linux/drivers/net/wireless/ath/wil6210/txrx.c

829 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/hardirq.h>
#include <net/ieee80211_radiotap.h>
#include <linux/if_arp.h>
#include <linux/moduleparam.h>
#include "wil6210.h"
#include "wmi.h"
#include "txrx.h"
static bool rtap_include_phy_info;
module_param(rtap_include_phy_info, bool, S_IRUGO);
MODULE_PARM_DESC(rtap_include_phy_info,
" Include PHY info in the radiotap header, default - no");
static inline int wil_vring_is_empty(struct vring *vring)
{
return vring->swhead == vring->swtail;
}
static inline u32 wil_vring_next_tail(struct vring *vring)
{
return (vring->swtail + 1) % vring->size;
}
static inline void wil_vring_advance_head(struct vring *vring, int n)
{
vring->swhead = (vring->swhead + n) % vring->size;
}
static inline int wil_vring_is_full(struct vring *vring)
{
return wil_vring_next_tail(vring) == vring->swhead;
}
/*
* Available space in Tx Vring
*/
static inline int wil_vring_avail_tx(struct vring *vring)
{
u32 swhead = vring->swhead;
u32 swtail = vring->swtail;
int used = (vring->size + swhead - swtail) % vring->size;
return vring->size - used - 1;
}
static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
{
struct device *dev = wil_to_dev(wil);
size_t sz = vring->size * sizeof(vring->va[0]);
uint i;
BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
vring->swhead = 0;
vring->swtail = 0;
vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
if (!vring->ctx) {
wil_err(wil, "vring_alloc [%d] failed to alloc ctx mem\n",
vring->size);
vring->va = NULL;
return -ENOMEM;
}
/*
* vring->va should be aligned on its size rounded up to power of 2
* This is granted by the dma_alloc_coherent
*/
vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
if (!vring->va) {
wil_err(wil, "vring_alloc [%d] failed to alloc DMA mem\n",
vring->size);
kfree(vring->ctx);
vring->ctx = NULL;
return -ENOMEM;
}
/* initially, all descriptors are SW owned
* For Tx and Rx, ownership bit is at the same location, thus
* we can use any
*/
for (i = 0; i < vring->size; i++) {
volatile struct vring_tx_desc *d = &(vring->va[i].tx);
d->dma.status = TX_DMA_STATUS_DU;
}
wil_dbg_MISC(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
vring->va, (unsigned long long)vring->pa, vring->ctx);
return 0;
}
static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
int tx)
{
struct device *dev = wil_to_dev(wil);
size_t sz = vring->size * sizeof(vring->va[0]);
while (!wil_vring_is_empty(vring)) {
if (tx) {
volatile struct vring_tx_desc *d =
&vring->va[vring->swtail].tx;
dma_addr_t pa = d->dma.addr_low |
((u64)d->dma.addr_high << 32);
struct sk_buff *skb = vring->ctx[vring->swtail];
if (skb) {
dma_unmap_single(dev, pa, d->dma.length,
DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
vring->ctx[vring->swtail] = NULL;
} else {
dma_unmap_page(dev, pa, d->dma.length,
DMA_TO_DEVICE);
}
vring->swtail = wil_vring_next_tail(vring);
} else { /* rx */
volatile struct vring_rx_desc *d =
&vring->va[vring->swtail].rx;
dma_addr_t pa = d->dma.addr_low |
((u64)d->dma.addr_high << 32);
struct sk_buff *skb = vring->ctx[vring->swhead];
dma_unmap_single(dev, pa, d->dma.length,
DMA_FROM_DEVICE);
kfree_skb(skb);
wil_vring_advance_head(vring, 1);
}
}
dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
kfree(vring->ctx);
vring->pa = 0;
vring->va = NULL;
vring->ctx = NULL;
}
/**
* Allocate one skb for Rx VRING
*
* Safe to call from IRQ
*/
static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
u32 i, int headroom)
{
struct device *dev = wil_to_dev(wil);
unsigned int sz = RX_BUF_LEN;
volatile struct vring_rx_desc *d = &(vring->va[i].rx);
dma_addr_t pa;
/* TODO align */
struct sk_buff *skb = dev_alloc_skb(sz + headroom);
