linux/drivers/misc/cxl/native.c

1601 lines
44 KiB
C
Raw Normal View History

/*
* Copyright 2014 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <asm/synch.h>
#include <asm/switch_to.h>
#include <misc/cxl-base.h>
#include "cxl.h"
#include "trace.h"
cxl: Fix bug where AFU disable operation had no effect The AFU disable operation has a bug where it will not clear the enable bit and therefore will have no effect. To date this has likely been masked by fact that we perform an AFU reset before the disable, which also has the effect of clearing the enable bit, making the following disable operation effectively a noop on most hardware. This patch modifies the afu_control function to take a parameter to clear from the AFU control register so that the disable operation can clear the appropriate bit. This bug was uncovered on the Mellanox CX4, which uses an XSL rather than a PSL. On the XSL the reset operation will not complete while the AFU is enabled, meaning the enable bit was still set at the start of the disable and as a result this bug was hit and the disable also timed out. Because of this difference in behaviour between the PSL and XSL, this patch now makes the reset dependent on the card using a PSL to avoid waiting for a timeout on the XSL. It is entirely possible that we may be able to drop the reset altogether if it turns out we only ever needed it due to this bug - however I am not willing to drop it without further regression testing and have added comments to the code explaining the background. This also fixes a small issue where the AFU_Cntl register was read outside of the lock that protects it. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-01 00:50:40 +08:00
static int afu_control(struct cxl_afu *afu, u64 command, u64 clear,
u64 result, u64 mask, bool enabled)
{
cxl: Fix bug where AFU disable operation had no effect The AFU disable operation has a bug where it will not clear the enable bit and therefore will have no effect. To date this has likely been masked by fact that we perform an AFU reset before the disable, which also has the effect of clearing the enable bit, making the following disable operation effectively a noop on most hardware. This patch modifies the afu_control function to take a parameter to clear from the AFU control register so that the disable operation can clear the appropriate bit. This bug was uncovered on the Mellanox CX4, which uses an XSL rather than a PSL. On the XSL the reset operation will not complete while the AFU is enabled, meaning the enable bit was still set at the start of the disable and as a result this bug was hit and the disable also timed out. Because of this difference in behaviour between the PSL and XSL, this patch now makes the reset dependent on the card using a PSL to avoid waiting for a timeout on the XSL. It is entirely possible that we may be able to drop the reset altogether if it turns out we only ever needed it due to this bug - however I am not willing to drop it without further regression testing and have added comments to the code explaining the background. This also fixes a small issue where the AFU_Cntl register was read outside of the lock that protects it. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-01 00:50:40 +08:00
u64 AFU_Cntl;
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
int rc = 0;
spin_lock(&afu->afu_cntl_lock);
pr_devel("AFU command starting: %llx\n", command);
trace_cxl_afu_ctrl(afu, command);
cxl: Fix bug where AFU disable operation had no effect The AFU disable operation has a bug where it will not clear the enable bit and therefore will have no effect. To date this has likely been masked by fact that we perform an AFU reset before the disable, which also has the effect of clearing the enable bit, making the following disable operation effectively a noop on most hardware. This patch modifies the afu_control function to take a parameter to clear from the AFU control register so that the disable operation can clear the appropriate bit. This bug was uncovered on the Mellanox CX4, which uses an XSL rather than a PSL. On the XSL the reset operation will not complete while the AFU is enabled, meaning the enable bit was still set at the start of the disable and as a result this bug was hit and the disable also timed out. Because of this difference in behaviour between the PSL and XSL, this patch now makes the reset dependent on the card using a PSL to avoid waiting for a timeout on the XSL. It is entirely possible that we may be able to drop the reset altogether if it turns out we only ever needed it due to this bug - however I am not willing to drop it without further regression testing and have added comments to the code explaining the background. This also fixes a small issue where the AFU_Cntl register was read outside of the lock that protects it. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-01 00:50:40 +08:00
AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
cxl_p2n_write(afu, CXL_AFU_Cntl_An, (AFU_Cntl & ~clear) | command);
AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
while ((AFU_Cntl & mask) != result) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&afu->dev, "WARNING: AFU control timed out!\n");
rc = -EBUSY;
goto out;
}
if (!cxl_ops->link_ok(afu->adapter, afu)) {
afu->enabled = enabled;
rc = -EIO;
goto out;
}
pr_devel_ratelimited("AFU control... (0x%016llx)\n",
AFU_Cntl | command);
cpu_relax();
AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
}
if (AFU_Cntl & CXL_AFU_Cntl_An_RA) {
/*
* Workaround for a bug in the XSL used in the Mellanox CX4
* that fails to clear the RA bit after an AFU reset,
* preventing subsequent AFU resets from working.
*/
cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl & ~CXL_AFU_Cntl_An_RA);
}
pr_devel("AFU command complete: %llx\n", command);
afu->enabled = enabled;
out:
trace_cxl_afu_ctrl_done(afu, command, rc);
spin_unlock(&afu->afu_cntl_lock);
return rc;
}
static int afu_enable(struct cxl_afu *afu)
{
pr_devel("AFU enable request\n");
cxl: Fix bug where AFU disable operation had no effect The AFU disable operation has a bug where it will not clear the enable bit and therefore will have no effect. To date this has likely been masked by fact that we perform an AFU reset before the disable, which also has the effect of clearing the enable bit, making the following disable operation effectively a noop on most hardware. This patch modifies the afu_control function to take a parameter to clear from the AFU control register so that the disable operation can clear the appropriate bit. This bug was uncovered on the Mellanox CX4, which uses an XSL rather than a PSL. On the XSL the reset operation will not complete while the AFU is enabled, meaning the enable bit was still set at the start of the disable and as a result this bug was hit and the disable also timed out. Because of this difference in behaviour between the PSL and XSL, this patch now makes the reset dependent on the card using a PSL to avoid waiting for a timeout on the XSL. It is entirely possible that we may be able to drop the reset altogether if it turns out we only ever needed it due to this bug - however I am not willing to drop it without further regression testing and have added comments to the code explaining the background. This also fixes a small issue where the AFU_Cntl register was read outside of the lock that protects it. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-01 00:50:40 +08:00
return afu_control(afu, CXL_AFU_Cntl_An_E, 0,
CXL_AFU_Cntl_An_ES_Enabled,
CXL_AFU_Cntl_An_ES_MASK, true);
}
int cxl_afu_disable(struct cxl_afu *afu)
{
pr_devel("AFU disable request\n");
cxl: Fix bug where AFU disable operation had no effect The AFU disable operation has a bug where it will not clear the enable bit and therefore will have no effect. To date this has likely been masked by fact that we perform an AFU reset before the disable, which also has the effect of clearing the enable bit, making the following disable operation effectively a noop on most hardware. This patch modifies the afu_control function to take a parameter to clear from the AFU control register so that the disable operation can clear the appropriate bit. This bug was uncovered on the Mellanox CX4, which uses an XSL rather than a PSL. On the XSL the reset operation will not complete while the AFU is enabled, meaning the enable bit was still set at the start of the disable and as a result this bug was hit and the disable also timed out. Because of this difference in behaviour between the PSL and XSL, this patch now makes the reset dependent on the card using a PSL to avoid waiting for a timeout on the XSL. It is entirely possible that we may be able to drop the reset altogether if it turns out we only ever needed it due to this bug - however I am not willing to drop it without further regression testing and have added comments to the code explaining the background. This also fixes a small issue where the AFU_Cntl register was read outside of the lock that protects it. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-01 00:50:40 +08:00
return afu_control(afu, 0, CXL_AFU_Cntl_An_E,
CXL_AFU_Cntl_An_ES_Disabled,
CXL_AFU_Cntl_An_ES_MASK, false);
}
/* This will disable as well as reset */
static int native_afu_reset(struct cxl_afu *afu)
{
int rc;
u64 serr;
pr_devel("AFU reset request\n");
rc = afu_control(afu, CXL_AFU_Cntl_An_RA, 0,
CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled,
CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK,
false);
/*
* Re-enable any masked interrupts when the AFU is not
* activated to avoid side effects after attaching a process
* in dedicated mode.
