-20 08:49:46 +08:00
|
|
|
ulong raddr;
|
2010-03-25 04:48:36 +08:00
|
|
|
bool may_read : 1;
|
|
|
|
bool may_write : 1;
|
|
|
|
bool may_execute : 1;
|
2013-09-20 12:52:44 +08:00
|
|
|
u8 page_size; /* MMU_PAGE_xxx */
|
2009-10-30 13:47:04 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct kvmppc_mmu {
|
|
|
|
/* book3s_64 only */
|
|
|
|
void (*slbmte)(struct kvm_vcpu *vcpu, u64 rb, u64 rs);
|
|
|
|
u64 (*slbmfee)(struct kvm_vcpu *vcpu, u64 slb_nr);
|
|
|
|
u64 (*slbmfev)(struct kvm_vcpu *vcpu, u64 slb_nr);
|
|
|
|
void (*slbie)(struct kvm_vcpu *vcpu, u64 slb_nr);
|
|
|
|
void (*slbia)(struct kvm_vcpu *vcpu);
|
|
|
|
/* book3s */
|
|
|
|
void (*mtsrin)(struct kvm_vcpu *vcpu, u32 srnum, ulong value);
|
|
|
|
u32 (*mfsrin)(struct kvm_vcpu *vcpu, u32 srnum);
|
KVM: PPC: Book3S PR: Better handling of host-side read-only pages
Currently we request write access to all pages that get mapped into the
guest, even if the guest is only loading from the page. This reduces
the effectiveness of KSM because it means that we unshare every page we
access. Also, we always set the changed (C) bit in the guest HPTE if
it allows writing, even for a guest load.
This fixes both these problems. We pass an 'iswrite' flag to the
mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether
the access is a load or a store. The mmu.xlate() functions now only
set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot()
instead of gfn_to_pfn() so that it can indicate whether we need write
access to the page, and get back a 'writable' flag to indicate whether
the page is writable or not. If that 'writable' flag is clear, we then
make the host HPTE read-only even if the guest HPTE allowed writing.
This means that we can get a protection fault when the guest writes to a
page that it has mapped read-write but which is read-only on the host
side (perhaps due to KSM having merged the page). Thus we now call
kvmppc_handle_pagefault() for protection faults as well as HPTE not found
faults. In kvmppc_handle_pagefault(), if the access was allowed by the
guest HPTE and we thus need to install a new host HPTE, we then need to
remove the old host HPTE if there is one. This is done with a new
function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to
find and remove the old host HPTE.
Since the memslot-related functions require the KVM SRCU read lock to
be held, this adds srcu_read_lock/unlock pairs around the calls to
kvmppc_handle_pagefault().
Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore
guest HPTEs that don't permit access, and to return -EPERM for accesses
that are not permitted by the page protections.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:51 +08:00
|
|
|
int (*xlate)(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
|
|
struct kvmppc_pte *pte, bool data, bool iswrite);
|
2009-10-30 13:47:04 +08:00
|
|
|
void (*reset_msr)(struct kvm_vcpu *vcpu);
|
|
|
|
void (*tlbie)(struct kvm_vcpu *vcpu, ulong addr, bool large);
|
2010-04-20 08:49:46 +08:00
|
|
|
int (*esid_to_vsid)(struct kvm_vcpu *vcpu, ulong esid, u64 *vsid);
|
2009-10-30 13:47:04 +08:00
|
|
|
u64 (*ea_to_vp)(struct kvm_vcpu *vcpu, gva_t eaddr, bool data);
|
|
|
|
bool (*is_dcbz32)(struct kvm_vcpu *vcpu);
|
|
|
|
};
|
|
|
|
|
2011-06-29 08:17:33 +08:00
|
|
|
struct kvmppc_slb {
|
|
|
|
u64 esid;
|
|
|
|
u64 vsid;
|
|
|
|
u64 orige;
|
|
|
|
u64 origv;
|
|
|
|
bool valid : 1;
|
|
|
|
bool Ks : 1;
|
|
|
|
bool Kp : 1;
|
|
|
|
bool nx : 1;
|
|
|
|
bool large : 1; /* PTEs are 16MB */
|