if (unlikely(!skb))
return -ENOMEM;
skb_reserve(skb, headroom);
skb_put(skb, sz);
pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(dev, pa))) {
kfree_skb(skb);
return -ENOMEM;
}
d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
d->dma.addr_low = lower_32_bits(pa);
d->dma.addr_high = (u16)upper_32_bits(pa);
/* ip_length don't care */
/* b11 don't care */
/* error don't care */
d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
d->dma.length = sz;
vring->ctx[i] = skb;
return 0;
}
/**
* Adds radiotap header
*
* Any error indicated as "Bad FCS"
*
* Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
* - Rx descriptor: 32 bytes
* - Phy info
*/
static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
struct sk_buff *skb,
volatile struct vring_rx_desc *d)
{
struct wireless_dev *wdev = wil->wdev;
struct wil6210_rtap {
struct ieee80211_radiotap_header rthdr;
/* fields should be in the order of bits in rthdr.it_present */
/* flags */
u8 flags;
/* channel */
__le16 chnl_freq __aligned(2);
__le16 chnl_flags;
/* MCS */
u8 mcs_present;
u8 mcs_flags;
u8 mcs_index;
} __packed;
struct wil6210_rtap_vendor {
struct wil6210_rtap rtap;
/* vendor */
u8 vendor_oui[3] __aligned(2);
u8 vendor_ns;
__le16 vendor_skip;
u8 vendor_data[0];
} __packed;
struct wil6210_rtap_vendor *rtap_vendor;
int rtap_len = sizeof(struct wil6210_rtap);
int phy_length = 0; /* phy info header size, bytes */
static char phy_data[128];
struct ieee80211_channel *ch = wdev->preset_chandef.chan;
if (rtap_include_phy_info) {
rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
/* calculate additional length */
if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
/**
* PHY info starts from 8-byte boundary
* there are 8-byte lines, last line may be partially
* written (HW bug), thus FW configures for last line
* to be excessive. Driver skips this last line.
*/
int len = min_t(int, 8 + sizeof(phy_data),
wil_rxdesc_phy_length(d));
if (len > 8) {
void *p = skb_tail_pointer(skb);
void *pa = PTR_ALIGN(p, 8);
if (skb_tailroom(skb) >= len + (pa - p)) {
phy_length = len - 8;
memcpy(phy_data, pa, phy_length);
}
}
}
rtap_len += phy_length;
}
if (skb_headroom(skb) < rtap_len &&
pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
return;
}
rtap_vendor = (void *)skb_push(skb, rtap_len);
memset(rtap_vendor, 0, rtap_len);
rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
(1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL) |
(1 << IEEE80211_RADIOTAP_MCS));
if (d->dma.status & RX_DMA_STATUS_ERROR)
rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
rtap_vendor->rtap.mcs_flags = 0;
rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
if (rtap_include_phy_info) {
rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
/* OUI for Wilocity 04:ce:14 */
rtap_vendor->vendor_oui[0] = 0x04;
rtap_vendor->vendor_oui[1] = 0xce;
rtap_vendor->vendor_oui[2] = 0x14;
rtap_vendor->vendor_ns = 1;
/* Rx descriptor + PHY data */
rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
phy_length);
memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
phy_length);
}
}
/*
* Fast swap in place between 2 registers
*/
static void wil_swap_u16(u16 *a, u16 *b)
{
*a ^= *b;
*b ^= *a;
*a ^= *b;
}
static void wil_swap_ethaddr(void *data)
{
struct ethhdr *eth = data;
u16 *s = (u16 *)eth->h_source;
u16 *d = (u16 *)eth->h_dest;
wil_swap_u16(s++, d++);
wil_swap_u16(s++, d++);
wil_swap_u16(s, d);
}
/**
* reap 1 frame from @swhead
*
* Safe to call from IRQ
*/
static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
struct vring *vring)
{
struct device *dev = wil_to_dev(wil);
struct net_device *ndev = wil_to_ndev(wil);
volatile struct vring_rx_desc *d;
struct sk_buff *skb;
dma_addr_t pa;
unsigned int sz = RX_BUF_LEN;