*/
if (afu->current_mode == 0) {
serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
serr &= ~CXL_PSL_SERR_An_IRQ_MASKS;
cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
}
return rc;
}
static int native_afu_check_and_enable(struct cxl_afu *afu)
{
if (!cxl_ops->link_ok(afu->adapter, afu)) {
WARN(1, "Refusing to enable afu while link down!\n");
return -EIO;
}
if (afu->enabled)
return 0;
return afu_enable(afu);
}
int cxl_psl_purge(struct cxl_afu *afu)
{
u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
u64 dsisr, dar;
u64 start, end;
u64 trans_fault = 0x0ULL;
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
int rc = 0;
trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc);
pr_devel("PSL purge request\n");
if (cxl_is_power8())
trans_fault = CXL_PSL_DSISR_TRANS;
if (cxl_is_power9())
trans_fault = CXL_PSL9_DSISR_An_TF;
if (!cxl_ops->link_ok(afu->adapter, afu)) {
dev_warn(&afu->dev, "PSL Purge called with link down, ignoring\n");
rc = -EIO;
goto out;
}
if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) {
WARN(1, "psl_purge request while AFU not disabled!\n");
cxl_afu_disable(afu);
}
cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
PSL_CNTL | CXL_PSL_SCNTL_An_Pc);
start = local_clock();
PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
while ((PSL_CNTL & CXL_PSL_SCNTL_An_Ps_MASK)
== CXL_PSL_SCNTL_An_Ps_Pending) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n");
rc = -EBUSY;
goto out;
}
if (!cxl_ops->link_ok(afu->adapter, afu)) {
rc = -EIO;
goto out;
}
dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx PSL_DSISR: 0x%016llx\n",
PSL_CNTL, dsisr);
if (dsisr & trans_fault) {
dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n",
dsisr, dar);
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
} else if (dsisr) {
dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n",
dsisr);
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
} else {
cpu_relax();
}
PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
}
end = local_clock();
pr_devel("PSL purged in %lld ns\n", end - start);
cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc);
out:
trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc);
return rc;
}
static int spa_max_procs(int spa_size)
{
/*
* From the CAIA:
* end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255
* Most of that junk is really just an overly-complicated way of saying
* the last 256 bytes are __aligned(128), so it's really:
* end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255
* and
* end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1
* so
* sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256
* Ignore the alignment (which is safe in this case as long as we are
* careful with our rounding) and solve for n:
*/
return ((spa_size / 8) - 96) / 17;
}
static int cxl_alloc_spa(struct cxl_afu *afu, int mode)
{
unsigned spa_size;
/* Work out how many pages to allocate */
afu->native->spa_order = -1;
do {
afu->native->spa_order++;
spa_size = (1 << afu->native->spa_order) * PAGE_SIZE;
if (spa_size > 0x100000) {
dev_warn(&afu->dev, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n",
afu->native->spa_max_procs, afu->native->spa_size);
if (mode != CXL_MODE_DEDICATED)
afu->num_procs = afu->native->spa_max_procs;
break;
}
afu->native->spa_size = spa_size;
afu->native->spa_max_procs = spa_max_procs(afu->native->spa_size);
} while (afu->native->spa_max_procs < afu->num_procs);
if (!(afu->native->spa = (struct cxl_process_element *)
__get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->native->spa_order))) {
pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n");
return -ENOMEM;
}
pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n",
1<<afu->native->spa_order, afu->native->spa_max_procs, afu->num_procs);
return 0;
}
static void attach_spa(struct cxl_afu *afu)
{
u64 spap;
afu->native->sw_command_status = (__be64 *)((char *)afu->native->spa +
((afu->native->spa_max_procs + 3) * 128));
spap = virt_to_phys(afu->native->spa) & CXL_PSL_SPAP_Addr;
spap |= ((afu->native->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size;
spap |= CXL_PSL_SPAP_V;
pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n",
afu->native->spa, afu->native->spa_max_procs,
afu->native->sw_command_status, spap);
cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap);
}
static inline void detach_spa(struct cxl_afu *afu)
{
cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0);
}
void cxl_release_spa(struct cxl_afu *afu)
{
if (afu->native->spa) {
free_pages((unsigned long) afu->native->spa,
afu->native->spa_order);
afu->native->spa = NULL;
}
}
/*
* Invalidation of all ERAT entries is no longer required by CAIA2. Use
* only for debug.
