linux/drivers/isdn/hisax/ipacx.c

914 lines
26 KiB
C
Raw Normal View History

/*
*
* IPACX specific routines
*
* Author Joerg Petersohn
* Derived from hisax_isac.c, isac.c, hscx.c and others
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/init.h>
#include "hisax_if.h"
#include "hisax.h"
#include "isdnl1.h"
#include "ipacx.h"
#define DBUSY_TIMER_VALUE 80
#define TIMER3_VALUE 7000
#define MAX_DFRAME_LEN_L1 300
#define B_FIFO_SIZE 64
#define D_FIFO_SIZE 32
// ipacx interrupt mask values
#define _MASK_IMASK 0x2E // global mask
#define _MASKB_IMASK 0x0B
#define _MASKD_IMASK 0x03 // all on
//----------------------------------------------------------
// local function declarations
//----------------------------------------------------------
static void ph_command(struct IsdnCardState *cs, unsigned int command);
static inline void cic_int(struct IsdnCardState *cs);
static void dch_l2l1(struct PStack *st, int pr, void *arg);
static void dbusy_timer_handler(struct IsdnCardState *cs);
static void dch_empty_fifo(struct IsdnCardState *cs, int count);
static void dch_fill_fifo(struct IsdnCardState *cs);
static inline void dch_int(struct IsdnCardState *cs);
static void dch_setstack(struct PStack *st, struct IsdnCardState *cs);
static void dch_init(struct IsdnCardState *cs);
static void bch_l2l1(struct PStack *st, int pr, void *arg);
static void bch_empty_fifo(struct BCState *bcs, int count);
static void bch_fill_fifo(struct BCState *bcs);
static void bch_int(struct IsdnCardState *cs, u_char hscx);
static void bch_mode(struct BCState *bcs, int mode, int bc);
static void bch_close_state(struct BCState *bcs);
static int bch_open_state(struct IsdnCardState *cs, struct BCState *bcs);
static int bch_setstack(struct PStack *st, struct BCState *bcs);
static void bch_init(struct IsdnCardState *cs, int hscx);
static void clear_pending_ints(struct IsdnCardState *cs);
//----------------------------------------------------------
// Issue Layer 1 command to chip
//----------------------------------------------------------
static void
ph_command(struct IsdnCardState *cs, unsigned int command)
{
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_command (%#x) in (%#x)", command,
cs->dc.isac.ph_state);
//###################################
// printk(KERN_INFO "ph_command (%#x)\n", command);
//###################################
cs->writeisac(cs, IPACX_CIX0, (command << 4) | 0x0E);
}
//----------------------------------------------------------
// Transceiver interrupt handler
//----------------------------------------------------------
static inline void
cic_int(struct IsdnCardState *cs)
{
u_char event;
event = cs->readisac(cs, IPACX_CIR0) >> 4;
if (cs->debug & L1_DEB_ISAC) debugl1(cs, "cic_int(event=%#x)", event);
//#########################################
// printk(KERN_INFO "cic_int(%x)\n", event);
//#########################################
cs->dc.isac.ph_state = event;
schedule_event(cs, D_L1STATECHANGE);
}
//==========================================================
// D channel functions
//==========================================================
//----------------------------------------------------------
// Command entry point
//----------------------------------------------------------
static void
dch_l2l1(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_char cda1_cr;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG
if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG
if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
dch_fill_fifo(cs);
}
break;
case (PH_PULL | INDICATION):
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
break;
}
if (cs->debug & DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG
if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
dch_fill_fifo(cs);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG
if (cs->debug & L1_DEB_LAPD) debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
case (HW_ENABLE | REQUEST):
if ((cs->dc.isac.ph_state == IPACX_IND_RES) ||
(cs->dc.isac.ph_state == IPACX_IND_DR) ||
(cs->dc.isac.ph_state == IPACX_IND_DC))
ph_command(cs, IPACX_CMD_TIM);
else
ph_command(cs, IPACX_CMD_RES);
break;
case (HW_INFO3 | REQUEST):
ph_command(cs, IPACX_CMD_AR8);
break;
case (HW_TESTLOOP | REQUEST):
cs->writeisac(cs, IPACX_CDA_TSDP10, 0x80); // Timeslot 0 is B1
cs->writeisac(cs, IPACX_CDA_TSDP11, 0x81); // Timeslot 0 is B1
cda1_cr = cs->readisac(cs, IPACX_CDA1_CR);
(void) cs->readisac(cs, IPACX_CDA2_CR);
if ((long)arg & 1) { // loop B1
cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr | 0x0a);
}
else { // B1 off
cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr & ~0x0a);
}
if ((long)arg & 2) { // loop B2
cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr | 0x14);
}
else { // B2 off
cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr & ~0x14);
}
break;
case (HW_DEACTIVATE | RESPONSE):
skb_queue_purge(&cs->rq);
skb_queue_purge(&cs->sq);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
}
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
break;
default:
if (cs->debug & L1_DEB_WARN) debugl1(cs, "dch_l2l1 unknown %04x", pr);
break;
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
dbusy_timer_handler(struct IsdnCardState *cs)
{
struct PStack *st;
int rbchd, stard;
if (test_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
rbchd = cs->readisac(cs, IPACX_RBCHD);
stard = cs->readisac(cs, IPACX_STARD);
if (cs->debug)
debugl1(cs, "D-Channel Busy RBCHD %02x STARD %02x", rbchd, stard);
if (!(stard & 0x40)) { // D-Channel Busy
set_bit(FLG_L1_DBUSY, &cs->HW_Flags);
for (st = cs->stlist; st; st = st->next) {
st->l1.l1l2(st, PH_PAUSE | INDICATION, NULL); // flow control on
}
} else {
// seems we lost an interrupt; reset transceiver */
clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
} else {
printk(KERN_WARNING "HiSax: ISAC D-Channel Busy no skb\n");
debugl1(cs, "D-Channel Busy no skb");
}
cs->writeisac(cs, IPACX_CMDRD, 0x01); // Tx reset, generates XPR
}
}
}
//----------------------------------------------------------
// Fill buffer from receive FIFO
//----------------------------------------------------------
static void
dch_empty_fifo(struct IsdnCardState *cs, int count)
{
u_char *ptr;
if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
debugl1(cs, "dch_empty_fifo()");
// message too large, remove
if ((cs->rcvidx + count) >= MAX_DFRAME_LEN_L1) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "dch_empty_fifo() incoming message too large");
cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC
cs->rcvidx = 0;
return;
}
ptr = cs->rcvbuf + cs->rcvidx;
cs->rcvidx += count;
cs->readisacfifo(cs, ptr, count);
cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC
if (cs->debug & L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "dch_empty_fifo() cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, cs->dlog);
}
}
//----------------------------------------------------------
// Fill transmit FIFO
//----------------------------------------------------------
static void
dch_fill_fifo(struct IsdnCardState *cs)
{
int count;
u_char cmd, *ptr;
if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
debugl1(cs, "dch_fill_fifo()");
if (!cs->tx_skb) return;
count = cs->tx_skb->len;
if (count <= 0) return;
if (count > D_FIFO_SIZE) {
count = D_FIFO_SIZE;
cmd = 0x08; // XTF
} else {
cmd = 0x0A; // XTF | XME
}
ptr = cs->tx_skb->data;
skb_pull(cs->tx_skb, count);
cs->tx_cnt += count;
cs->writeisacfifo(cs, ptr, count);
cs->writeisac(cs, IPACX_CMDRD, cmd);
// set timeout for transmission contol
if (test_and_set_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
debugl1(cs, "dch_fill_fifo dbusytimer running");
del_timer(&cs->dbusytimer);
}
init_timer(&cs->dbusytimer);
cs->dbusytimer.expires = jiffies + ((DBUSY_TIMER_VALUE * HZ)/1000);
add_timer(&cs->dbusytimer);
if (cs->debug & L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "dch_fill_fifo() cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, cs->dlog);
}
}
//----------------------------------------------------------
// D channel interrupt handler
//----------------------------------------------------------
static inline void
dch_int(struct IsdnCardState *cs)
{
struct sk_buff *skb;
u_char istad, rstad;
int count;
istad = cs->readisac(cs, IPACX_ISTAD);
//##############################################
// printk(KERN_WARNING "dch_int(istad=%02x)\n", istad);
//##############################################
if (istad & 0x80) { // RME
rstad = cs->readisac(cs, IPACX_RSTAD);
if ((rstad & 0xf0) != 0xa0) { // !(VFR && !RDO && CRC && !RAB)
if (!(rstad & 0x80))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "dch_int(): invalid frame");
if ((rstad & 0x40))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "dch_int(): RDO");
if (!(rstad & 0x20))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "dch_int(): CRC error");
cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC
} else { // received frame ok