u8 ftype;
u8 ds_bits;
if (wil_vring_is_empty(vring))
return NULL;
d = &(vring->va[vring->swhead].rx);
if (!(d->dma.status & RX_DMA_STATUS_DU)) {
/* it is not error, we just reached end of Rx done area */
return NULL;
}
pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
skb = vring->ctx[vring->swhead];
dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
skb_trim(skb, d->dma.length);
wil->stats.last_mcs_rx = wil_rxdesc_mcs(d);
/* use radiotap header only if required */
if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
wil_rx_add_radiotap_header(wil, skb, d);
wil_dbg_TXRX(wil, "Rx[%3d] : %d bytes\n", vring->swhead, d->dma.length);
wil_hex_dump_TXRX("Rx ", DUMP_PREFIX_NONE, 32, 4,
(const void *)d, sizeof(*d), false);
wil_vring_advance_head(vring, 1);
/* no extra checks if in sniffer mode */
if (ndev->type != ARPHRD_ETHER)
return skb;
/*
* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
* Driver should recognize it by frame type, that is found
* in Rx descriptor. If type is not data, it is 802.11 frame as is
*/
ftype = wil_rxdesc_ftype(d) << 2;
if (ftype != IEEE80211_FTYPE_DATA) {
wil_dbg_TXRX(wil, "Non-data frame ftype 0x%08x\n", ftype);
/* TODO: process it */
kfree_skb(skb);
return NULL;
}
if (skb->len < ETH_HLEN) {
wil_err(wil, "Short frame, len = %d\n", skb->len);
/* TODO: process it (i.e. BAR) */
kfree_skb(skb);
return NULL;
}
ds_bits = wil_rxdesc_ds_bits(d);
if (ds_bits == 1) {
/*
* HW bug - in ToDS mode, i.e. Rx on AP side,
* addresses get swapped
*/
wil_swap_ethaddr(skb->data);
}
return skb;
}
/**
* allocate and fill up to @count buffers in rx ring
* buffers posted at @swtail
*/
static int wil_rx_refill(struct wil6210_priv *wil, int count)
{
struct net_device *ndev = wil_to_ndev(wil);
struct vring *v = &wil->vring_rx;
u32 next_tail;
int rc = 0;
int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
WIL6210_RTAP_SIZE : 0;
for (; next_tail = wil_vring_next_tail(v),
(next_tail != v->swhead) && (count-- > 0);
v->swtail = next_tail) {
rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
if (rc) {
wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
rc, v->swtail);
break;
}
}
iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));
return rc;
}
/*
* Pass Rx packet to the netif. Update statistics.
*/
static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
{
int rc;
unsigned int len = skb->len;
if (in_interrupt())
rc = netif_rx(skb);
else
rc = netif_rx_ni(skb);
if (likely(rc == NET_RX_SUCCESS)) {
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += len;
} else {
ndev->stats.rx_dropped++;
}
}
/**
* Proceed all completed skb's from Rx VRING
*
* Safe to call from IRQ
*/
void wil_rx_handle(struct wil6210_priv *wil)
{
struct net_device *ndev = wil_to_ndev(wil);
struct vring *v = &wil->vring_rx;
struct sk_buff *skb;
if (!v->va) {
wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
return;
}
wil_dbg_TXRX(wil, "%s()\n", __func__);
while (NULL != (skb = wil_vring_reap_rx(wil, v))) {
wil_hex_dump_TXRX("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb_headlen(skb), false);
skb_orphan(skb);
if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
skb->dev = ndev;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
} else {
skb->protocol = eth_type_trans(skb, ndev);
}
wil_netif_rx_any(skb, ndev);
}
wil_rx_refill(wil, v->size);
}
int wil_rx_init(struct wil6210_priv *wil)
{
struct vring *vring = &wil->vring_rx;
int rc;
vring->size = WIL6210_RX_RING_SIZE;
rc = wil_vring_alloc(wil, vring);
if (rc)
return rc;
rc = wmi_rx_chain_add(wil, vring);
if (rc)
goto err_free;
rc = wil_rx_refill(wil, vring->size);
if (rc)
goto err_free;
return 0;
err_free:
wil_vring_free(wil, vring, 0);
return rc;
}
void wil_rx_fini(struct wil6210_priv *wil)