|
|
|
bool tb : 1; /* 1TB segment */
|
|
|
|
bool class : 1;
|
2013-09-20 12:52:44 +08:00
|
|
|
u8 base_page_size; /* MMU_PAGE_xxx */
|
2009-10-30 13:47:04 +08:00
|
|
|
};
|
|
|
|
|
2012-08-09 05:17:55 +08:00
|
|
|
# ifdef CONFIG_PPC_FSL_BOOK3E
|
|
|
|
#define KVMPPC_BOOKE_IAC_NUM 2
|
|
|
|
#define KVMPPC_BOOKE_DAC_NUM 2
|
|
|
|
# else
|
|
|
|
#define KVMPPC_BOOKE_IAC_NUM 4
|
|
|
|
#define KVMPPC_BOOKE_DAC_NUM 2
|
|
|
|
# endif
|
|
|
|
#define KVMPPC_BOOKE_MAX_IAC 4
|
|
|
|
#define KVMPPC_BOOKE_MAX_DAC 2
|
|
|
|
|
2013-04-12 22:08:46 +08:00
|
|
|
/* KVMPPC_EPR_USER takes precedence over KVMPPC_EPR_KERNEL */
|
|
|
|
#define KVMPPC_EPR_NONE 0 /* EPR not supported */
|
|
|
|
#define KVMPPC_EPR_USER 1 /* exit to userspace to fill EPR */
|
|
|
|
#define KVMPPC_EPR_KERNEL 2 /* in-kernel irqchip */
|
|
|
|
|
2013-04-12 22:08:47 +08:00
|
|
|
#define KVMPPC_IRQ_DEFAULT 0
|
|
|
|
#define KVMPPC_IRQ_MPIC 1
|
2013-04-18 04:30:26 +08:00
|
|
|
#define KVMPPC_IRQ_XICS 2
|
2013-04-12 22:08:47 +08:00
|
|
|
|
|
|
|
struct openpic;
|
|
|
|
|
2008-04-17 12:28:09 +08:00
|
|
|
struct kvm_vcpu_arch {
|
2009-10-30 13:47:04 +08:00
|
|
|
ulong host_stack;
|
2008-04-17 12:28:09 +08:00
|
|
|
u32 host_pid;
|
2010-04-16 06:11:42 +08:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
2011-06-29 08:17:33 +08:00
|
|
|
struct kvmppc_slb slb[64];
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
int slb_max; /* 1 + index of last valid entry in slb[] */
|
2011-06-29 08:17:33 +08:00
|
|
|
int slb_nr; /* total number of entries in SLB */
|
2009-10-30 13:47:04 +08:00
|
|
|
struct kvmppc_mmu mmu;
|
2013-09-20 12:52:49 +08:00
|
|
|
struct kvmppc_vcpu_book3s *book3s;
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
|
|
struct kvmppc_book3s_shadow_vcpu *shadow_vcpu;
|
2009-10-30 13:47:04 +08:00
|
|
|
#endif
|
2008-04-17 12:28:09 +08:00
|
|
|
|
2008-11-05 23:36:19 +08:00
|
|
|
ulong gpr[32];
|
2008-04-17 12:28:09 +08:00
|
|
|
|
2013-10-15 17:43:02 +08:00
|
|
|
struct thread_fp_state fp;
|
2010-01-15 21:49:11 +08:00
|
|
|
|
2011-06-15 07:34:31 +08:00
|
|
|
#ifdef CONFIG_SPE
|
|
|
|
ulong evr[32];
|
|
|
|
ulong spefscr;
|
|
|
|
ulong host_spefscr;
|
|
|
|
u64 acc;
|
|
|
|
#endif
|
2010-01-15 21:49:11 +08:00
|
|
|
#ifdef CONFIG_ALTIVEC
|
2013-10-15 17:43:02 +08:00
|
|
|
struct thread_vr_state vr;
|
2010-01-15 21:49:11 +08:00
|
|
|
#endif
|
|
|
|
|
2011-12-20 23:34:43 +08:00
|
|
|
#ifdef CONFIG_KVM_BOOKE_HV
|
|
|
|
u32 host_mas4;
|
|
|
|
u32 host_mas6;
|
|
|
|
u32 shadow_epcr;
|
|
|
|
u32 shadow_msrp;
|
|
|
|
u32 eplc;
|
|
|
|
u32 epsc;
|
|
|
|
u32 oldpir;
|
|
|
|
#endif
|
|
|
|
|
2012-12-01 21:50:26 +08:00
|
|
|
#if defined(CONFIG_BOOKE)
|
|
|
|
#if defined(CONFIG_KVM_BOOKE_HV) || defined(CONFIG_64BIT)
|
|
|
|
u32 epcr;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
2010-02-19 18:00:27 +08:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
|
|
/* For Gekko paired singles */
|
|
|
|
u32 qpr[32];
|
|
|
|
#endif
|
|
|
|
|
2008-11-05 23:36:19 +08:00
|
|
|
ulong pc;
|
|
|
|
ulong ctr;
|
|
|
|
ulong lr;
|
2014-04-22 18:26:58 +08:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
2014-01-08 18:25:21 +08:00
|
|
|
ulong tar;
|
2014-04-22 18:26:58 +08:00
|
|
|
#endif
|
2010-01-08 09:58:03 +08:00
|
|
|
|
2008-11-05 23:36:19 +08:00
|
|
|
ulong xer;
|
2010-01-08 09:58:03 +08:00
|
|
|
u32 cr;
|
2008-04-17 12:28:09 +08:00
|
|
|
|
2010-04-16 06:11:42 +08:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
2009-10-30 13:47:04 +08:00
|
|
|
ulong hflags;
|
2010-01-15 21:49:11 +08:00