count = cs->readisac(cs, IPACX_RBCLD);
if (count) count--; // RSTAB is last byte
count &= D_FIFO_SIZE - 1;
if (count == 0) count = D_FIFO_SIZE;
dch_empty_fifo(cs, count);
if ((count = cs->rcvidx) > 0) {
cs->rcvidx = 0;
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "HiSax dch_int(): receive out of memory\n");
else {
memcpy(skb_put(skb, count), cs->rcvbuf, count);
skb_queue_tail(&cs->rq, skb);
}
}
}
cs->rcvidx = 0;
schedule_event(cs, D_RCVBUFREADY);
}
if (istad & 0x40) { // RPF
dch_empty_fifo(cs, D_FIFO_SIZE);
}
if (istad & 0x20) { // RFO
if (cs->debug & L1_DEB_WARN) debugl1(cs, "dch_int(): RFO");
cs->writeisac(cs, IPACX_CMDRD, 0x40); //RRES
}
if (istad & 0x10) { // XPR
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
dch_fill_fifo(cs);
goto afterXPR;
}
else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_skb = NULL;
cs->tx_cnt = 0;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
dch_fill_fifo(cs);
}
else {
schedule_event(cs, D_XMTBUFREADY);
}
}
afterXPR:
if (istad & 0x0C) { // XDU or XMR
if (cs->debug & L1_DEB_WARN) debugl1(cs, "dch_int(): XDU");
if (cs->tx_skb) {
skb_push(cs->tx_skb, cs->tx_cnt); // retransmit
cs->tx_cnt = 0;
dch_fill_fifo(cs);
} else {
printk(KERN_WARNING "HiSax: ISAC XDU no skb\n");
debugl1(cs, "ISAC XDU no skb");
}
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
dch_setstack(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = dch_l2l1;
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
dch_init(struct IsdnCardState *cs)
{
printk(KERN_INFO "HiSax: IPACX ISDN driver v0.1.0\n");
cs->setstack_d = dch_setstack;
cs->dbusytimer.function = (void *) dbusy_timer_handler;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
cs->writeisac(cs, IPACX_TR_CONF0, 0x00); // clear LDD
cs->writeisac(cs, IPACX_TR_CONF2, 0x00); // enable transmitter
cs->writeisac(cs, IPACX_MODED, 0xC9); // transparent mode 0, RAC, stop/go
cs->writeisac(cs, IPACX_MON_CR, 0x00); // disable monitor channel
}
//==========================================================
// B channel functions
//==========================================================
//----------------------------------------------------------
// Entry point for commands
//----------------------------------------------------------
static void
bch_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->hw.hscx.count = 0;
bch_fill_fifo(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "HiSax bch_l2l1(): this shouldn't happen\n");
} else {
set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->hw.hscx.count = 0;
bch_fill_fifo(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
set_bit(BC_FLG_ACTIV, &bcs->Flag);
bch_mode(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
clear_bit(BC_FLG_ACTIV, &bcs->Flag);
clear_bit(BC_FLG_BUSY, &bcs->Flag);
bch_mode(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
//----------------------------------------------------------
// Read B channel fifo to receive buffer
//----------------------------------------------------------
static void
bch_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr, hscx;
struct IsdnCardState *cs;
int cnt;
cs = bcs->cs;
hscx = bcs->hw.hscx.hscx;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "bch_empty_fifo()");
// message too large, remove
if (bcs->hw.hscx.rcvidx + count > HSCX_BUFMAX) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "bch_empty_fifo() incoming packet too large");
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC
bcs->hw.hscx.rcvidx = 0;
return;
}
ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
cnt = count;
while (cnt--) *ptr++ = cs->BC_Read_Reg(cs, hscx, IPACX_RFIFOB);
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC
ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
bcs->hw.hscx.rcvidx += count;
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "bch_empty_fifo() B-%d cnt %d", hscx, count);
QuickHex(t, ptr, count);
debugl1(cs, bcs->blog);
}
}
//----------------------------------------------------------
// Fill buffer to transmit FIFO
//----------------------------------------------------------
static void
bch_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs;
int more, count, cnt;
u_char *ptr, *p, hscx;
cs = bcs->cs;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "bch_fill_fifo()");
if (!bcs->tx_skb) return;
if (bcs->tx_skb->len <= 0) return;
hscx = bcs->hw.hscx.hscx;
more = (bcs->mode == L1_MODE_TRANS) ? 1 : 0;
if (bcs->tx_skb->len > B_FIFO_SIZE) {
more = 1;