{
struct vring *vring = &wil->vring_rx;
if (vring->va) {
wmi_rx_chain_del(wil);
wil_vring_free(wil, vring, 0);
}
}
int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
int cid, int tid)
{
int rc;
struct wmi_vring_cfg_cmd cmd = {
.action = cpu_to_le32(WMI_VRING_CMD_ADD),
.vring_cfg = {
.tx_sw_ring = {
.max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
},
.ringid = id,
.cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
.mac_ctrl = 0,
.to_resolution = 0,
.agg_max_wsize = 16,
.schd_params = {
.priority = cpu_to_le16(0),
.timeslot_us = cpu_to_le16(0xfff),
},
},
};
struct {
struct wil6210_mbox_hdr_wmi wmi;
struct wmi_vring_cfg_done_event cmd;
} __packed reply;
struct vring *vring = &wil->vring_tx[id];
if (vring->va) {
wil_err(wil, "Tx ring [%d] already allocated\n", id);
rc = -EINVAL;
goto out;
}
vring->size = size;
rc = wil_vring_alloc(wil, vring);
if (rc)
goto out;
cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
cmd.vring_cfg.tx_sw_ring.ring_size = cpu_to_le16(vring->size);
rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
if (rc)
goto out_free;
if (reply.cmd.status != WMI_VRING_CFG_SUCCESS) {
wil_err(wil, "Tx config failed, status 0x%02x\n",
reply.cmd.status);
goto out_free;
}
vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
return 0;
out_free:
wil_vring_free(wil, vring, 1);
out:
return rc;
}
void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
{
struct vring *vring = &wil->vring_tx[id];
if (!vring->va)
return;
wil_vring_free(wil, vring, 1);
}
static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
struct sk_buff *skb)
{
struct vring *v = &wil->vring_tx[0];
if (v->va)
return v;
return NULL;
}
static int wil_tx_desc_map(volatile struct vring_tx_desc *d,
dma_addr_t pa, u32 len)
{
d->dma.addr_low = lower_32_bits(pa);
d->dma.addr_high = (u16)upper_32_bits(pa);
d->dma.ip_length = 0;
/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
d->dma.b11 = 0/*14 | BIT(7)*/;
d->dma.error = 0;
d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
d->dma.length = len;
d->dma.d0 = 0;
d->mac.d[0] = 0;
d->mac.d[1] = 0;
d->mac.d[2] = 0;
d->mac.ucode_cmd = 0;
/* use dst index 0 */
d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
(0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
/* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
(1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
return 0;
}
static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
struct sk_buff *skb)
{
struct device *dev = wil_to_dev(wil);
volatile struct vring_tx_desc *d;
u32 swhead = vring->swhead;
int avail = wil_vring_avail_tx(vring);
int nr_frags = skb_shinfo(skb)->nr_frags;
uint f;
int vring_index = vring - wil->vring_tx;
uint i = swhead;
dma_addr_t pa;
wil_dbg_TXRX(wil, "%s()\n", __func__);
if (avail < vring->size/8)
netif_tx_stop_all_queues(wil_to_ndev(wil));
if (avail < 1 + nr_frags) {
wil_err(wil, "Tx ring full. No space for %d fragments\n",
1 + nr_frags);
return -ENOMEM;
}
d = &(vring->va[i].tx);
/* FIXME FW can accept only unicast frames for the peer */
memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);
pa = dma_map_single(dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
wil_dbg_TXRX(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
skb->data, (unsigned long long)pa);
wil_hex_dump_TXRX("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb_headlen(skb), false);
if (unlikely(dma_mapping_error(dev, pa)))
return -EINVAL;
/* 1-st segment */
wil_tx_desc_map(d, pa, skb_headlen(skb));
d->mac.d[2] |= ((nr_frags + 1) <<
MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
/* middle segments */
for (f = 0; f < nr_frags; f++) {
const struct skb_frag_struct *frag =
&skb_shinfo(skb)->frags[f];