|
|
|
ulong guest_owned_ext;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
ulong purr;
|
|
|
|
ulong spurr;
|
2014-01-08 18:25:21 +08:00
|
|
|
ulong ic;
|
|
|
|
ulong vtb;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
ulong dscr;
|
|
|
|
ulong amr;
|
|
|
|
ulong uamor;
|
2014-01-08 18:25:21 +08:00
|
|
|
ulong iamr;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
u32 ctrl;
|
KVM: PPC: Book3S HV: Add support for DABRX register on POWER7
The DABRX (DABR extension) register on POWER7 processors provides finer
control over which accesses cause a data breakpoint interrupt. It
contains 3 bits which indicate whether to enable accesses in user,
kernel and hypervisor modes respectively to cause data breakpoint
interrupts, plus one bit that enables both real mode and virtual mode
accesses to cause interrupts. Currently, KVM sets DABRX to allow
both kernel and user accesses to cause interrupts while in the guest.
This adds support for the guest to specify other values for DABRX.
PAPR defines a H_SET_XDABR hcall to allow the guest to set both DABR
and DABRX with one call. This adds a real-mode implementation of
H_SET_XDABR, which shares most of its code with the existing H_SET_DABR
implementation. To support this, we add a per-vcpu field to store the
DABRX value plus code to get and set it via the ONE_REG interface.
For Linux guests to use this new hcall, userspace needs to add
"hcall-xdabr" to the set of strings in the /chosen/hypertas-functions
property in the device tree. If userspace does this and then migrates
the guest to a host where the kernel doesn't include this patch, then
userspace will need to implement H_SET_XDABR by writing the specified
DABR value to the DABR using the ONE_REG interface. In that case, the
old kernel will set DABRX to DABRX_USER | DABRX_KERNEL. That should
still work correctly, at least for Linux guests, since Linux guests
cope with getting data breakpoint interrupts in modes that weren't
requested by just ignoring the interrupt, and Linux guests never set
DABRX_BTI.
The other thing this does is to make H_SET_DABR and H_SET_XDABR work
on POWER8, which has the DAWR and DAWRX instead of DABR/X. Guests that
know about POWER8 should use H_SET_MODE rather than H_SET_[X]DABR, but
guests running in POWER7 compatibility mode will still use H_SET_[X]DABR.
For them, this adds the logic to convert DABR/X values into DAWR/X values
on POWER8.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-08 18:25:29 +08:00
|
|
|
u32 dabrx;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
ulong dabr;
|
2014-01-08 18:25:21 +08:00
|
|
|
ulong dawr;
|
|
|
|
ulong dawrx;
|
|
|
|
ulong ciabr;
|
2013-02-05 02:10:51 +08:00
|
|
|
ulong cfar;
|
2013-09-20 12:52:39 +08:00
|
|
|
ulong ppr;
|
2014-01-08 18:25:21 +08:00
|
|
|
ulong pspb;
|
|
|
|
ulong fscr;
|
2014-04-29 22:48:44 +08:00
|
|
|
ulong shadow_fscr;
|
2014-01-08 18:25:21 +08:00
|
|
|
ulong ebbhr;
|
|
|
|
ulong ebbrr;
|
|
|
|
ulong bescr;
|
|
|
|
ulong csigr;
|
|
|
|
ulong tacr;
|
|
|
|
ulong tcscr;
|
|
|
|
ulong acop;
|
|
|
|
ulong wort;
|
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu
Currently PR-style KVM keeps the volatile guest register values
(R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than
the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two
places, a kmalloc'd struct and in the PACA, and it gets copied back
and forth in kvmppc_core_vcpu_load/put(), because the real-mode code
can't rely on being able to access the kmalloc'd struct.