*/
int cxl_invalidate_all_psl9(struct cxl *adapter)
{
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
u64 ierat;
pr_devel("CXL adapter - invalidation of all ERAT entries\n");
/* Invalidates all ERAT entries for Radix or HPT */
ierat = CXL_XSL9_IERAT_IALL;
if (radix_enabled())
ierat |= CXL_XSL9_IERAT_INVR;
cxl_p1_write(adapter, CXL_XSL9_IERAT, ierat);
while (cxl_p1_read(adapter, CXL_XSL9_IERAT) & CXL_XSL9_IERAT_IINPROG) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&adapter->dev,
"WARNING: CXL adapter invalidation of all ERAT entries timed out!\n");
return -EBUSY;
}
if (!cxl_ops->link_ok(adapter, NULL))
return -EIO;
cpu_relax();
}
return 0;
}
int cxl_invalidate_all_psl8(struct cxl *adapter)
{
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
pr_devel("CXL adapter wide TLBIA & SLBIA\n");
cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A);
cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL);
while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n");
return -EBUSY;
}
if (!cxl_ops->link_ok(adapter, NULL))
return -EIO;
cpu_relax();
}
cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL);
while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n");
return -EBUSY;
}
if (!cxl_ops->link_ok(adapter, NULL))
return -EIO;
cpu_relax();
}
return 0;
}
int cxl_data_cache_flush(struct cxl *adapter)
{
u64 reg;
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
/*
* Do a datacache flush only if datacache is available.
* In case of PSL9D datacache absent hence flush operation.
* would timeout.
*/
if (adapter->native->no_data_cache) {
pr_devel("No PSL data cache. Ignoring cache flush req.\n");
return 0;
}
pr_devel("Flushing data cache\n");
reg = cxl_p1_read(adapter, CXL_PSL_Control);
reg |= CXL_PSL_Control_Fr;
cxl_p1_write(adapter, CXL_PSL_Control, reg);
reg = cxl_p1_read(adapter, CXL_PSL_Control);
while ((reg & CXL_PSL_Control_Fs_MASK) != CXL_PSL_Control_Fs_Complete) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&adapter->dev, "WARNING: cache flush timed out!\n");
return -EBUSY;
}
if (!cxl_ops->link_ok(adapter, NULL)) {
dev_warn(&adapter->dev, "WARNING: link down when flushing cache\n");
return -EIO;
}
cpu_relax();
reg = cxl_p1_read(adapter, CXL_PSL_Control);
}
reg &= ~CXL_PSL_Control_Fr;
cxl_p1_write(adapter, CXL_PSL_Control, reg);
return 0;
}
static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1)
{
int rc;
/* 1. Disable SSTP by writing 0 to SSTP1[V] */
cxl_p2n_write(afu, CXL_SSTP1_An, 0);
/* 2. Invalidate all SLB entries */
if ((rc = cxl_afu_slbia(afu)))
return rc;
/* 3. Set SSTP0_An */
cxl_p2n_write(afu, CXL_SSTP0_An, sstp0);
/* 4. Set SSTP1_An */
cxl_p2n_write(afu, CXL_SSTP1_An, sstp1);
return 0;
}
/* Using per slice version may improve performance here. (ie. SLBIA_An) */
static void slb_invalid(struct cxl_context *ctx)
{
struct cxl *adapter = ctx->afu->adapter;
u64 slbia;
WARN_ON(!mutex_is_locked(&ctx->afu->native->spa_mutex));
cxl_p1_write(adapter, CXL_PSL_LBISEL,
((u64)be32_to_cpu(ctx->elem->common.pid) << 32) |
be32_to_cpu(ctx->elem->lpid));
cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID);
while (1) {
if (!cxl_ops->link_ok(adapter, NULL))
break;
slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA);
if (!(slbia & CXL_TLB_SLB_P))
break;
cpu_relax();
}
}
static int do_process_element_cmd(struct cxl_context *ctx,
u64 cmd, u64 pe_state)
{
u64 state;
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
int rc = 0;
trace_cxl_llcmd(ctx, cmd);
WARN_ON(!ctx->afu->enabled);
ctx->elem->software_state = cpu_to_be32(pe_state);
smp_wmb();
*(ctx->afu->native->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe);
smp_mb();
cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe);
while (1) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n");
rc = -EBUSY;
goto out;
}
if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) {
dev_warn(&ctx->afu->dev, "WARNING: Device link down, aborting Process Element Command!\n");
rc = -EIO;
goto out;
}
state = be64_to_cpup(ctx->afu->native->sw_command_status);
if (state == ~0ULL) {
pr_err("cxl: Error adding process element to AFU\n");
rc = -1;
goto out;
}
if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK | CXL_SPA_SW_LINK_MASK)) ==
(cmd | (cmd >> 16) | ctx->pe))
break;
/*
* The command won't finish in the PSL if there are
* outstanding DSIs. Hence we need to yield here in
* case there are outstanding DSIs that we need to
* service. Tuning possiblity: we could wait for a
* while before sched
*/
schedule();
}
out:
trace_cxl_llcmd_done(ctx, cmd, rc);
return rc;
}
static int add_process_element(struct cxl_context *ctx)
{
int rc = 0;
mutex_lock(&ctx->afu->native->spa_mutex);
pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe);
if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V)))
ctx->pe_inserted = true;
pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe);
mutex_unlock(&ctx->afu->native->spa_mutex);
return rc;
}
static int terminate_process_element(struct cxl_context *ctx)
{
int rc = 0;
/* fast path terminate if it's already invalid */
if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V)))
return rc;
mutex_lock(&ctx->afu->native->spa_mutex);
pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe);
/* We could be asked to terminate when the hw is down. That
* should always succeed: it's not running if the hw has gone
* away and is being reset.
*/
if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu))
rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE,
CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T);
ctx->elem->software_state = 0; /* Remove Valid bit */
pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe);
mutex_unlock(&ctx->afu->native->spa_mutex);
return rc;
}
static int remove_process_element(struct cxl_context *ctx)
{
int rc = 0;
mutex_lock(&ctx->afu->native->spa_mutex);
pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe);
/* We could be asked to remove when the hw is down. Again, if
* the hw is down, the PE is gone, so we succeed.
