linux/drivers/net/wireless/ath/ath9k/init.c

870 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath9k.h"
static char *dev_info = "ath9k";
MODULE_AUTHOR("Atheros Communications");
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
module_param_named(debug, ath9k_debug, uint, 0);
MODULE_PARM_DESC(debug, "Debugging mask");
int modparam_nohwcrypt;
module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
/* We use the hw_value as an index into our private channel structure */
#define CHAN2G(_freq, _idx) { \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 20, \
}
#define CHAN5G(_freq, _idx) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 20, \
}
/* Some 2 GHz radios are actually tunable on 2312-2732
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static struct ieee80211_channel ath9k_2ghz_chantable[] = {
CHAN2G(2412, 0), /* Channel 1 */
CHAN2G(2417, 1), /* Channel 2 */
CHAN2G(2422, 2), /* Channel 3 */
CHAN2G(2427, 3), /* Channel 4 */
CHAN2G(2432, 4), /* Channel 5 */
CHAN2G(2437, 5), /* Channel 6 */
CHAN2G(2442, 6), /* Channel 7 */
CHAN2G(2447, 7), /* Channel 8 */
CHAN2G(2452, 8), /* Channel 9 */
CHAN2G(2457, 9), /* Channel 10 */
CHAN2G(2462, 10), /* Channel 11 */
CHAN2G(2467, 11), /* Channel 12 */
CHAN2G(2472, 12), /* Channel 13 */
CHAN2G(2484, 13), /* Channel 14 */
};
/* Some 5 GHz radios are actually tunable on XXXX-YYYY
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static struct ieee80211_channel ath9k_5ghz_chantable[] = {
/* _We_ call this UNII 1 */
CHAN5G(5180, 14), /* Channel 36 */
CHAN5G(5200, 15), /* Channel 40 */
CHAN5G(5220, 16), /* Channel 44 */
CHAN5G(5240, 17), /* Channel 48 */
/* _We_ call this UNII 2 */
CHAN5G(5260, 18), /* Channel 52 */
CHAN5G(5280, 19), /* Channel 56 */
CHAN5G(5300, 20), /* Channel 60 */
CHAN5G(5320, 21), /* Channel 64 */
/* _We_ call this "Middle band" */
CHAN5G(5500, 22), /* Channel 100 */
CHAN5G(5520, 23), /* Channel 104 */
CHAN5G(5540, 24), /* Channel 108 */
CHAN5G(5560, 25), /* Channel 112 */
CHAN5G(5580, 26), /* Channel 116 */
CHAN5G(5600, 27), /* Channel 120 */
CHAN5G(5620, 28), /* Channel 124 */
CHAN5G(5640, 29), /* Channel 128 */
CHAN5G(5660, 30), /* Channel 132 */
CHAN5G(5680, 31), /* Channel 136 */
CHAN5G(5700, 32), /* Channel 140 */
/* _We_ call this UNII 3 */
CHAN5G(5745, 33), /* Channel 149 */
CHAN5G(5765, 34), /* Channel 153 */
CHAN5G(5785, 35), /* Channel 157 */
CHAN5G(5805, 36), /* Channel 161 */
CHAN5G(5825, 37), /* Channel 165 */
};
/* Atheros hardware rate code addition for short premble */
#define SHPCHECK(__hw_rate, __flags) \
((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
#define RATE(_bitrate, _hw_rate, _flags) { \
.bitrate = (_bitrate), \
.flags = (_flags), \
.hw_value = (_hw_rate), \
.hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
}
static struct ieee80211_rate ath9k_legacy_rates[] = {
RATE(10, 0x1b, 0),
RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(60, 0x0b, 0),
RATE(90, 0x0f, 0),
RATE(120, 0x0a, 0),
RATE(180, 0x0e, 0),
RATE(240, 0x09, 0),
RATE(360, 0x0d, 0),
RATE(480, 0x08, 0),
RATE(540, 0x0c, 0),
};
static void ath9k_deinit_softc(struct ath_softc *sc);
/*
* Read and write, they both share the same lock. We do this to serialize
* reads and writes on Atheros 802.11n PCI devices only. This is required
* as the FIFO on these devices can only accept sanely 2 requests.