This changes the code to copy the volatile values into the shadow_vcpu
as one of the last things done before entering the guest. Similarly
the values are copied back out of the shadow_vcpu to the kvm_vcpu
immediately after exiting the guest. We arrange for interrupts to be
still disabled at this point so that we can't get preempted on 64-bit
and end up copying values from the wrong PACA.
This means that the accessor functions in kvm_book3s.h for these
registers are greatly simplified, and are same between PR and HV KVM.
In places where accesses to shadow_vcpu fields are now replaced by
accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs.
Finally, on 64-bit, we don't need the kmalloc'd struct at all any more.
With this, the time to read the PVR one million times in a loop went
from 567.7ms to 575.5ms (averages of 6 values), an increase of about
1.4% for this worse-case test for guest entries and exits. The
standard deviation of the measurements is about 11ms, so the
difference is only marginally significant statistically.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
|
|
|
ulong shadow_srr1;
|
2009-10-30 13:47:04 +08:00
|
|
|
#endif
|
2011-04-28 06:24:10 +08:00
|
|
|
u32 vrsave; /* also USPRG0 */
|
2008-04-17 12:28:09 +08:00
|
|
|
u32 mmucr;
|
2012-02-16 23:04:54 +08:00
|
|
|
/* shadow_msr is unused for BookE HV */
|
2011-06-15 07:34:29 +08:00
|
|
|
ulong shadow_msr;
|
2008-11-05 23:36:19 +08:00
|
|
|
ulong csrr0;
|
|
|
|
ulong csrr1;
|
|
|
|
ulong dsrr0;
|
|
|
|
ulong dsrr1;
|
2011-04-28 06:24:21 +08:00
|
|
|
ulong mcsrr0;
|
|
|
|
ulong mcsrr1;
|
|
|
|
ulong mcsr;
|
2008-04-17 12:28:09 +08:00
|
|
|
u32 dec;
|
2012-05-21 07:21:23 +08:00
|
|
|
#ifdef CONFIG_BOOKE
|
2008-04-17 12:28:09 +08:00
|
|
|
u32 decar;
|
2012-05-21 07:21:23 +08:00
|
|
|
#endif
|
2014-06-04 19:17:55 +08:00
|
|
|
/* Time base value when we entered the guest */
|
|
|
|
u64 entry_tb;
|
2014-06-05 20:08:02 +08:00
|
|
|
u64 entry_vtb;
|
2014-06-05 20:08:05 +08:00
|
|
|
u64 entry_ic;
|
2008-04-17 12:28:09 +08:00
|
|
|
u32 tcr;
|
2011-11-17 20:39:59 +08:00
|
|
|
ulong tsr; /* we need to perform set/clr_bits() which requires ulong */
|
2009-01-04 06:23:13 +08:00
|
|
|
u32 ivor[64];
|
2008-11-05 23:36:19 +08:00
|
|
|
ulong ivpr;
|
2009-10-30 13:47:04 +08:00
|
|
|
u32 pvr;
|
2008-07-26 02:54:53 +08:00
|
|
|
|
|
|
|
u32 shadow_pid;
|
2011-06-15 07:35:14 +08:00
|
|
|
u32 shadow_pid1;
|
2008-04-17 12:28:09 +08:00
|
|
|
u32 pid;
|
2008-07-26 02:54:53 +08:00
|
|
|
u32 swap_pid;
|
|
|
|
|
2008-04-17 12:28:09 +08:00
|
|
|
u32 ccr0;
|
|
|
|
u32 ccr1;
|
2009-01-04 06:23:07 +08:00
|
|
|
u32 dbsr;
|
2008-04-17 12:28:09 +08:00
|
|
|
|
2014-01-08 18:25:21 +08:00
|
|
|
u64 mmcr[5];
|
KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode. Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.
There are several differences between the PPC970 and POWER7 in how
guests are managed. These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits. Notably, on PPC970:
* The LPCR, LPID or RMOR registers don't exist, and the functions of
those registers are provided by bits in HID4 and one bit in HID0.