*/
if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu))
rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0);
if (!rc)
ctx->pe_inserted = false;
if (cxl_is_power8())
slb_invalid(ctx);
pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe);
mutex_unlock(&ctx->afu->native->spa_mutex);
return rc;
}
void cxl_assign_psn_space(struct cxl_context *ctx)
{
if (!ctx->afu->pp_size || ctx->master) {
ctx->psn_phys = ctx->afu->psn_phys;
ctx->psn_size = ctx->afu->adapter->ps_size;
} else {
ctx->psn_phys = ctx->afu->psn_phys +
(ctx->afu->native->pp_offset + ctx->afu->pp_size * ctx->pe);
ctx->psn_size = ctx->afu->pp_size;
}
}
static int activate_afu_directed(struct cxl_afu *afu)
{
int rc;
dev_info(&afu->dev, "Activating AFU directed mode\n");
afu->num_procs = afu->max_procs_virtualised;
if (afu->native->spa == NULL) {
if (cxl_alloc_spa(afu, CXL_MODE_DIRECTED))
return -ENOMEM;
}
attach_spa(afu);
cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU);
if (cxl_is_power8())
cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
afu->current_mode = CXL_MODE_DIRECTED;
if ((rc = cxl_chardev_m_afu_add(afu)))
return rc;
if ((rc = cxl_sysfs_afu_m_add(afu)))
goto err;
if ((rc = cxl_chardev_s_afu_add(afu)))
goto err1;
return 0;
err1:
cxl_sysfs_afu_m_remove(afu);
err:
cxl_chardev_afu_remove(afu);
return rc;
}
#ifdef CONFIG_CPU_LITTLE_ENDIAN
#define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE)
#else
#define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE))
#endif
u64 cxl_calculate_sr(bool master, bool kernel, bool real_mode, bool p9)
{
u64 sr = 0;
set_endian(sr);
if (master)
sr |= CXL_PSL_SR_An_MP;
if (mfspr(SPRN_LPCR) & LPCR_TC)
sr |= CXL_PSL_SR_An_TC;
if (kernel) {
if (!real_mode)
sr |= CXL_PSL_SR_An_R;
sr |= (mfmsr() & MSR_SF) | CXL_PSL_SR_An_HV;
} else {
sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R;
if (radix_enabled())
sr |= CXL_PSL_SR_An_HV;
else
sr &= ~(CXL_PSL_SR_An_HV);
if (!test_tsk_thread_flag(current, TIF_32BIT))
sr |= CXL_PSL_SR_An_SF;
}
if (p9) {
if (radix_enabled())
sr |= CXL_PSL_SR_An_XLAT_ror;
else
sr |= CXL_PSL_SR_An_XLAT_hpt;
}
return sr;
}
static u64 calculate_sr(struct cxl_context *ctx)
{
return cxl_calculate_sr(ctx->master, ctx->kernel, false,
cxl_is_power9());
}
static void update_ivtes_directed(struct cxl_context *ctx)
{
bool need_update = (ctx->status == STARTED);
int r;
if (need_update) {
WARN_ON(terminate_process_element(ctx));
WARN_ON(remove_process_element(ctx));
}
for (r = 0; r < CXL_IRQ_RANGES; r++) {
ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
}
/*
* Theoretically we could use the update llcmd, instead of a
* terminate/remove/add (or if an atomic update was required we could
* do a suspend/update/resume), however it seems there might be issues
* with the update llcmd on some cards (including those using an XSL on
* an ASIC) so for now it's safest to go with the commands that are
* known to work. In the future if we come across a situation where the
* card may be performing transactions using the same PE while we are
* doing this update we might need to revisit this.
*/
if (need_update)
WARN_ON(add_process_element(ctx));
}
static int process_element_entry_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
{
u32 pid;
int rc;
cxl_assign_psn_space(ctx);
ctx->elem->ctxtime = 0; /* disable */
ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
ctx->elem->haurp = 0; /* disable */
if (ctx->kernel)
pid = 0;
else {
if (ctx->mm == NULL) {
pr_devel("%s: unable to get mm for pe=%d pid=%i\n",
__func__, ctx->pe, pid_nr(ctx->pid));
return -EINVAL;
}
pid = ctx->mm->context.id;
}
/* Assign a unique TIDR (thread id) for the current thread */
if (!(ctx->tidr) && (ctx->assign_tidr)) {
rc = set_thread_tidr(current);
if (rc)
return -ENODEV;
ctx->tidr = current->thread.tidr;
pr_devel("%s: current tidr: %d\n", __func__, ctx->tidr);
}
ctx->elem->common.tid = cpu_to_be32(ctx->tidr);
ctx->elem->common.pid = cpu_to_be32(pid);
ctx->elem->sr = cpu_to_be64(calculate_sr(ctx));
ctx->elem->common.csrp = 0; /* disable */
cxl_prefault(ctx, wed);
/*
* Ensure we have the multiplexed PSL interrupt set up to take faults
* for kernel contexts that may not have allocated any AFU IRQs at all:
*/
if (ctx->irqs.range[0] == 0) {
ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
ctx->irqs.range[0] = 1;
}
ctx->elem->common.amr = cpu_to_be64(amr);
ctx->elem->common.wed = cpu_to_be64(wed);
return 0;
}
int cxl_attach_afu_directed_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
{
int result;
/* fill the process element entry */
result = process_element_entry_psl9(ctx, wed, amr);
if (result)
return result;
update_ivtes_directed(ctx);
/* first guy needs to enable */
result = cxl_ops->afu_check_and_enable(ctx->afu);
if (result)
return result;
return add_process_element(ctx);
}
int cxl_attach_afu_directed_psl8(struct cxl_context *ctx, u64 wed, u64 amr)
{
u32 pid;
int result;
cxl_assign_psn_space(ctx);
ctx->elem->ctxtime = 0; /* disable */
ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
ctx->elem->haurp = 0; /* disable */
ctx->elem->u.sdr = cpu_to_be64(mfspr(SPRN_SDR1));
pid = current->pid;
if (ctx->kernel)
pid = 0;
ctx->elem->common.tid = 0;
ctx->elem->common.pid = cpu_to_be32(pid);
ctx->elem->sr = cpu_to_be64(calculate_sr(ctx));
ctx->elem->common.csrp = 0; /* disable */
ctx->elem->common.u.psl8.aurp0 = 0; /* disable */
ctx->elem->common.u.psl8.aurp1 = 0; /* disable */
cxl_prefault(ctx, wed);
ctx->elem->common.u.psl8.sstp0 = cpu_to_be64(ctx->sstp0);
ctx->elem->common.u.psl8.sstp1 = cpu_to_be64(ctx->sstp1);
/*
* Ensure we have the multiplexed PSL interrupt set up to take faults
* for kernel contexts that may not have allocated any AFU IRQs at all:
*/
if (ctx->irqs.range[0] == 0) {
ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
ctx->irqs.range[0] = 1;
}
update_ivtes_directed(ctx);
ctx->elem->common.amr = cpu_to_be64(amr);
ctx->elem->common.wed = cpu_to_be64(wed);
/* first guy needs to enable */
if ((result = cxl_ops->afu_check_and_enable(ctx->afu)))
return result;
return add_process_element(ctx);
}
static int deactivate_afu_directed(struct cxl_afu *afu)
{
dev_info(&afu->dev, "Deactivating AFU directed mode\n");
afu->current_mode = 0;
afu->num_procs = 0;
cxl_sysfs_afu_m_remove(afu);
cxl_chardev_afu_remove(afu);
cxl: Fix bug where AFU disable operation had no effect The AFU disable operation has a bug where it will not clear the enable bit and therefore will have no effect. To date this has likely been masked by fact that we perform an AFU reset before the disable, which also has the effect of clearing the enable bit, making the following disable operation effectively a noop on most hardware. This patch modifies the afu_control function to take a parameter to clear from the AFU control register so that the disable operation can clear the appropriate bit. This bug was uncovered on the Mellanox CX4, which uses an XSL rather than a PSL. On the XSL the reset operation will not complete while the AFU is enabled, meaning the enable bit was still set at the start of the disable and as a result this bug was hit and the disable also timed out. Because of this difference in behaviour between the PSL and XSL, this patch now makes the reset dependent on the card using a PSL to avoid waiting for a timeout on the XSL. It is entirely possible that we may be able to drop the reset altogether if it turns out we only ever needed it due to this bug - however I am not willing to drop it without further regression testing and have added comments to the code explaining the background. This also fixes a small issue where the AFU_Cntl register was read outside of the lock that protects it. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-01 00:50:40 +08:00
/*
* The CAIA section 2.2.1 indicates that the procedure for starting and
* stopping an AFU in AFU directed mode is AFU specific, which is not
* ideal since this code is generic and with one exception has no
* knowledge of the AFU. This is in contrast to the procedure for
* disabling a dedicated process AFU, which is documented to just
* require a reset. The architecture does indicate that both an AFU
* reset and an AFU disable should result in the AFU being disabled and
* we do both followed by a PSL purge for safety.
