linux/arch/x86/lib/Makefile

53 lines
1.6 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for x86 specific library files.
#
kernel: add kcov code coverage kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-23 05:27:30 +08:00
# Produces uninteresting flaky coverage.
KCOV_INSTRUMENT_delay.o := n
x86: Instruction decoder API Add x86 instruction decoder to arch-specific libraries. This decoder can decode x86 instructions used in kernel into prefix, opcode, modrm, sib, displacement and immediates. This can also show the length of instructions. This version introduces instruction attributes for decoding instructions. The instruction attribute tables are generated from the opcode map file (x86-opcode-map.txt) by the generator script(gen-insn-attr-x86.awk). Currently, the opcode maps are based on opcode maps in Intel(R) 64 and IA-32 Architectures Software Developers Manual Vol.2: Appendix.A, and consist of below two types of opcode tables. 1-byte/2-bytes/3-bytes opcodes, which has 256 elements, are written as below; Table: table-name Referrer: escaped-name opcode: mnemonic|GrpXXX [operand1[,operand2...]] [(extra1)[,(extra2)...] [| 2nd-mnemonic ...] (or) opcode: escape # escaped-name EndTable Group opcodes, which has 8 elements, are written as below; GrpTable: GrpXXX reg: mnemonic [operand1[,operand2...]] [(extra1)[,(extra2)...] [| 2nd-mnemonic ...] EndTable These opcode maps include a few SSE and FP opcodes (for setup), because those opcodes are used in the kernel. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Signed-off-by: Jim Keniston <jkenisto@us.ibm.com> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203413.31965.49709.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-14 04:34:13 +08:00
inat_tables_script = $(srctree)/arch/x86/tools/gen-insn-attr-x86.awk
inat_tables_maps = $(srctree)/arch/x86/lib/x86-opcode-map.txt
quiet_cmd_inat_tables = GEN $@
cmd_inat_tables = $(AWK) -f $(inat_tables_script) $(inat_tables_maps) > $@
x86: Instruction decoder API Add x86 instruction decoder to arch-specific libraries. This decoder can decode x86 instructions used in kernel into prefix, opcode, modrm, sib, displacement and immediates. This can also show the length of instructions. This version introduces instruction attributes for decoding instructions. The instruction attribute tables are generated from the opcode map file (x86-opcode-map.txt) by the generator script(gen-insn-attr-x86.awk). Currently, the opcode maps are based on opcode maps in Intel(R) 64 and IA-32 Architectures Software Developers Manual Vol.2: Appendix.A, and consist of below two types of opcode tables. 1-byte/2-bytes/3-bytes opcodes, which has 256 elements, are written as below; Table: table-name Referrer: escaped-name opcode: mnemonic|GrpXXX [operand1[,operand2...]] [(extra1)[,(extra2)...] [| 2nd-mnemonic ...] (or) opcode: escape # escaped-name EndTable Group opcodes, which has 8 elements, are written as below; GrpTable: GrpXXX reg: mnemonic [operand1[,operand2...]] [(extra1)[,(extra2)...] [| 2nd-mnemonic ...] EndTable These opcode maps include a few SSE and FP opcodes (for setup), because those opcodes are used in the kernel. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Signed-off-by: Jim Keniston <jkenisto@us.ibm.com> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203413.31965.49709.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-14 04:34:13 +08:00
$(obj)/inat-tables.c: $(inat_tables_script) $(inat_tables_maps)
$(call cmd,inat_tables)
$(obj)/inat.o: $(obj)/inat-tables.c
clean-files := inat-tables.c
obj-$(CONFIG_SMP) += msr-smp.o cache-smp.o
lib-y := delay.o misc.o cmdline.o cpu.o
lib-y += usercopy_$(BITS).o usercopy.o getuser.o putuser.o
lib-y += memcpy_$(BITS).o
lib-$(CONFIG_RWSEM_XCHGADD_ALGORITHM) += rwsem.o
x86/mpx, x86/insn: Relocate insn util functions to a new insn-eval file Other kernel submodules can benefit from using the utility functions defined in mpx.c to obtain the addresses and values of operands contained in the general purpose registers. An instance of this is the emulation code used for instructions protected by the Intel User-Mode Instruction Prevention feature. Thus, these functions are relocated to a new insn-eval.c file. The reason to not relocate these utilities into insn.c is that the latter solely analyses instructions given by a struct insn without any knowledge of the meaning of the values of instruction operands. This new utility insn- eval.c aims to be used to resolve userspace linear addresses based on the contents of the instruction operands as well as the contents of pt_regs structure. These utilities come with a separate header. This is to avoid taking insn.c out of sync from the instructions decoders under tools/obj and tools/perf. This also avoids adding cumbersome #ifdef's for the #include'd files required to decode instructions in a kernel context. Functions are simply relocated. There are not functional or indentation changes. Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: ricardo.neri@intel.com Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Huang Rui <ray.huang@amd.com> Cc: Qiaowei Ren <qiaowei.ren@intel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Colin Ian King <colin.king@canonical.com> Cc: Chen Yucong <slaoub@gmail.com> Cc: Adam Buchbinder <adam.buchbinder@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Garnier <thgarnie@google.com> Link: https://lkml.kernel.org/r/1509135945-13762-10-git-send-email-ricardo.neri-calderon@linux.intel.com