* External interrupts can be directed to the hypervisor, but unlike
POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
SRR0/1 not HSRR0/1.
* There is no virtual RMA (VRMA) mode; the guest must use an RMO
(real mode offset) area.
* The TLB entries are not tagged with the LPID, so it is necessary to
flush the whole TLB on partition switch. Furthermore, when switching
partitions we have to ensure that no other CPU is executing the tlbie
or tlbsync instructions in either the old or the new partition,
otherwise undefined behaviour can occur.
* The PMU has 8 counters (PMC registers) rather than 6.
* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.
* The SLB has 64 entries rather than 32.
* There is no mediated external interrupt facility, so if we switch to
a guest that has a virtual external interrupt pending but the guest
has MSR[EE] = 0, we have to arrange to have an interrupt pending for
it so that we can get control back once it re-enables interrupts. We
do that by sending ourselves an IPI with smp_send_reschedule after
hard-disabling interrupts.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:40:08 +08:00
|
|
|
u32 pmc[8];
|
2014-01-08 18:25:21 +08:00
|
|
|
u32 spmc[2];
|
2013-09-06 11:11:18 +08:00
|
|
|
u64 siar;
|
|
|
|
u64 sdar;
|
2014-01-08 18:25:21 +08:00
|
|
|
u64 sier;
|
2014-01-08 18:25:32 +08:00
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
|
|
u64 tfhar;
|
|
|
|
u64 texasr;
|
|
|
|
u64 tfiar;
|
|
|
|
|
|
|
|
u32 cr_tm;
|
|
|
|
u64 lr_tm;
|
|
|
|
u64 ctr_tm;
|
|
|
|
u64 amr_tm;
|
|
|
|
u64 ppr_tm;
|
|
|
|
u64 dscr_tm;
|
|
|
|
u64 tar_tm;
|
|
|
|
|
|
|
|
ulong gpr_tm[32];
|
|
|
|
|
|
|
|
struct thread_fp_state fp_tm;
|
|
|
|
|
|
|
|
struct thread_vr_state vr_tm;
|
|
|
|
u32 vrsave_tm; /* also USPRG0 */
|
|
|
|
|
|
|
|
#endif
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
2008-12-03 05:51:57 +08:00
|
|
|
#ifdef CONFIG_KVM_EXIT_TIMING
|
2011-03-25 13:02:13 +08:00
|
|
|
struct mutex exit_timing_lock;
|
2008-12-03 05:51:58 +08:00
|
|
|
struct kvmppc_exit_timing timing_exit;
|
|
|
|
struct kvmppc_exit_timing timing_last_enter;
|
2008-12-03 05:51:57 +08:00
|
|
|
u32 last_exit_type;
|
|
|
|
u32 timing_count_type[__NUMBER_OF_KVM_EXIT_TYPES];
|
|
|
|
u64 timing_sum_duration[__NUMBER_OF_KVM_EXIT_TYPES];
|
|
|
|
u64 timing_sum_quad_duration[__NUMBER_OF_KVM_EXIT_TYPES];
|
|
|
|
u64 timing_min_duration[__NUMBER_OF_KVM_EXIT_TYPES];
|
|
|
|
u64 timing_max_duration[__NUMBER_OF_KVM_EXIT_TYPES];
|
|
|
|
u64 timing_last_exit;
|
|
|
|
struct dentry *debugfs_exit_timing;
|
|
|
|
#endif
|
|
|
|
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
|
|
ulong fault_dar;
|
|
|
|
u32 fault_dsisr;
|
2014-05-05 11:09:44 +08:00
|
|
|
unsigned long intr_msr;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
#endif
|
|
|
|
|
2010-04-16 06:11:44 +08:00
|
|
|
#ifdef CONFIG_BOOKE
|
2008-11-05 23:36:19 +08:00
|
|
|
ulong fault_dear;
|
|
|
|
ulong fault_esr;
|
2010-02-02 19:44:35 +08:00
|
|
|
ulong queued_dear;
|
|
|
|
ulong queued_esr;
|
2012-08-09 04:38:19 +08:00
|
|
|
spinlock_t wdt_lock;
|
|
|
|
struct timer_list wdt_timer;
|
2011-12-20 23:34:34 +08:00
|
|
|
u32 tlbcfg[4];
|
2013-04-11 08:03:10 +08:00
|
|
|
u32 tlbps[4];
|
2011-12-20 23:34:34 +08:00
|
|
|
u32 mmucfg;
|
2013-04-11 08:03:11 +08:00
|
|
|
u32 eptcfg;
|
2011-12-20 23:34:43 +08:00
|
|
|
u32 epr;
|
2014-07-21 13:53:26 +08:00
|
|
|
u64 sprg9;
|
2014-07-04 16:17:28 +08:00
|
|
|
u32 pwrmgtcr0;
|
2013-02-28 02:13:10 +08:00
|
|
|
u32 crit_save;
|
2013-07-04 14:57:47 +08:00
|
|
|
/* guest debug registers*/
|
2013-07-04 14:57:46 +08:00
|
|
|
struct debug_reg dbg_reg;
|
2010-04-16 06:11:44 +08:00
|
|
|
#endif