*/
static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
unsigned long flags;
spin_lock_irqsave(&sc->sc_serial_rw, flags);
iowrite32(val, sc->mem + reg_offset);
spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
} else
iowrite32(val, sc->mem + reg_offset);
}
static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
{
struct ath_hw *ah = (struct ath_hw *) hw_priv;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_softc *sc = (struct ath_softc *) common->priv;
u32 val;
if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
unsigned long flags;
spin_lock_irqsave(&sc->sc_serial_rw, flags);
val = ioread32(sc->mem + reg_offset);
spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
} else
val = ioread32(sc->mem + reg_offset);
return val;
}
static const struct ath_ops ath9k_common_ops = {
.read = ath9k_ioread32,
.write = ath9k_iowrite32,
};
/**************************/
/* Initialization */
/**************************/
static void setup_ht_cap(struct ath_softc *sc,
struct ieee80211_sta_ht_cap *ht_info)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u8 tx_streams, rx_streams;
ht_info->ht_supported = true;
ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SM_PS |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_DSSSCCK40;
ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
/* set up supported mcs set */
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ?
1 : 2;
rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ?
1 : 2;
if (tx_streams != rx_streams) {
ath_print(common, ATH_DBG_CONFIG,
"TX streams %d, RX streams: %d\n",
tx_streams, rx_streams);
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
ht_info->mcs.tx_params |= ((tx_streams - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
}
ht_info->mcs.rx_mask[0] = 0xff;
if (rx_streams >= 2)
ht_info->mcs.rx_mask[1] = 0xff;
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
}
static int ath9k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
return ath_reg_notifier_apply(wiphy, request, reg);
}
/*
* This function will allocate both the DMA descriptor structure, and the
* buffers it contains. These are used to contain the descriptors used
* by the system.
*/
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
struct list_head *head, const char *name,
int nbuf, int ndesc, bool is_tx)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u8 *ds;
struct ath_buf *bf;
int i, bsize, error, desc_len;
ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
name, nbuf, ndesc);
INIT_LIST_HEAD(head);
if (is_tx)
desc_len = sc->sc_ah->caps.tx_desc_len;
else
desc_len = sizeof(struct ath_desc);
/* ath_desc must be a multiple of DWORDs */
if ((desc_len % 4) != 0) {
ath_print(common, ATH_DBG_FATAL,
"ath_desc not DWORD aligned\n");
BUG_ON((desc_len % 4) != 0);
error = -ENOMEM;
goto fail;
}
dd->dd_desc_len = desc_len * nbuf * ndesc;
/*
* Need additional DMA memory because we can't use
* descriptors that cross the 4K page boundary. Assume
* one skipped descriptor per 4K page.
*/
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
u32 ndesc_skipped =
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
u32 dma_len;
while (ndesc_skipped) {
dma_len = ndesc_skipped * desc_len;
dd->dd_desc_len += dma_len;
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
};
}
/* allocate descriptors */
dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_KERNEL);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
ds = (u8 *) dd->dd_desc;
ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = kzalloc(bsize, GFP_KERNEL);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
dd->dd_bufptr = bf;
for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (!(sc->sc_ah->caps.hw_caps &
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
/*
* Skip descriptor addresses which can cause 4KB
* boundary crossing (addr + length) with a 32 dword
* descriptor fetch.
*/
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
BUG_ON((caddr_t) bf->bf_desc >=
((caddr_t) dd->dd_desc +
dd->dd_desc_len));
ds += (desc_len * ndesc);
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
list_add_tail(&bf->list, head);
}
return 0;
fail2:
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
fail:
memset(dd, 0, sizeof(*dd));
return error;
#undef ATH_DESC_4KB_BOUND_CHECK
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
#undef DS2PHYS
}
static void ath9k_init_crypto(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int i = 0;
/* Get the hardware key cache size. */
common->keymax = sc->sc_ah->caps.keycache_size;
if (common->keymax > ATH_KEYMAX) {
ath_print(common, ATH_DBG_ANY,
"Warning, using only %u entries in %u key cache\n",
ATH_KEYMAX, common->keymax);
common->keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < common->keymax; i++)
ath9k_hw_keyreset(sc->sc_ah, (u16) i);
if (ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)) {
/*
* Whether we should enable h/w TKIP MIC.
* XXX: if we don't support WME TKIP MIC, then we wouldn't
* report WMM capable, so it's always safe to turn on
* TKIP MIC in this case.
*/
ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC, 0, 1, NULL);
}
/*
* Check whether the separate key cache entries
* are required to handle both tx+rx MIC keys.
* With split mic keys the number of stations is limited
* to 27 otherwise 59.