int len = skb_frag_size(frag);
i = (swhead + f + 1) % vring->size;
d = &(vring->va[i].tx);
pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, pa)))
goto dma_error;
wil_tx_desc_map(d, pa, len);
vring->ctx[i] = NULL;
}
/* for the last seg only */
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
d->dma.d0 |= BIT(9); /* BUG: undocumented bit */
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
wil_hex_dump_TXRX("Tx ", DUMP_PREFIX_NONE, 32, 4,
(const void *)d, sizeof(*d), false);
/* advance swhead */
wil_vring_advance_head(vring, nr_frags + 1);
wil_dbg_TXRX(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
/* hold reference to skb
* to prevent skb release before accounting
* in case of immediate "tx done"
*/
vring->ctx[i] = skb_get(skb);
return 0;
dma_error:
/* unmap what we have mapped */
/* Note: increment @f to operate with positive index */
for (f++; f > 0; f--) {
i = (swhead + f) % vring->size;
d = &(vring->va[i].tx);
d->dma.status = TX_DMA_STATUS_DU;
pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
if (vring->ctx[i])
dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
else
dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
}
return -EINVAL;
}
netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct wil6210_priv *wil = ndev_to_wil(ndev);
struct vring *vring;
int rc;
wil_dbg_TXRX(wil, "%s()\n", __func__);
if (!test_bit(wil_status_fwready, &wil->status)) {
wil_err(wil, "FW not ready\n");
goto drop;
}
if (!test_bit(wil_status_fwconnected, &wil->status)) {
wil_err(wil, "FW not connected\n");
goto drop;
}
if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
wil_err(wil, "Xmit in monitor mode not supported\n");
goto drop;
}
if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
rc = wmi_tx_eapol(wil, skb);
} else {
/* find vring */
vring = wil_find_tx_vring(wil, skb);
if (!vring) {
wil_err(wil, "No Tx VRING available\n");
goto drop;
}
/* set up vring entry */
rc = wil_tx_vring(wil, vring, skb);
}
switch (rc) {
case 0:
/* statistics will be updated on the tx_complete */
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
case -ENOMEM:
return NETDEV_TX_BUSY;
default:
; /* goto drop; */
break;
}
drop:
netif_tx_stop_all_queues(ndev);
ndev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
return NET_XMIT_DROP;
}
/**
* Clean up transmitted skb's from the Tx VRING
*
* Safe to call from IRQ
*/
void wil_tx_complete(struct wil6210_priv *wil, int ringid)
{
struct net_device *ndev = wil_to_ndev(wil);
struct device *dev = wil_to_dev(wil);
struct vring *vring = &wil->vring_tx[ringid];
if (!vring->va) {
wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
return;
}
wil_dbg_TXRX(wil, "%s(%d)\n", __func__, ringid);
while (!wil_vring_is_empty(vring)) {
volatile struct vring_tx_desc *d = &vring->va[vring->swtail].tx;
dma_addr_t pa;
struct sk_buff *skb;
if (!(d->dma.status & TX_DMA_STATUS_DU))
break;
wil_dbg_TXRX(wil,
"Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
vring->swtail, d->dma.length, d->dma.status,
d->dma.error);
wil_hex_dump_TXRX("TxC ", DUMP_PREFIX_NONE, 32, 4,
(const void *)d, sizeof(*d), false);
pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
skb = vring->ctx[vring->swtail];
if (skb) {
if (d->dma.error == 0) {
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += skb->len;
} else {
ndev->stats.tx_errors++;
}
dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
vring->ctx[vring->swtail] = NULL;
} else {
dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
}
d->dma.addr_low = 0;
d->dma.addr_high = 0;
d->dma.length = 0;
d->dma.status = TX_DMA_STATUS_DU;
vring->swtail = wil_vring_next_tail(vring);
}
if (wil_vring_avail_tx(vring) > vring->size/4)
netif_tx_wake_all_queues(wil_to_ndev(wil));
}