*
* Notably we used to have some issues with the disable sequence on PSL
* cards, which is why we ended up using this heavy weight procedure in
* the first place, however a bug was discovered that had rendered the
* disable operation ineffective, so it is conceivable that was the
* sole explanation for those difficulties. Careful regression testing
* is recommended if anyone attempts to remove or reorder these
* operations.
*
* The XSL on the Mellanox CX4 behaves a little differently from the
* PSL based cards and will time out an AFU reset if the AFU is still
* enabled. That card is special in that we do have a means to identify
* it from this code, so in that case we skip the reset and just use a
* disable/purge to avoid the timeout and corresponding noise in the
* kernel log.
*/
if (afu->adapter->native->sl_ops->needs_reset_before_disable)
cxl_ops->afu_reset(afu);
cxl_afu_disable(afu);
cxl_psl_purge(afu);
return 0;
}
int cxl_activate_dedicated_process_psl9(struct cxl_afu *afu)
{
dev_info(&afu->dev, "Activating dedicated process mode\n");
/*
* If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the
* XSL and AFU are programmed to work with a single context.
* The context information should be configured in the SPA area
* index 0 (so PSL_SPAP must be configured before enabling the
* AFU).
*/
afu->num_procs = 1;
if (afu->native->spa == NULL) {
if (cxl_alloc_spa(afu, CXL_MODE_DEDICATED))
return -ENOMEM;
}
attach_spa(afu);
cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
afu->current_mode = CXL_MODE_DEDICATED;
return cxl_chardev_d_afu_add(afu);
}
int cxl_activate_dedicated_process_psl8(struct cxl_afu *afu)
{
dev_info(&afu->dev, "Activating dedicated process mode\n");
cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */
cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); /* disable */
cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID));
cxl_p1n_write(afu, CXL_HAURP_An, 0); /* disable */
cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1));
cxl_p2n_write(afu, CXL_CSRP_An, 0); /* disable */
cxl_p2n_write(afu, CXL_AURP0_An, 0); /* disable */
cxl_p2n_write(afu, CXL_AURP1_An, 0); /* disable */
afu->current_mode = CXL_MODE_DEDICATED;
afu->num_procs = 1;
return cxl_chardev_d_afu_add(afu);
}
void cxl_update_dedicated_ivtes_psl9(struct cxl_context *ctx)
{
int r;
for (r = 0; r < CXL_IRQ_RANGES; r++) {
ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
}
}
void cxl_update_dedicated_ivtes_psl8(struct cxl_context *ctx)
{
struct cxl_afu *afu = ctx->afu;
cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An,
(((u64)ctx->irqs.offset[0] & 0xffff) << 48) |
(((u64)ctx->irqs.offset[1] & 0xffff) << 32) |
(((u64)ctx->irqs.offset[2] & 0xffff) << 16) |
((u64)ctx->irqs.offset[3] & 0xffff));
cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64)
(((u64)ctx->irqs.range[0] & 0xffff) << 48) |
(((u64)ctx->irqs.range[1] & 0xffff) << 32) |
(((u64)ctx->irqs.range[2] & 0xffff) << 16) |
((u64)ctx->irqs.range[3] & 0xffff));
}
int cxl_attach_dedicated_process_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
{
struct cxl_afu *afu = ctx->afu;
int result;
/* fill the process element entry */
result = process_element_entry_psl9(ctx, wed, amr);
if (result)
return result;
if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)
afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
ctx->elem->software_state = cpu_to_be32(CXL_PE_SOFTWARE_STATE_V);
/*
* Ideally we should do a wmb() here to make sure the changes to the
* PE are visible to the card before we call afu_enable.
* On ppc64 though all mmios are preceded by a 'sync' instruction hence
* we dont dont need one here.