*/
if (ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)
&& ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_MIC, NULL)
&& ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_TKIP_SPLIT,
0, NULL))
common->splitmic = 1;
/* turn on mcast key search if possible */
if (!ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
(void)ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_MCAST_KEYSRCH,
1, 1, NULL);
}
static int ath9k_init_btcoex(struct ath_softc *sc)
{
int r, qnum;
switch (sc->sc_ah->btcoex_hw.scheme) {
case ATH_BTCOEX_CFG_NONE:
break;
case ATH_BTCOEX_CFG_2WIRE:
ath9k_hw_btcoex_init_2wire(sc->sc_ah);
break;
case ATH_BTCOEX_CFG_3WIRE:
ath9k_hw_btcoex_init_3wire(sc->sc_ah);
r = ath_init_btcoex_timer(sc);
if (r)
return -1;
qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
ath9k_hw_init_btcoex_hw(sc->sc_ah, qnum);
sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
break;
default:
WARN_ON(1);
break;
}
return 0;
}
static int ath9k_init_queues(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int i = 0;
for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
sc->tx.hwq_map[i] = -1;
sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
if (sc->beacon.beaconq == -1) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup a beacon xmit queue\n");
goto err;
}
sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
if (sc->beacon.cabq == NULL) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup CAB xmit queue\n");
goto err;
}
sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
ath_cabq_update(sc);
if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup xmit queue for BK traffic\n");
goto err;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup xmit queue for BE traffic\n");
goto err;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup xmit queue for VI traffic\n");
goto err;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
ath_print(common, ATH_DBG_FATAL,
"Unable to setup xmit queue for VO traffic\n");
goto err;
}
return 0;
err:
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
return -EIO;
}
static void ath9k_init_channels_rates(struct ath_softc *sc)
{
if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes)) {
sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
ARRAY_SIZE(ath9k_2ghz_chantable);
sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
ARRAY_SIZE(ath9k_legacy_rates);
}
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
ARRAY_SIZE(ath9k_5ghz_chantable);
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
ath9k_legacy_rates + 4;
sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
ARRAY_SIZE(ath9k_legacy_rates) - 4;
}
}
static void ath9k_init_misc(struct ath_softc *sc)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int i = 0;
common->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
sc->config.txpowlimit = ATH_TXPOWER_MAX;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
sc->sc_flags |= SC_OP_TXAGGR;
sc->sc_flags |= SC_OP_RXAGGR;
}
common->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
common->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
ath9k_hw_set_diversity(sc->sc_ah, true);
sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
sc->beacon.slottime = ATH9K_SLOT_TIME_9;
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
sc->beacon.bslot[i] = NULL;
sc->beacon.bslot_aphy[i] = NULL;
}
}
static int ath9k_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
const struct ath_bus_ops *bus_ops)
{
struct ath_hw *ah = NULL;
struct ath_common *common;
int ret = 0, i;
int csz = 0;
ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
if (!ah)
return -ENOMEM;
ah->hw_version.devid = devid;
ah->hw_version.subsysid = subsysid;
sc->sc_ah = ah;
common = ath9k_hw_common(ah);
common->ops = &ath9k_common_ops;
common->bus_ops = bus_ops;
common->ah = ah;
common->hw = sc->hw;
common->priv = sc;
common->debug_mask = ath9k_debug;
spin_lock_init(&sc->wiphy_lock);
spin_lock_init(&sc->sc_resetlock);
spin_lock_init(&sc->sc_serial_rw);
spin_lock_init(&sc->sc_pm_lock);
mutex_init(&sc->mutex);
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
(unsigned long)sc);
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
ath_read_cachesize(common, &csz);
common->cachelsz = csz << 2; /* convert to bytes */
/* Initializes the hardware for all supported chipsets */
ret = ath9k_hw_init(ah);
if (ret)
goto err_hw;
ret = ath9k_init_debug(ah);
if (ret) {
ath_print(common, ATH_DBG_FATAL,
"Unable to create debugfs files\n");
goto err_debug;
}
ret = ath9k_init_queues(sc);
if (ret)
goto err_queues;
ret = ath9k_init_btcoex(sc);
if (ret)
goto err_btcoex;
ath9k_init_crypto(sc);
ath9k_init_channels_rates(sc);
ath9k_init_misc(sc);
return 0;
err_btcoex:
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
err_queues:
ath9k_exit_debug(ah);
err_debug:
ath9k_hw_deinit(ah);
err_hw:
tasklet_kill(&sc->intr_tq);
tasklet_kill(&sc->bcon_tasklet);
kfree(ah);
sc->sc_ah = NULL;
return ret;
}
void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
{
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK |
IEEE80211_HW_SPECTRUM_MGMT |
IEEE80211_HW_REPORTS_TX_ACK_STATUS;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
hw->flags |= IEEE80211_HW_MFP_CAPABLE;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT);
hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
hw->queues = 4;
hw->max_rates = 4;
hw->channel_change_time = 5000;
hw->max_listen_interval = 10;
hw->max_rate_tries = 10;
hw->sta_data_size = sizeof(struct ath_node);
hw->vif_data_size = sizeof(struct ath_vif);
hw->rate_control_algorithm = "ath9k_rate_control";
if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes))
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&sc->sbands[IEEE80211_BAND_2GHZ];
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&sc->sbands[IEEE80211_BAND_5GHZ];
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes))
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
}
SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
}
int ath9k_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
const struct ath_bus_ops *bus_ops)
{
struct ieee80211_hw *hw = sc->hw;
struct ath_common *common;
struct ath_hw *ah;
int error = 0;
struct ath_regulatory *reg;
/* Bring up device */
error = ath9k_init_softc(devid, sc, subsysid, bus_ops);
if (error != 0)
goto error_init;
ah = sc->sc_ah;
common = ath9k_hw_common(ah);
ath9k_set_hw_capab(sc, hw);
/* Initialize regulatory */
error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
ath9k_reg_notifier);
if (error)
goto error_regd;
reg = &common->regulatory;
/* Setup TX DMA */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto error_tx;
/* Setup RX DMA */
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto error_rx;
/* Register with mac80211 */
error = ieee80211_register_hw(hw);
if (error)
goto error_register;
/* Handle world regulatory */
if (!ath_is_world_regd(reg)) {
error = regulatory_hint(hw->wiphy, reg->alpha2);
if (error)
goto error_world;
}
INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
sc->wiphy_scheduler_int = msecs_to_jiffies(500);
ath_init_leds(sc);
ath_start_rfkill_poll(sc);
return 0;
error_world:
ieee80211_unregister_hw(hw);
error_register:
ath_rx_cleanup(sc);
error_rx:
ath_tx_cleanup(sc);
error_tx:
/* Nothing */
error_regd:
ath9k_deinit_softc(sc);
error_init:
return error;
}
/*****************************/
/* De-Initialization */
/*****************************/
static void ath9k_deinit_softc(struct ath_softc *sc)
{
int i = 0;
if ((sc->btcoex.no_stomp_timer) &&
sc->sc_ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
ath_gen_timer_free(sc->sc_ah, sc->btcoex.no_stomp_timer);
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
ath9k_exit_debug(sc->sc_ah);
ath9k_hw_deinit(sc->sc_ah);
tasklet_kill(&sc->intr_tq);
tasklet_kill(&sc->bcon_tasklet);
kfree(sc->sc_ah);
sc->sc_ah = NULL;
}
void ath9k_deinit_device(struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
int i = 0;
ath9k_ps_wakeup(sc);
wiphy_rfkill_stop_polling(sc->hw->wiphy);
ath_deinit_leds(sc);
for (i = 0; i < sc->num_sec_wiphy; i++) {
struct ath_wiphy *aphy = sc->sec_wiphy[i];
if (aphy == NULL)
continue;
sc->sec_wiphy[i] = NULL;
ieee80211_unregister_hw(aphy->hw);
ieee80211_free_hw(aphy->hw);
}
kfree(sc->sec_wiphy);
ieee80211_unregister_hw(hw);
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
ath9k_deinit_softc(sc);
}
void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head)
{
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
INIT_LIST_HEAD(head);
kfree(dd->dd_bufptr);
memset(dd, 0, sizeof(*dd));
}
/************************/
/* Module Hooks */
/************************/
static int __init ath9k_init(void)
{
int error;
/* Register rate control algorithm */
error = ath_rate_control_register();
if (error != 0) {
printk(KERN_ERR
"ath9k: Unable to register rate control "
"algorithm: %d\n",
error);
goto err_out;
}
error = ath9k_debug_create_root();
if (error) {
printk(KERN_ERR
"ath9k: Unable to create debugfs root: %d\n",
error);
goto err_rate_unregister;
}
error = ath_pci_init();
if (error < 0) {
printk(KERN_ERR
"ath9k: No PCI devices found, driver not installed.\n");
error = -ENODEV;
goto err_remove_root;
}
error = ath_ahb_init();
if (error < 0) {
error = -ENODEV;
goto err_pci_exit;
}
return 0;
err_pci_exit:
ath_pci_exit();
err_remove_root:
ath9k_debug_remove_root();
err_rate_unregister:
ath_rate_control_unregister();
err_out:
return error;
}
module_init(ath9k_init);
static void __exit ath9k_exit(void)
{
ath_ahb_exit();
ath_pci_exit();
ath9k_debug_remove_root();
ath_rate_control_unregister();
printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
}
module_exit(ath9k_exit);