count = B_FIFO_SIZE;
} else {
count = bcs->tx_skb->len;
}
cnt = count;
p = ptr = bcs->tx_skb->data;
skb_pull(bcs->tx_skb, count);
bcs->tx_cnt -= count;
bcs->hw.hscx.count += count;
while (cnt--) cs->BC_Write_Reg(cs, hscx, IPACX_XFIFOB, *p++);
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, (more ? 0x08 : 0x0a));
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "chb_fill_fifo() B-%d cnt %d", hscx, count);
QuickHex(t, ptr, count);
debugl1(cs, bcs->blog);
}
}
//----------------------------------------------------------
// B channel interrupt handler
//----------------------------------------------------------
static void
bch_int(struct IsdnCardState *cs, u_char hscx)
{
u_char istab;
struct BCState *bcs;
struct sk_buff *skb;
int count;
u_char rstab;
bcs = cs->bcs + hscx;
istab = cs->BC_Read_Reg(cs, hscx, IPACX_ISTAB);
//##############################################
// printk(KERN_WARNING "bch_int(istab=%02x)\n", istab);
//##############################################
if (!test_bit(BC_FLG_INIT, &bcs->Flag)) return;
if (istab & 0x80) { // RME
rstab = cs->BC_Read_Reg(cs, hscx, IPACX_RSTAB);
if ((rstab & 0xf0) != 0xa0) { // !(VFR && !RDO && CRC && !RAB)
if (!(rstab & 0x80))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d: invalid frame", hscx);
if ((rstab & 0x40) && (bcs->mode != L1_MODE_NULL))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d: RDO mode=%d", hscx, bcs->mode);
if (!(rstab & 0x20))
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d: CRC error", hscx);
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC
}
else { // received frame ok
count = cs->BC_Read_Reg(cs, hscx, IPACX_RBCLB) & (B_FIFO_SIZE - 1);
if (count == 0) count = B_FIFO_SIZE;
bch_empty_fifo(bcs, count);
if ((count = bcs->hw.hscx.rcvidx - 1) > 0) {
if (cs->debug & L1_DEB_HSCX_FIFO)
debugl1(cs, "bch_int Frame %d", count);
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "HiSax bch_int(): receive frame out of memory\n");
else {
memcpy(skb_put(skb, count), bcs->hw.hscx.rcvbuf, count);
skb_queue_tail(&bcs->rqueue, skb);
}
}
}
bcs->hw.hscx.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
if (istab & 0x40) { // RPF
bch_empty_fifo(bcs, B_FIFO_SIZE);
if (bcs->mode == L1_MODE_TRANS) { // queue every chunk
// receive transparent audio data
if (!(skb = dev_alloc_skb(B_FIFO_SIZE)))
printk(KERN_WARNING "HiSax bch_int(): receive transparent out of memory\n");
else {
memcpy(skb_put(skb, B_FIFO_SIZE), bcs->hw.hscx.rcvbuf, B_FIFO_SIZE);
skb_queue_tail(&bcs->rqueue, skb);
}
bcs->hw.hscx.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
}
if (istab & 0x20) { // RFO
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d: RFO error", hscx);
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x40); // RRES
}
if (istab & 0x10) { // XPR
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
bch_fill_fifo(bcs);
goto afterXPR;
} else {
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->hw.hscx.count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
}
dev_kfree_skb_irq(bcs->tx_skb);
bcs->hw.hscx.count = 0;
bcs->tx_skb = NULL;
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.hscx.count = 0;
set_bit(BC_FLG_BUSY, &bcs->Flag);
bch_fill_fifo(bcs);
} else {
clear_bit(BC_FLG_BUSY, &bcs->Flag);
schedule_event(bcs, B_XMTBUFREADY);
}
}
afterXPR:
if (istab & 0x04) { // XDU
if (bcs->mode == L1_MODE_TRANS) {
bch_fill_fifo(bcs);
}
else {
if (bcs->tx_skb) { // restart transmitting the whole frame
skb_push(bcs->tx_skb, bcs->hw.hscx.count);
bcs->tx_cnt += bcs->hw.hscx.count;
bcs->hw.hscx.count = 0;
}
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x01); // XRES
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d XDU error", hscx);
}
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
bch_mode(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
int hscx = bcs->hw.hscx.hscx;
bc = bc ? 1 : 0; // in case bc is greater than 1
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "mode_bch() switch B-%d mode %d chan %d", hscx, mode, bc);
bcs->mode = mode;
bcs->channel = bc;
// map controller to according timeslot
if (!hscx)
{
cs->writeisac(cs, IPACX_BCHA_TSDP_BC1, 0x80 | bc);
cs->writeisac(cs, IPACX_BCHA_CR, 0x88);
}
else
{
cs->writeisac(cs, IPACX_BCHB_TSDP_BC1, 0x80 | bc);
cs->writeisac(cs, IPACX_BCHB_CR, 0x88);
}
switch (mode) {
case (L1_MODE_NULL):
cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0xC0); // rec off
cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x30); // std adj.
cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, 0xFF); // ints off
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments
break;
case (L1_MODE_TRANS):
cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0x88); // ext transp mode
cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x00); // xxx00000
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments
cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, _MASKB_IMASK);
break;
case (L1_MODE_HDLC):
cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0xC8); // transp mode 0
cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x01); // idle=hdlc flags crc enabled
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments
cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, _MASKB_IMASK);
break;
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
bch_close_state(struct BCState *bcs)
{
bch_mode(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
kfree(bcs->hw.hscx.rcvbuf);
bcs->hw.hscx.rcvbuf = NULL;
kfree(bcs->blog);
bcs->blog = NULL;
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static int
bch_open_state(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
if (!(bcs->hw.hscx.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax open_bchstate(): No memory for hscx.rcvbuf\n");
clear_bit(BC_FLG_INIT, &bcs->Flag);
return (1);
}
if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax open_bchstate: No memory for bcs->blog\n");
clear_bit(BC_FLG_INIT, &bcs->Flag);
kfree(bcs->hw.hscx.rcvbuf);
bcs->hw.hscx.rcvbuf = NULL;
return (2);
}
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->hw.hscx.rcvidx = 0;
bcs->tx_cnt = 0;
return (0);
}
//----------------------------------------------------------
//----------------------------------------------------------
static int
bch_setstack(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (bch_open_state(st->l1.hardware, bcs)) return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = bch_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
bch_init(struct IsdnCardState *cs, int hscx)
{
cs->bcs[hscx].BC_SetStack = bch_setstack;
cs->bcs[hscx].BC_Close = bch_close_state;
cs->bcs[hscx].hw.hscx.hscx = hscx;
cs->bcs[hscx].cs = cs;
bch_mode(cs->bcs + hscx, 0, hscx);
}
//==========================================================
// Shared functions
//==========================================================
//----------------------------------------------------------
// Main interrupt handler
//----------------------------------------------------------
void
interrupt_ipacx(struct IsdnCardState *cs)
{
u_char ista;
while ((ista = cs->readisac(cs, IPACX_ISTA))) {
//#################################################
// printk(KERN_WARNING "interrupt_ipacx(ista=%02x)\n", ista);
//#################################################
if (ista & 0x80) bch_int(cs, 0); // B channel interrupts
if (ista & 0x40) bch_int(cs, 1);
if (ista & 0x01) dch_int(cs); // D channel
if (ista & 0x10) cic_int(cs); // Layer 1 state
}
}
//----------------------------------------------------------
// Clears chip interrupt status
//----------------------------------------------------------
static void
clear_pending_ints(struct IsdnCardState *cs)
{
int ista;
// all interrupts off
cs->writeisac(cs, IPACX_MASK, 0xff);
cs->writeisac(cs, IPACX_MASKD, 0xff);
cs->BC_Write_Reg(cs, 0, IPACX_MASKB, 0xff);
cs->BC_Write_Reg(cs, 1, IPACX_MASKB, 0xff);
ista = cs->readisac(cs, IPACX_ISTA);
if (ista & 0x80) cs->BC_Read_Reg(cs, 0, IPACX_ISTAB);
if (ista & 0x40) cs->BC_Read_Reg(cs, 1, IPACX_ISTAB);
if (ista & 0x10) cs->readisac(cs, IPACX_CIR0);
if (ista & 0x01) cs->readisac(cs, IPACX_ISTAD);
}
//----------------------------------------------------------
// Does chip configuration work
// Work to do depends on bit mask in part
//----------------------------------------------------------
void
init_ipacx(struct IsdnCardState *cs, int part)
{
if (part & 1) { // initialise chip
//##################################################
// printk(KERN_INFO "init_ipacx(%x)\n", part);
//##################################################
clear_pending_ints(cs);
bch_init(cs, 0);
bch_init(cs, 1);
dch_init(cs);
}
if (part & 2) { // reenable all interrupts and start chip
cs->BC_Write_Reg(cs, 0, IPACX_MASKB, _MASKB_IMASK);
cs->BC_Write_Reg(cs, 1, IPACX_MASKB, _MASKB_IMASK);
cs->writeisac(cs, IPACX_MASKD, _MASKD_IMASK);
cs->writeisac(cs, IPACX_MASK, _MASK_IMASK); // global mask register
// reset HDLC Transmitters/receivers
cs->writeisac(cs, IPACX_CMDRD, 0x41);
cs->BC_Write_Reg(cs, 0, IPACX_CMDRB, 0x41);
cs->BC_Write_Reg(cs, 1, IPACX_CMDRB, 0x41);
ph_command(cs, IPACX_CMD_RES);
}
}
//----------------- end of file -----------------------