*/
result = cxl_ops->afu_reset(afu);
if (result)
return result;
return afu_enable(afu);
}
int cxl_attach_dedicated_process_psl8(struct cxl_context *ctx, u64 wed, u64 amr)
{
struct cxl_afu *afu = ctx->afu;
u64 pid;
int rc;
pid = (u64)current->pid << 32;
if (ctx->kernel)
pid = 0;
cxl_p2n_write(afu, CXL_PSL_PID_TID_An, pid);
cxl_p1n_write(afu, CXL_PSL_SR_An, calculate_sr(ctx));
if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1)))
return rc;
cxl_prefault(ctx, wed);
if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)
afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
cxl_p2n_write(afu, CXL_PSL_AMR_An, amr);
/* master only context for dedicated */
cxl_assign_psn_space(ctx);
if ((rc = cxl_ops->afu_reset(afu)))
return rc;
cxl_p2n_write(afu, CXL_PSL_WED_An, wed);
return afu_enable(afu);
}
static int deactivate_dedicated_process(struct cxl_afu *afu)
{
dev_info(&afu->dev, "Deactivating dedicated process mode\n");
afu->current_mode = 0;
afu->num_procs = 0;
cxl_chardev_afu_remove(afu);
return 0;
}
static int native_afu_deactivate_mode(struct cxl_afu *afu, int mode)
{
if (mode == CXL_MODE_DIRECTED)
return deactivate_afu_directed(afu);
if (mode == CXL_MODE_DEDICATED)
return deactivate_dedicated_process(afu);
return 0;
}
static int native_afu_activate_mode(struct cxl_afu *afu, int mode)
{
if (!mode)
return 0;
if (!(mode & afu->modes_supported))
return -EINVAL;
if (!cxl_ops->link_ok(afu->adapter, afu)) {
WARN(1, "Device link is down, refusing to activate!\n");
return -EIO;
}
if (mode == CXL_MODE_DIRECTED)
return activate_afu_directed(afu);
if ((mode == CXL_MODE_DEDICATED) &&
(afu->adapter->native->sl_ops->activate_dedicated_process))
return afu->adapter->native->sl_ops->activate_dedicated_process(afu);
return -EINVAL;
}
static int native_attach_process(struct cxl_context *ctx, bool kernel,
u64 wed, u64 amr)
{
if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) {
WARN(1, "Device link is down, refusing to attach process!\n");
return -EIO;
}
ctx->kernel = kernel;
if ((ctx->afu->current_mode == CXL_MODE_DIRECTED) &&
(ctx->afu->adapter->native->sl_ops->attach_afu_directed))
return ctx->afu->adapter->native->sl_ops->attach_afu_directed(ctx, wed, amr);
if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) &&
(ctx->afu->adapter->native->sl_ops->attach_dedicated_process))
return ctx->afu->adapter->native->sl_ops->attach_dedicated_process(ctx, wed, amr);
return -EINVAL;
}
static inline int detach_process_native_dedicated(struct cxl_context *ctx)
{
cxl: Fix bug where AFU disable operation had no effect The AFU disable operation has a bug where it will not clear the enable bit and therefore will have no effect. To date this has likely been masked by fact that we perform an AFU reset before the disable, which also has the effect of clearing the enable bit, making the following disable operation effectively a noop on most hardware. This patch modifies the afu_control function to take a parameter to clear from the AFU control register so that the disable operation can clear the appropriate bit. This bug was uncovered on the Mellanox CX4, which uses an XSL rather than a PSL. On the XSL the reset operation will not complete while the AFU is enabled, meaning the enable bit was still set at the start of the disable and as a result this bug was hit and the disable also timed out. Because of this difference in behaviour between the PSL and XSL, this patch now makes the reset dependent on the card using a PSL to avoid waiting for a timeout on the XSL. It is entirely possible that we may be able to drop the reset altogether if it turns out we only ever needed it due to this bug - however I am not willing to drop it without further regression testing and have added comments to the code explaining the background. This also fixes a small issue where the AFU_Cntl register was read outside of the lock that protects it. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-01 00:50:40 +08:00
/*
* The CAIA section 2.1.1 indicates that we need to do an AFU reset to
* stop the AFU in dedicated mode (we therefore do not make that
* optional like we do in the afu directed path). It does not indicate
* that we need to do an explicit disable (which should occur
* implicitly as part of the reset) or purge, but we do these as well
* to be on the safe side.
*
* Notably we used to have some issues with the disable sequence
* (before the sequence was spelled out in the architecture) which is
* why we were so heavy weight in the first place, however a bug was
* discovered that had rendered the disable operation ineffective, so
* it is conceivable that was the sole explanation for those
* difficulties. Point is, we should be careful and do some regression
* testing if we ever attempt to remove any part of this procedure.
*/
cxl_ops->afu_reset(ctx->afu);
cxl_afu_disable(ctx->afu);
cxl_psl_purge(ctx->afu);
return 0;
}
static void native_update_ivtes(struct cxl_context *ctx)
{
if (ctx->afu->current_mode == CXL_MODE_DIRECTED)
return update_ivtes_directed(ctx);
if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) &&
(ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes))
return ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
WARN(1, "native_update_ivtes: Bad mode\n");
}
static inline int detach_process_native_afu_directed(struct cxl_context *ctx)
{
if (!ctx->pe_inserted)
return 0;
if (terminate_process_element(ctx))
return -1;
if (remove_process_element(ctx))
return -1;
return 0;
}
static int native_detach_process(struct cxl_context *ctx)
{
trace_cxl_detach(ctx);
if (ctx->afu->current_mode == CXL_MODE_DEDICATED)
return detach_process_native_dedicated(ctx);
return detach_process_native_afu_directed(ctx);
}
static int native_get_irq_info(struct cxl_afu *afu, struct cxl_irq_info *info)
{
/* If the adapter has gone away, we can't get any meaningful
* information.
*/
if (!cxl_ops->link_ok(afu->adapter, afu))
return -EIO;
info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
if (cxl_is_power8())
info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An);
info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An);
info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
info->proc_handle = 0;
return 0;
}
void cxl_native_irq_dump_regs_psl9(struct cxl_context *ctx)
{
u64 fir1, serr;
fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL9_FIR1);
dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1);
if (ctx->afu->adapter->native->sl_ops->register_serr_irq) {
serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
cxl_afu_decode_psl_serr(ctx->afu, serr);
}
}
void cxl_native_irq_dump_regs_psl8(struct cxl_context *ctx)
{
u64 fir1, fir2, fir_slice, serr, afu_debug;
fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR1);
fir2 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR2);
fir_slice = cxl_p1n_read(ctx->afu, CXL_PSL_FIR_SLICE_An);
afu_debug = cxl_p1n_read(ctx->afu, CXL_AFU_DEBUG_An);
dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1);
dev_crit(&ctx->afu->dev, "PSL_FIR2: 0x%016llx\n", fir2);