2017-10-28 04:25:36 +08:00
lib-$(CONFIG_INSTRUCTION_DECODER) += insn.o inat.o insn-eval.o
x86/mm: Refactor KASLR entropy functions Move the KASLR entropy functions into arch/x86/lib to be used in early kernel boot for KASLR memory randomization. Signed-off-by: Thomas Garnier <thgarnie@google.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Alexander Kuleshov <kuleshovmail@gmail.com> Cc: Alexander Popov <alpopov@ptsecurity.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lv Zheng <lv.zheng@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: linux-doc@vger.kernel.org Link: http://lkml.kernel.org/r/1466556426-32664-2-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-22 08:46:58 +08:00
lib-$(CONFIG_RANDOMIZE_BASE) += kaslr.o
lib-$(CONFIG_FUNCTION_ERROR_INJECTION) += error-inject.o
x86/retpoline: Add initial retpoline support Enable the use of -mindirect-branch=thunk-extern in newer GCC, and provide the corresponding thunks. Provide assembler macros for invoking the thunks in the same way that GCC does, from native and inline assembler. This adds X86_FEATURE_RETPOLINE and sets it by default on all CPUs. In some circumstances, IBRS microcode features may be used instead, and the retpoline can be disabled. On AMD CPUs if lfence is serialising, the retpoline can be dramatically simplified to a simple "lfence; jmp *\reg". A future patch, after it has been verified that lfence really is serialising in all circumstances, can enable this by setting the X86_FEATURE_RETPOLINE_AMD feature bit in addition to X86_FEATURE_RETPOLINE. Do not align the retpoline in the altinstr section, because there is no guarantee that it stays aligned when it's copied over the oldinstr during alternative patching. [ Andi Kleen: Rename the macros, add CONFIG_RETPOLINE option, export thunks] [ tglx: Put actual function CALL/JMP in front of the macros, convert to symbolic labels ] [ dwmw2: Convert back to numeric labels, merge objtool fixes ] Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515707194-20531-4-git-send-email-dwmw@amazon.co.uk
2018-01-12 05:46:25 +08:00
lib-$(CONFIG_RETPOLINE) += retpoline.o
obj-y += msr.o msr-reg.o msr-reg-export.o hweight.o
x86: re-introduce non-generic memcpy_{to,from}io This has been broken forever, and nobody ever really noticed because it's purely a performance issue. Long long ago, in commit 6175ddf06b61 ("x86: Clean up mem*io functions") Brian Gerst simplified the memory copies to and from iomem, since on x86, the instructions to access iomem are exactly the same as the regular instructions. That is technically true, and things worked, and nobody said anything. Besides, back then the regular memcpy was pretty simple and worked fine. Nobody noticed except for David Laight, that is. David has a testing a TLP monitor he was writing for an FPGA, and has been occasionally complaining about how memcpy_toio() writes things one byte at a time. Which is completely unacceptable from a performance standpoint, even if it happens to technically work. The reason it's writing one byte at a time is because while it's technically true that accesses to iomem are the same as accesses to regular memory on x86, the _granularity_ (and ordering) of accesses matter to iomem in ways that they don't matter to regular cached memory. In particular, when ERMS is set, we default to using "rep movsb" for larger memory copies. That is indeed perfectly fine for real memory, since the whole point is that the CPU is going to do cacheline optimizations and executes the memory copy efficiently for cached memory. With iomem? Not so much. With iomem, "rep movsb" will indeed work, but it will copy things one byte at a time. Slowly and ponderously. Now, originally, back in 2010 when commit 6175ddf06b61 was done, we didn't use ERMS, and this was much less noticeable. Our normal memcpy() was simpler in other ways too. Because in fact, it's not just about using the string instructions. Our memcpy() these days does things like "read and write overlapping values" to handle the last bytes of the copy. Again, for normal memory, overlapping accesses isn't an issue. For iomem? It can be. So this re-introduces the specialized memcpy_toio(), memcpy_fromio() and memset_io() functions. It doesn't particularly optimize them, but it tries to at least not be horrid, or do overlapping accesses. In fact, this uses the existing __inline_memcpy() function that we still had lying around that uses our very traditional "rep movsl" loop followed by movsw/movsb for the final bytes. Somebody may decide to try to improve on it, but if we've gone almost a decade with only one person really ever noticing and complaining, maybe it's not worth worrying about further, once it's not _completely_ broken? Reported-by: David Laight <David.Laight@aculab.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-05 09:52:49 +08:00