|
2008-04-17 12:28:09 +08:00
|
|
|
gpa_t paddr_accessed;
|
2012-03-12 09:26:30 +08:00
|
|
|
gva_t vaddr_accessed;
|
2013-11-18 13:48:54 +08:00
|
|
|
pgd_t *pgdir;
|
2008-04-17 12:28:09 +08:00
|
|
|
|
|
|
|
u8 io_gpr; /* GPR used as IO source/target */
|
|
|
|
u8 mmio_is_bigendian;
|
2010-02-19 18:00:30 +08:00
|
|
|
u8 mmio_sign_extend;
|
2010-03-25 04:48:30 +08:00
|
|
|
u8 osi_needed;
|
|
|
|
u8 osi_enabled;
|
2011-08-08 22:08:55 +08:00
|
|
|
u8 papr_enabled;
|
2012-08-09 04:38:19 +08:00
|
|
|
u8 watchdog_enabled;
|
2011-08-10 19:57:08 +08:00
|
|
|
u8 sane;
|
|
|
|
u8 cpu_type;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
u8 hcall_needed;
|
2013-04-12 22:08:46 +08:00
|
|
|
u8 epr_flags; /* KVMPPC_EPR_xxx */
|
2013-01-05 01:12:48 +08:00
|
|
|
u8 epr_needed;
|
2008-04-17 12:28:09 +08:00
|
|
|
|
|
|
|
u32 cpr0_cfgaddr; /* holds the last set cpr0_cfgaddr */
|
|
|
|
|
2009-11-02 20:02:31 +08:00
|
|
|
struct hrtimer dec_timer;
|
2009-10-30 13:47:04 +08:00
|
|
|
u64 dec_jiffies;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
u64 dec_expires;
|
2008-04-17 12:28:09 +08:00
|
|
|
unsigned long pending_exceptions;
|
2011-06-29 08:22:05 +08:00
|
|
|
u8 ceded;
|
|
|
|
u8 prodded;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
u32 last_inst;
|
2011-06-29 08:22:05 +08:00
|
|
|
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
wait_queue_head_t *wqp;
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
struct kvmppc_vcore *vcore;
|
|
|
|
int ret;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
int trap;
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
int state;
|
|
|
|
int ptid;
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
bool timer_running;
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
wait_queue_head_t cpu_run;
|
|
|
|
|
2010-07-29 20:47:42 +08:00
|
|
|
struct kvm_vcpu_arch_shared *shared;
|
2014-04-24 19:46:24 +08:00
|
|
|
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
|
|
|
|
bool shared_big_endian;
|
|
|
|
#endif
|
2010-07-29 20:47:53 +08:00
|
|
|
unsigned long magic_page_pa; /* phys addr to map the magic page to */
|
|
|
|
unsigned long magic_page_ea; /* effect. addr to map the magic page to */
|
2014-05-12 07:08:32 +08:00
|
|
|
bool disable_kernel_nx;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
2013-04-12 22:08:47 +08:00
|
|
|
int irq_type; /* one of KVM_IRQ_* */
|
|
|
|
int irq_cpu_id;
|
|
|
|
struct openpic *mpic; /* KVM_IRQ_MPIC */
|
2013-04-18 04:30:26 +08:00
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
|
|
struct kvmppc_icp *icp; /* XICS presentation controller */
|
|
|
|
#endif
|
2013-04-12 22:08:47 +08:00
|
|
|
|
2013-10-08 00:47:52 +08:00
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
struct kvm_vcpu_arch_shared shregs;
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
unsigned long pgfault_addr;
|
|
|
|
long pgfault_index;
|
|
|
|
unsigned long pgfault_hpte[2];
|
|
|
|
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
struct list_head run_list;
|
|
|
|
struct task_struct *run_task;
|
|
|
|
struct kvm_run *kvm_run;
|
KVM: PPC: Book3S HV: Make virtual processor area registration more robust
The PAPR API allows three sorts of per-virtual-processor areas to be
registered (VPA, SLB shadow buffer, and dispatch trace log), and
furthermore, these can be registered and unregistered for another
virtual CPU. Currently we just update the vcpu fields pointing to
these areas at the time of registration or unregistration. If this
is done on another vcpu, there is the possibility that the target vcpu
is using those fields at the time and could end up using a bogus
pointer and corrupting memory.