if (ctx->afu->adapter->native->sl_ops->register_serr_irq) {
serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
cxl_afu_decode_psl_serr(ctx->afu, serr);
}
dev_crit(&ctx->afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice);
dev_crit(&ctx->afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug);
}
static irqreturn_t native_handle_psl_slice_error(struct cxl_context *ctx,
u64 dsisr, u64 errstat)
{
dev_crit(&ctx->afu->dev, "PSL ERROR STATUS: 0x%016llx\n", errstat);
if (ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers)
ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers(ctx);
if (ctx->afu->adapter->native->sl_ops->debugfs_stop_trace) {
dev_crit(&ctx->afu->dev, "STOPPING CXL TRACE\n");
ctx->afu->adapter->native->sl_ops->debugfs_stop_trace(ctx->afu->adapter);
}
return cxl_ops->ack_irq(ctx, 0, errstat);
}
static bool cxl_is_translation_fault(struct cxl_afu *afu, u64 dsisr)
{
if ((cxl_is_power8()) && (dsisr & CXL_PSL_DSISR_TRANS))
return true;
if ((cxl_is_power9()) && (dsisr & CXL_PSL9_DSISR_An_TF))
return true;
return false;
}
irqreturn_t cxl_fail_irq_psl(struct cxl_afu *afu, struct cxl_irq_info *irq_info)
{
if (cxl_is_translation_fault(afu, irq_info->dsisr))
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
else
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
return IRQ_HANDLED;
}
static irqreturn_t native_irq_multiplexed(int irq, void *data)
{
struct cxl_afu *afu = data;
struct cxl_context *ctx;
struct cxl_irq_info irq_info;
u64 phreg = cxl_p2n_read(afu, CXL_PSL_PEHandle_An);
int ph, ret = IRQ_HANDLED, res;
/* check if eeh kicked in while the interrupt was in flight */
if (unlikely(phreg == ~0ULL)) {
dev_warn(&afu->dev,
"Ignoring slice interrupt(%d) due to fenced card",
irq);
return IRQ_HANDLED;
}
/* Mask the pe-handle from register value */
ph = phreg & 0xffff;
if ((res = native_get_irq_info(afu, &irq_info))) {
WARN(1, "Unable to get CXL IRQ Info: %i\n", res);
if (afu->adapter->native->sl_ops->fail_irq)
return afu->adapter->native->sl_ops->fail_irq(afu, &irq_info);
return ret;
}
rcu_read_lock();
ctx = idr_find(&afu->contexts_idr, ph);
if (ctx) {
if (afu->adapter->native->sl_ops->handle_interrupt)
ret = afu->adapter->native->sl_ops->handle_interrupt(irq, ctx, &irq_info);
rcu_read_unlock();
return ret;
}
rcu_read_unlock();
WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR"
" %016llx\n(Possible AFU HW issue - was a term/remove acked"
" with outstanding transactions?)\n", ph, irq_info.dsisr,
irq_info.dar);
if (afu->adapter->native->sl_ops->fail_irq)
ret = afu->adapter->native->sl_ops->fail_irq(afu, &irq_info);
return ret;
}
static void native_irq_wait(struct cxl_context *ctx)
{
u64 dsisr;
int timeout = 1000;
int ph;
/*
* Wait until no further interrupts are presented by the PSL
* for this context.
*/
while (timeout--) {
ph = cxl_p2n_read(ctx->afu, CXL_PSL_PEHandle_An) & 0xffff;
if (ph != ctx->pe)
return;
dsisr = cxl_p2n_read(ctx->afu, CXL_PSL_DSISR_An);
if (cxl_is_power8() &&
((dsisr & CXL_PSL_DSISR_PENDING) == 0))
return;
if (cxl_is_power9() &&
((dsisr & CXL_PSL9_DSISR_PENDING) == 0))
return;
/*
* We are waiting for the workqueue to process our
* irq, so need to let that run here.
*/
msleep(1);
}
dev_warn(&ctx->afu->dev, "WARNING: waiting on DSI for PE %i"
" DSISR %016llx!\n", ph, dsisr);
return;
}
static irqreturn_t native_slice_irq_err(int irq, void *data)
{
struct cxl_afu *afu = data;
u64 errstat, serr, afu_error, dsisr;
u64 fir_slice, afu_debug, irq_mask;
/*
* slice err interrupt is only used with full PSL (no XSL)
*/
serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
afu_error = cxl_p2n_read(afu, CXL_AFU_ERR_An);
dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
cxl_afu_decode_psl_serr(afu, serr);
if (cxl_is_power8()) {
fir_slice = cxl_p1n_read(afu, CXL_PSL_FIR_SLICE_An);
afu_debug = cxl_p1n_read(afu, CXL_AFU_DEBUG_An);
dev_crit(&afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice);
dev_crit(&afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug);
}
dev_crit(&afu->dev, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat);
dev_crit(&afu->dev, "AFU_ERR_An: 0x%.16llx\n", afu_error);
dev_crit(&afu->dev, "PSL_DSISR_An: 0x%.16llx\n", dsisr);
/* mask off the IRQ so it won't retrigger until the AFU is reset */
irq_mask = (serr & CXL_PSL_SERR_An_IRQS) >> 32;
serr |= irq_mask;
cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
dev_info(&afu->dev, "Further such interrupts will be masked until the AFU is reset\n");
return IRQ_HANDLED;
}
void cxl_native_err_irq_dump_regs_psl9(struct cxl *adapter)
{
u64 fir1;
fir1 = cxl_p1_read(adapter, CXL_PSL9_FIR1);
dev_crit(&adapter->dev, "PSL_FIR: 0x%016llx\n", fir1);
}
void cxl_native_err_irq_dump_regs_psl8(struct cxl *adapter)
{
u64 fir1, fir2;
fir1 = cxl_p1_read(adapter, CXL_PSL_FIR1);
fir2 = cxl_p1_read(adapter, CXL_PSL_FIR2);
dev_crit(&adapter->dev,
"PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n",
fir1, fir2);
}
static irqreturn_t native_irq_err(int irq, void *data)
{
struct cxl *adapter = data;
u64 err_ivte;
WARN(1, "CXL ERROR interrupt %i\n", irq);
err_ivte = cxl_p1_read(adapter, CXL_PSL_ErrIVTE);
dev_crit(&adapter->dev, "PSL_ErrIVTE: 0x%016llx\n", err_ivte);
if (adapter->native->sl_ops->debugfs_stop_trace) {
dev_crit(&adapter->dev, "STOPPING CXL TRACE\n");
adapter->native->sl_ops->debugfs_stop_trace(adapter);
}
if (adapter->native->sl_ops->err_irq_dump_registers)
adapter->native->sl_ops->err_irq_dump_registers(adapter);
return IRQ_HANDLED;
}
int cxl_native_register_psl_err_irq(struct cxl *adapter)
{
int rc;
adapter->irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
dev_name(&adapter->dev));
if (!adapter->irq_name)
return -ENOMEM;
if ((rc = cxl_register_one_irq(adapter, native_irq_err, adapter,
&adapter->native->err_hwirq,
&adapter->native->err_virq,
adapter->irq_name))) {
kfree(adapter->irq_name);
adapter->irq_name = NULL;
return rc;
}
cxl_p1_write(adapter, CXL_PSL_ErrIVTE, adapter->native->err_hwirq & 0xffff);
return 0;
}
void cxl_native_release_psl_err_irq(struct cxl *adapter)
{
if (adapter->native->err_virq == 0 ||
adapter->native->err_virq !=
irq_find_mapping(NULL, adapter->native->err_hwirq))
return;
cxl_p1_write(adapter, CXL_PSL_ErrIVTE, 0x0000000000000000);
cxl_unmap_irq(adapter->native->err_virq, adapter);
cxl_ops->release_one_irq(adapter, adapter->native->err_hwirq);
kfree(adapter->irq_name);
adapter->native->err_virq = 0;
}
int cxl_native_register_serr_irq(struct cxl_afu *afu)
{
u64 serr;
int rc;
afu->err_irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
dev_name(&afu->dev));
if (!afu->err_irq_name)
return -ENOMEM;
if ((rc = cxl_register_one_irq(afu->adapter, native_slice_irq_err, afu,
&afu->serr_hwirq,
&afu->serr_virq, afu->err_irq_name))) {
kfree(afu->err_irq_name);
afu->err_irq_name = NULL;
return rc;
}
serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
if (cxl_is_power8())
serr = (serr & 0x00ffffffffff0000ULL) | (afu->serr_hwirq & 0xffff);
if (cxl_is_power9()) {
/*
* By default, all errors are masked. So don't set all masks.