obj-y += iomem.o
ifeq ($(CONFIG_X86_32),y)
obj-y += atomic64_32.o
x86-32: Rewrite 32-bit atomic64 functions in assembly This patch replaces atomic64_32.c with two assembly implementations, one for 386/486 machines using pushf/cli/popf and one for 586+ machines using cmpxchg8b. The cmpxchg8b implementation provides the following advantages over the current one: 1. Implements atomic64_add_unless, atomic64_dec_if_positive and atomic64_inc_not_zero 2. Uses the ZF flag changed by cmpxchg8b instead of doing a comparison 3. Uses custom register calling conventions that reduce or eliminate register moves to suit cmpxchg8b 4. Reads the initial value instead of using cmpxchg8b to do that. Currently we use lock xaddl and movl, which seems the fastest. 5. Does not use the lock prefix for atomic64_set 64-bit writes are already atomic, so we don't need that. We still need it for atomic64_read to avoid restoring a value changed in the meantime. 6. Allocates registers as well or better than gcc The 386 implementation provides support for 386 and 486 machines. 386/486 SMP is not supported (we dropped it), but such support can be added easily if desired. A pure assembly implementation is required due to the custom calling conventions, and desire to use %ebp in atomic64_add_return (we need 7 registers...), as well as the ability to use pushf/popf in the 386 code without an intermediate pop/push. The parameter names are changed to match the convention in atomic_64.h Changes in v3 (due to rebasing to tip/x86/asm): - Patches atomic64_32.h instead of atomic_32.h - Uses the CALL alternative mechanism from commit 1b1d9258181bae199dc940f4bd0298126b9a73d9 Changes in v2: - Merged 386 and cx8 support in the same patch - 386 support now done in assembly, C code no longer used at all - cmpxchg64 is used for atomic64_cmpxchg - stop using macros, use one-line inline functions instead - miscellanous changes and improvements Signed-off-by: Luca Barbieri <luca@luca-barbieri.com> LKML-Reference: <1267005265-27958-5-git-send-email-luca@luca-barbieri.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-24 17:54:25 +08:00
lib-y += atomic64_cx8_32.o
lib-y += checksum_32.o
lib-y += strstr_32.o
lib-y += string_32.o
ifneq ($(CONFIG_X86_CMPXCHG64),y)
x86-32: Rewrite 32-bit atomic64 functions in assembly This patch replaces atomic64_32.c with two assembly implementations, one for 386/486 machines using pushf/cli/popf and one for 586+ machines using cmpxchg8b. The cmpxchg8b implementation provides the following advantages over the current one: 1. Implements atomic64_add_unless, atomic64_dec_if_positive and atomic64_inc_not_zero 2. Uses the ZF flag changed by cmpxchg8b instead of doing a comparison 3. Uses custom register calling conventions that reduce or eliminate register moves to suit cmpxchg8b 4. Reads the initial value instead of using cmpxchg8b to do that. Currently we use lock xaddl and movl, which seems the fastest. 5. Does not use the lock prefix for atomic64_set 64-bit writes are already atomic, so we don't need that. We still need it for atomic64_read to avoid restoring a value changed in the meantime. 6. Allocates registers as well or better than gcc The 386 implementation provides support for 386 and 486 machines. 386/486 SMP is not supported (we dropped it), but such support can be added easily if desired. A pure assembly implementation is required due to the custom calling conventions, and desire to use %ebp in atomic64_add_return (we need 7 registers...), as well as the ability to use pushf/popf in the 386 code without an intermediate pop/push. The parameter names are changed to match the convention in atomic_64.h Changes in v3 (due to rebasing to tip/x86/asm): - Patches atomic64_32.h instead of atomic_32.h - Uses the CALL alternative mechanism from commit 1b1d9258181bae199dc940f4bd0298126b9a73d9 Changes in v2: - Merged 386 and cx8 support in the same patch - 386 support now done in assembly, C code no longer used at all - cmpxchg64 is used for atomic64_cmpxchg - stop using macros, use one-line inline functions instead - miscellanous changes and improvements Signed-off-by: Luca Barbieri <luca@luca-barbieri.com> LKML-Reference: <1267005265-27958-5-git-send-email-luca@luca-barbieri.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-24 17:54:25 +08:00
lib-y += cmpxchg8b_emu.o atomic64_386_32.o
endif
lib-$(CONFIG_X86_USE_3DNOW) += mmx_32.o
else
obj-y += iomap_copy_64.o
lib-y += csum-partial_64.o csum-copy_64.o csum-wrappers_64.o
lib-y += clear_page_64.o copy_page_64.o
lib-y += memmove_64.o memset_64.o
lib-y += copy_user_64.o
lib-y += cmpxchg16b_emu.o
endif