linux/arch/s390/include/asm/setup.h

131 lines
4.4 KiB
C
Raw Normal View History

/*
* S390 version
* Copyright IBM Corp. 1999, 2010
*/
#ifndef _ASM_S390_SETUP_H
#define _ASM_S390_SETUP_H
#include <linux/const.h>
#include <uapi/asm/setup.h>
#define PARMAREA 0x10400
/*
* Machine features detected in early.c
*/
#define MACHINE_FLAG_VM _BITUL(0)
#define MACHINE_FLAG_KVM _BITUL(1)
#define MACHINE_FLAG_LPAR _BITUL(2)
#define MACHINE_FLAG_DIAG9C _BITUL(3)
#define MACHINE_FLAG_ESOP _BITUL(4)
#define MACHINE_FLAG_IDTE _BITUL(5)
#define MACHINE_FLAG_DIAG44 _BITUL(6)
#define MACHINE_FLAG_EDAT1 _BITUL(7)
#define MACHINE_FLAG_EDAT2 _BITUL(8)
#define MACHINE_FLAG_LPP _BITUL(9)
#define MACHINE_FLAG_TOPOLOGY _BITUL(10)
#define MACHINE_FLAG_TE _BITUL(11)
#define MACHINE_FLAG_TLB_LC _BITUL(12)
#define MACHINE_FLAG_VX _BITUL(13)
#define MACHINE_FLAG_TLB_GUEST _BITUL(14)
#define MACHINE_FLAG_NX _BITUL(15)
#define MACHINE_FLAG_GS _BITUL(16)
#define MACHINE_FLAG_SCC _BITUL(17)
#define LPP_MAGIC _BITUL(31)
#define LPP_PFAULT_PID_MASK _AC(0xffffffff, UL)
#ifndef __ASSEMBLY__
#include <asm/lowcore.h>
#include <asm/types.h>
#define IPL_DEVICE (*(unsigned long *) (0x10400))
#define INITRD_START (*(unsigned long *) (0x10408))
#define INITRD_SIZE (*(unsigned long *) (0x10410))
#define OLDMEM_BASE (*(unsigned long *) (0x10418))
#define OLDMEM_SIZE (*(unsigned long *) (0x10420))
#define COMMAND_LINE ((char *) (0x10480))
extern int memory_end_set;
extern unsigned long memory_end;
extern unsigned long max_physmem_end;
extern void detect_memory_memblock(void);
#define MACHINE_IS_VM (S390_lowcore.machine_flags & MACHINE_FLAG_VM)
#define MACHINE_IS_KVM (S390_lowcore.machine_flags & MACHINE_FLAG_KVM)
#define MACHINE_IS_LPAR (S390_lowcore.machine_flags & MACHINE_FLAG_LPAR)
#define MACHINE_HAS_DIAG9C (S390_lowcore.machine_flags & MACHINE_FLAG_DIAG9C)
s390/mm: implement software dirty bits The s390 architecture is unique in respect to dirty page detection, it uses the change bit in the per-page storage key to track page modifications. All other architectures track dirty bits by means of page table entries. This property of s390 has caused numerous problems in the past, e.g. see git commit ef5d437f71afdf4a "mm: fix XFS oops due to dirty pages without buffers on s390". To avoid future issues in regard to per-page dirty bits convert s390 to a fault based software dirty bit detection mechanism. All user page table entries which are marked as clean will be hardware read-only, even if the pte is supposed to be writable. A write by the user process will trigger a protection fault which will cause the user pte to be marked as dirty and the hardware read-only bit is removed. With this change the dirty bit in the storage key is irrelevant for Linux as a host, but the storage key is still required for KVM guests. The effect is that page_test_and_clear_dirty and the related code can be removed. The referenced bit in the storage key is still used by the page_test_and_clear_young primitive to provide page age information. For page cache pages of mappings with mapping_cap_account_dirty there will not be any change in behavior as the dirty bit tracking already uses read-only ptes to control the amount of dirty pages. Only for swap cache pages and pages of mappings without mapping_cap_account_dirty there can be additional protection faults. To avoid an excessive number of additional faults the mk_pte primitive checks for PageDirty if the pgprot value allows for writes and pre-dirties the pte. That avoids all additional faults for tmpfs and shmem pages until these pages are added to the swap cache. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2012-11-07 20:17:37 +08:00
#define MACHINE_HAS_ESOP (S390_lowcore.machine_flags & MACHINE_FLAG_ESOP)
#define MACHINE_HAS_IDTE (S390_lowcore.machine_flags & MACHINE_FLAG_IDTE)
#define MACHINE_HAS_DIAG44 (S390_lowcore.machine_flags & MACHINE_FLAG_DIAG44)
#define MACHINE_HAS_EDAT1 (S390_lowcore.machine_flags & MACHINE_FLAG_EDAT1)
#define MACHINE_HAS_EDAT2 (S390_lowcore.machine_flags & MACHINE_FLAG_EDAT2)