This fixes the race by making the target cpu itself do the update, so
we can be sure that the update happens at a time when the fields
aren't being used. Each area now has a struct kvmppc_vpa which is
used to manage these updates. There is also a spinlock which protects
access to all of the kvmppc_vpa structs, other than to the pinned_addr
fields. (We could have just taken the spinlock when using the vpa,
slb_shadow or dtl fields, but that would mean taking the spinlock on
every guest entry and exit.)
This also changes 'struct dtl' (which was undefined) to 'struct dtl_entry',
which is what the rest of the kernel uses.
Thanks to Michael Ellerman <michael@ellerman.id.au> for pointing out
the need to initialize vcpu->arch.vpa_update_lock.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-02-20 01:46:32 +08:00
|
|
|
|
|
|
|
spinlock_t vpa_update_lock;
|
|
|
|
struct kvmppc_vpa vpa;
|
|
|
|
struct kvmppc_vpa dtl;
|
|
|
|
struct dtl_entry *dtl_ptr;
|
|
|
|
unsigned long dtl_index;
|
2012-02-03 08:56:21 +08:00
|
|
|
u64 stolen_logged;
|
KVM: PPC: Book3S HV: Make virtual processor area registration more robust
The PAPR API allows three sorts of per-virtual-processor areas to be
registered (VPA, SLB shadow buffer, and dispatch trace log), and
furthermore, these can be registered and unregistered for another
virtual CPU. Currently we just update the vcpu fields pointing to
these areas at the time of registration or unregistration. If this
is done on another vcpu, there is the possibility that the target vcpu
is using those fields at the time and could end up using a bogus
pointer and corrupting memory.
This fixes the race by making the target cpu itself do the update, so
we can be sure that the update happens at a time when the fields
aren't being used. Each area now has a struct kvmppc_vpa which is
used to manage these updates. There is also a spinlock which protects
access to all of the kvmppc_vpa structs, other than to the pinned_addr
fields. (We could have just taken the spinlock when using the vpa,
slb_shadow or dtl fields, but that would mean taking the spinlock on
every guest entry and exit.)
This also changes 'struct dtl' (which was undefined) to 'struct dtl_entry',
which is what the rest of the kernel uses.
Thanks to Michael Ellerman <michael@ellerman.id.au> for pointing out
the need to initialize vcpu->arch.vpa_update_lock.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-02-20 01:46:32 +08:00
|
|
|
struct kvmppc_vpa slb_shadow;
|
KVM: PPC: Book3S HV: Fix accounting of stolen time
Currently the code that accounts stolen time tends to overestimate the
stolen time, and will sometimes report more stolen time in a DTL
(dispatch trace log) entry than has elapsed since the last DTL entry.
This can cause guests to underflow the user or system time measured
for some tasks, leading to ridiculous CPU percentages and total runtimes
being reported by top and other utilities.
In addition, the current code was designed for the previous policy where
a vcore would only run when all the vcpus in it were runnable, and so
only counted stolen time on a per-vcore basis. Now that a vcore can
run while some of the vcpus in it are doing other things in the kernel
(e.g. handling a page fault), we need to count the time when a vcpu task
is preempted while it is not running as part of a vcore as stolen also.
To do this, we bring back the BUSY_IN_HOST vcpu state and extend the
vcpu_load/put functions to count preemption time while the vcpu is
in that state. Handling the transitions between the RUNNING and
BUSY_IN_HOST states requires checking and updating two variables
(accumulated time stolen and time last preempted), so we add a new
spinlock, vcpu->arch.tbacct_lock. This protects both the per-vcpu
stolen/preempt-time variables, and the per-vcore variables while this
vcpu is running the vcore.
Finally, we now don't count time spent in userspace as stolen time.
