linux/drivers/thermal/qcom/tsens-common.c

259 lines
6.0 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*/
#include <linux/err.h>
#include <linux/io.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include "tsens.h"
#define CAL_DEGC_PT1 30
#define CAL_DEGC_PT2 120
#define SLOPE_FACTOR 1000
#define SLOPE_DEFAULT 3200
char *qfprom_read(struct device *dev, const char *cname)
{
struct nvmem_cell *cell;
ssize_t data;
char *ret;
cell = nvmem_cell_get(dev, cname);
if (IS_ERR(cell))
return ERR_CAST(cell);
ret = nvmem_cell_read(cell, &data);
nvmem_cell_put(cell);
return ret;
}
/*
* Use this function on devices where slope and offset calculations
* depend on calibration data read from qfprom. On others the slope
* and offset values are derived from tz->tzp->slope and tz->tzp->offset
* resp.
*/
void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
u32 *p2, u32 mode)
{
int i;
int num, den;
for (i = 0; i < priv->num_sensors; i++) {
dev_dbg(priv->dev,
"sensor%d - data_point1:%#x data_point2:%#x\n",
i, p1[i], p2[i]);
priv->sensor[i].slope = SLOPE_DEFAULT;
if (mode == TWO_PT_CALIB) {
/*
* slope (m) = adc_code2 - adc_code1 (y2 - y1)/
* temp_120_degc - temp_30_degc (x2 - x1)
*/
num = p2[i] - p1[i];
num *= SLOPE_FACTOR;
den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
priv->sensor[i].slope = num / den;
}
priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
(CAL_DEGC_PT1 *
priv->sensor[i].slope);
dev_dbg(priv->dev, "offset:%d\n", priv->sensor[i].offset);
}
}
bool is_sensor_enabled(struct tsens_priv *priv, u32 hw_id)
{
u32 val;
int ret;
if ((hw_id > (priv->num_sensors - 1)) || (hw_id < 0))
return -EINVAL;
ret = regmap_field_read(priv->rf[SENSOR_EN], &val);
if (ret)
return ret;
return val & (1 << hw_id);
}
static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
{
int degc, num, den;
num = (adc_code * SLOPE_FACTOR) - s->offset;
den = s->slope;
if (num > 0)
degc = num + (den / 2);
else if (num < 0)
degc = num - (den / 2);
else
degc = num;
degc /= den;
return degc;
}
int get_temp_tsens_valid(struct tsens_priv *priv, int i, int *temp)
{
struct tsens_sensor *s = &priv->sensor[i];
u32 temp_idx = LAST_TEMP_0 + s->hw_id;
u32 valid_idx = VALID_0 + s->hw_id;
u32 last_temp = 0, valid, mask;
int ret;
ret = regmap_field_read(priv->rf[valid_idx], &valid);
if (ret)
return ret;
while (!valid) {
/* Valid bit is 0 for 6 AHB clock cycles.
* At 19.2MHz, 1 AHB clock is ~60ns.
* We should enter this loop very, very rarely.
*/
ndelay(400);
ret = regmap_field_read(priv->rf[valid_idx], &valid);
if (ret)
return ret;
}
/* Valid bit is set, OK to read the temperature */
ret = regmap_field_read(priv->rf[temp_idx], &last_temp);
if (ret)
return ret;
mask = GENMASK(priv->fields[LAST_TEMP_0].msb,
priv->fields[LAST_TEMP_0].lsb);
/* Convert temperature from deciCelsius to milliCelsius */
*temp = sign_extend32(last_temp, fls(mask) - 1) * 100;
return 0;
}
int get_temp_common(struct tsens_priv *priv, int i, int *temp)
{
struct tsens_sensor *s = &priv->sensor[i];
int last_temp = 0, ret;
ret = regmap_field_read(priv->rf[LAST_TEMP_0 + s->hw_id], &last_temp);
if (ret)
return ret;
*temp = code_to_degc(last_temp, s) * 1000;
return 0;
}
static const struct regmap_config tsens_config = {
.name = "tm",
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
static const struct regmap_config tsens_srot_config = {
.name = "srot",
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
int __init init_common(struct tsens_priv *priv)
{
void __iomem *tm_base, *srot_base;
struct device *dev = priv->dev;
struct resource *res;
u32 enabled;
int ret, i, j;
struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
if (!op)
return -EINVAL;
if (op->num_resources > 1) {
/* DT with separate SROT and TM address space */
priv->tm_offset = 0;
res = platform_get_resource(op, IORESOURCE_MEM, 1);
srot_base = devm_ioremap_resource(&op->dev, res);
if (IS_ERR(srot_base)) {
ret = PTR_ERR(srot_base);
goto err_put_device;
}
priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
&tsens_srot_config);
if (IS_ERR(priv->srot_map)) {
ret = PTR_ERR(priv->srot_map);
goto err_put_device;
}
} else {
/* old DTs where SROT and TM were in a contiguous 2K block */
priv->tm_offset = 0x1000;
}
res = platform_get_resource(op, IORESOURCE_MEM, 0);
tm_base = devm_ioremap_resource(&op->dev, res);
if (IS_ERR(tm_base)) {
ret = PTR_ERR(tm_base);
goto err_put_device;
}
priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
if (IS_ERR(priv->tm_map)) {
ret = PTR_ERR(priv->tm_map);
goto err_put_device;
}
priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
priv->fields[TSENS_EN]);
if (IS_ERR(priv->rf[TSENS_EN])) {
ret = PTR_ERR(priv->rf[TSENS_EN]);
goto err_put_device;
}
ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
if (ret)
goto err_put_device;
if (!enabled) {
dev_err(dev, "tsens device is not enabled\n");
ret = -ENODEV;
goto err_put_device;
}
priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
priv->fields[SENSOR_EN]);
if (IS_ERR(priv->rf[SENSOR_EN])) {
ret = PTR_ERR(priv->rf[SENSOR_EN]);
goto err_put_device;
}
/* now alloc regmap_fields in tm_map */
for (i = 0, j = LAST_TEMP_0; i < priv->feat->max_sensors; i++, j++) {
priv->rf[j] = devm_regmap_field_alloc(dev, priv->tm_map,
priv->fields[j]);
if (IS_ERR(priv->rf[j])) {
ret = PTR_ERR(priv->rf[j]);
goto err_put_device;
}
}
for (i = 0, j = VALID_0; i < priv->feat->max_sensors; i++, j++) {
priv->rf[j] = devm_regmap_field_alloc(dev, priv->tm_map,
priv->fields[j]);
if (IS_ERR(priv->rf[j])) {
ret = PTR_ERR(priv->rf[j]);
goto err_put_device;
}
}
return 0;
err_put_device:
put_device(&op->dev);
return ret;
}