#define MACHINE_HAS_LPP (S390_lowcore.machine_flags & MACHINE_FLAG_LPP)
#define MACHINE_HAS_TOPOLOGY (S390_lowcore.machine_flags & MACHINE_FLAG_TOPOLOGY)
#define MACHINE_HAS_TE (S390_lowcore.machine_flags & MACHINE_FLAG_TE)
#define MACHINE_HAS_TLB_LC (S390_lowcore.machine_flags & MACHINE_FLAG_TLB_LC)
#define MACHINE_HAS_VX (S390_lowcore.machine_flags & MACHINE_FLAG_VX)
#define MACHINE_HAS_TLB_GUEST (S390_lowcore.machine_flags & MACHINE_FLAG_TLB_GUEST)
#define MACHINE_HAS_NX (S390_lowcore.machine_flags & MACHINE_FLAG_NX)
s390: add a system call for guarded storage This adds a new system call to enable the use of guarded storage for user space processes. The system call takes two arguments, a command and pointer to a guarded storage control block: s390_guarded_storage(int command, struct gs_cb *gs_cb); The second argument is relevant only for the GS_SET_BC_CB command. The commands in detail: 0 - GS_ENABLE Enable the guarded storage facility for the current task. The initial content of the guarded storage control block will be all zeros. After the enablement the user space code can use load-guarded-storage-controls instruction (LGSC) to load an arbitrary control block. While a task is enabled the kernel will save and restore the current content of the guarded storage registers on context switch. 1 - GS_DISABLE Disables the use of the guarded storage facility for the current task. The kernel will cease to save and restore the content of the guarded storage registers, the task specific content of these registers is lost. 2 - GS_SET_BC_CB Set a broadcast guarded storage control block. This is called per thread and stores a specific guarded storage control block in the task struct of the current task. This control block will be used for the broadcast event GS_BROADCAST. 3 - GS_CLEAR_BC_CB Clears the broadcast guarded storage control block. The guarded- storage control block is removed from the task struct that was established by GS_SET_BC_CB. 4 - GS_BROADCAST Sends a broadcast to all thread siblings of the current task. Every sibling that has established a broadcast guarded storage control block will load this control block and will be enabled for guarded storage. The broadcast guarded storage control block is used up, a second broadcast without a refresh of the stored control block with GS_SET_BC_CB will not have any effect. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-01-26 21:10:34 +08:00
#define MACHINE_HAS_GS (S390_lowcore.machine_flags & MACHINE_FLAG_GS)
#define MACHINE_HAS_SCC (S390_lowcore.machine_flags & MACHINE_FLAG_SCC)
/*
* Console mode. Override with conmode=
*/
extern unsigned int console_mode;
extern unsigned int console_devno;
extern unsigned int console_irq;
extern char vmhalt_cmd[];
extern char vmpoff_cmd[];
#define CONSOLE_IS_UNDEFINED (console_mode == 0)
#define CONSOLE_IS_SCLP (console_mode == 1)
#define CONSOLE_IS_3215 (console_mode == 2)
#define CONSOLE_IS_3270 (console_mode == 3)
#define CONSOLE_IS_VT220 (console_mode == 4)
#define CONSOLE_IS_HVC (console_mode == 5)
#define SET_CONSOLE_SCLP do { console_mode = 1; } while (0)
#define SET_CONSOLE_3215 do { console_mode = 2; } while (0)
#define SET_CONSOLE_3270 do { console_mode = 3; } while (0)
#define SET_CONSOLE_VT220 do { console_mode = 4; } while (0)
#define SET_CONSOLE_HVC do { console_mode = 5; } while (0)
#define NSS_NAME_SIZE 8
extern char kernel_nss_name[];
#ifdef CONFIG_PFAULT
extern int pfault_init(void);
extern void pfault_fini(void);
#else /* CONFIG_PFAULT */
#define pfault_init() ({-1;})
#define pfault_fini() do { } while (0)
#endif /* CONFIG_PFAULT */
void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault);
void cmma_init(void);
void cmma_init_nodat(void);
extern void (*_machine_restart)(char *command);
extern void (*_machine_halt)(void);
extern void (*_machine_power_off)(void);
#else /* __ASSEMBLY__ */
#define IPL_DEVICE 0x10400
#define INITRD_START 0x10408
#define INITRD_SIZE 0x10410
#define OLDMEM_BASE 0x10418
#define OLDMEM_SIZE 0x10420
#define COMMAND_LINE 0x10480
#endif /* __ASSEMBLY__ */
#endif /* _ASM_S390_SETUP_H */