The task could be executing in userspace on behalf of the vcpu, or
it could be preempted, or the vcpu could be genuinely stopped. Since
we have no way of dividing up the time between these cases, we don't
count any of it as stolen.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-15 09:18:07 +08:00
|
|
|
|
|
|
|
spinlock_t tbacct_lock;
|
|
|
|
u64 busy_stolen;
|
|
|
|
u64 busy_preempt;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
#endif
|
2008-04-17 12:28:09 +08:00
|
|
|
};
|
|
|
|
|
2013-10-15 17:43:02 +08:00
|
|
|
#define VCPU_FPR(vcpu, i) (vcpu)->arch.fp.fpr[i][TS_FPROFFSET]
|
|
|
|
|
KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel. This is inefficient.
This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode. When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle. Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction. When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.
This has some other ramifications. First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle. This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running. In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.
This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.
Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.
Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.
Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:42:46 +08:00
|
|
|
/* Values for vcpu->arch.state */
|
2012-10-15 09:17:42 +08:00
|
|
|
#define KVMPPC_VCPU_NOTREADY 0
|
|
|
|
#define KVMPPC_VCPU_RUNNABLE 1
|
KVM: PPC: Book3S HV: Fix accounting of stolen time
Currently the code that accounts stolen time tends to overestimate the
stolen time, and will sometimes report more stolen time in a DTL
(dispatch trace log) entry than has elapsed since the last DTL entry.
This can cause guests to underflow the user or system time measured
for some tasks, leading to ridiculous CPU percentages and total runtimes
being reported by top and other utilities.
In addition, the current code was designed for the previous policy where
a vcore would only run when all the vcpus in it were runnable, and so
only counted stolen time on a per-vcore basis. Now that a vcore can
run while some of the vcpus in it are doing other things in the kernel
(e.g. handling a page fault), we need to count the time when a vcpu task
is preempted while it is not running as part of a vcore as stolen also.
To do this, we bring back the BUSY_IN_HOST vcpu state and extend the
vcpu_load/put functions to count preemption time while the vcpu is
in that state. Handling the transitions between the RUNNING and
BUSY_IN_HOST states requires checking and updating two variables
(accumulated time stolen and time last preempted), so we add a new
spinlock, vcpu->arch.tbacct_lock. This protects both the per-vcpu
stolen/preempt-time variables, and the per-vcore variables while this
vcpu is running the vcore.
Finally, we now don't count time spent in userspace as stolen time.
The task could be executing in userspace on behalf of the vcpu, or
it could be preempted, or the vcpu could be genuinely stopped. Since
we have no way of dividing up the time between these cases, we don't
count any of it as stolen.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-15 09:18:07 +08:00
|
|
|
#define KVMPPC_VCPU_BUSY_IN_HOST 2
|
KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:23:08 +08:00
|
|
|
|
2012-01-07 09:07:38 +08:00
|
|
|
/* Values for vcpu->arch.io_gpr */
|
|
|
|
#define KVM_MMIO_REG_MASK 0x001f
|
|
|
|
#define KVM_MMIO_REG_EXT_MASK 0xffe0
|
|
|
|
#define KVM_MMIO_REG_GPR 0x0000
|
|
|
|
#define KVM_MMIO_REG_FPR 0x0020
|
|
|
|
#define KVM_MMIO_REG_QPR 0x0040
|
|
|
|
#define KVM_MMIO_REG_FQPR 0x0060
|
|
|
|
|
2012-03-14 05:35:01 +08:00
|
|
|
#define __KVM_HAVE_ARCH_WQP
|
2013-04-12 22:08:46 +08:00
|
|
|
#define __KVM_HAVE_CREATE_DEVICE
|
2012-03-09 05:44:24 +08:00
|
|
|
|
2014-08-28 21:13:03 +08:00
|
|
|
static inline void kvm_arch_hardware_disable(void) {}
|
2014-08-28 21:13:02 +08:00
|
|
|
static inline void kvm_arch_hardware_unsetup(void) {}
|
|
|
|
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
|
|
|
|
static inline void kvm_arch_memslots_updated(struct kvm *kvm) {}
|
|
|
|
static inline void kvm_arch_flush_shadow_all(struct kvm *kvm) {}
|
|
|
|
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
|
|
|
|
static inline void kvm_arch_exit(void) {}
|
|
|
|
|
2008-04-17 12:28:09 +08:00
|
|
|
#endif /* __POWERPC_KVM_HOST_H__ */
|