* Slice errors will be transfered.
*/
serr = (serr & ~0xff0000007fffffffULL) | (afu->serr_hwirq & 0xffff);
}
cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
return 0;
}
void cxl_native_release_serr_irq(struct cxl_afu *afu)
{
if (afu->serr_virq == 0 ||
afu->serr_virq != irq_find_mapping(NULL, afu->serr_hwirq))
return;
cxl_p1n_write(afu, CXL_PSL_SERR_An, 0x0000000000000000);
cxl_unmap_irq(afu->serr_virq, afu);
cxl_ops->release_one_irq(afu->adapter, afu->serr_hwirq);
kfree(afu->err_irq_name);
afu->serr_virq = 0;
}
int cxl_native_register_psl_irq(struct cxl_afu *afu)
{
int rc;
afu->psl_irq_name = kasprintf(GFP_KERNEL, "cxl-%s",
dev_name(&afu->dev));
if (!afu->psl_irq_name)
return -ENOMEM;
if ((rc = cxl_register_one_irq(afu->adapter, native_irq_multiplexed,
afu, &afu->native->psl_hwirq, &afu->native->psl_virq,
afu->psl_irq_name))) {
kfree(afu->psl_irq_name);
afu->psl_irq_name = NULL;
}
return rc;
}
void cxl_native_release_psl_irq(struct cxl_afu *afu)
{
if (afu->native->psl_virq == 0 ||
afu->native->psl_virq !=
irq_find_mapping(NULL, afu->native->psl_hwirq))
return;
cxl_unmap_irq(afu->native->psl_virq, afu);
cxl_ops->release_one_irq(afu->adapter, afu->native->psl_hwirq);
kfree(afu->psl_irq_name);
afu->native->psl_virq = 0;
}
static void recover_psl_err(struct cxl_afu *afu, u64 errstat)
{
u64 dsisr;
pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat);
/* Clear PSL_DSISR[PE] */
dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE);
/* Write 1s to clear error status bits */
cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat);
}
static int native_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask)
{
trace_cxl_psl_irq_ack(ctx, tfc);
if (tfc)
cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc);
if (psl_reset_mask)
recover_psl_err(ctx->afu, psl_reset_mask);
return 0;
}
int cxl_check_error(struct cxl_afu *afu)
{
return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL);
}
static bool native_support_attributes(const char *attr_name,
enum cxl_attrs type)
{
return true;
}
static int native_afu_cr_read64(struct cxl_afu *afu, int cr, u64 off, u64 *out)
{
if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
return -EIO;
if (unlikely(off >= afu->crs_len))
return -ERANGE;
*out = in_le64(afu->native->afu_desc_mmio + afu->crs_offset +
(cr * afu->crs_len) + off);
return 0;
}
static int native_afu_cr_read32(struct cxl_afu *afu, int cr, u64 off, u32 *out)
{
if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
return -EIO;
if (unlikely(off >= afu->crs_len))
return -ERANGE;
*out = in_le32(afu->native->afu_desc_mmio + afu->crs_offset +
(cr * afu->crs_len) + off);
return 0;
}
static int native_afu_cr_read16(struct cxl_afu *afu, int cr, u64 off, u16 *out)
{
u64 aligned_off = off & ~0x3L;
u32 val;
int rc;
rc = native_afu_cr_read32(afu, cr, aligned_off, &val);
if (!rc)
*out = (val >> ((off & 0x3) * 8)) & 0xffff;
return rc;
}
static int native_afu_cr_read8(struct cxl_afu *afu, int cr, u64 off, u8 *out)
{
u64 aligned_off = off & ~0x3L;
u32 val;
int rc;
rc = native_afu_cr_read32(afu, cr, aligned_off, &val);
if (!rc)
*out = (val >> ((off & 0x3) * 8)) & 0xff;
return rc;
}
static int native_afu_cr_write32(struct cxl_afu *afu, int cr, u64 off, u32 in)
{
if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
return -EIO;
if (unlikely(off >= afu->crs_len))
return -ERANGE;
out_le32(afu->native->afu_desc_mmio + afu->crs_offset +
(cr * afu->crs_len) + off, in);
return 0;
}
static int native_afu_cr_write16(struct cxl_afu *afu, int cr, u64 off, u16 in)
{
u64 aligned_off = off & ~0x3L;
u32 val32, mask, shift;
int rc;
rc = native_afu_cr_read32(afu, cr, aligned_off, &val32);
if (rc)
return rc;
shift = (off & 0x3) * 8;
WARN_ON(shift == 24);
mask = 0xffff << shift;
val32 = (val32 & ~mask) | (in << shift);
rc = native_afu_cr_write32(afu, cr, aligned_off, val32);
return rc;
}
static int native_afu_cr_write8(struct cxl_afu *afu, int cr, u64 off, u8 in)
{
u64 aligned_off = off & ~0x3L;
u32 val32, mask, shift;
int rc;
rc = native_afu_cr_read32(afu, cr, aligned_off, &val32);
if (rc)
return rc;
shift = (off & 0x3) * 8;
mask = 0xff << shift;
val32 = (val32 & ~mask) | (in << shift);
rc = native_afu_cr_write32(afu, cr, aligned_off, val32);
return rc;
}
const struct cxl_backend_ops cxl_native_ops = {
.module = THIS_MODULE,
.adapter_reset = cxl_pci_reset,
.alloc_one_irq = cxl_pci_alloc_one_irq,
.release_one_irq = cxl_pci_release_one_irq,
.alloc_irq_ranges = cxl_pci_alloc_irq_ranges,
.release_irq_ranges = cxl_pci_release_irq_ranges,
.setup_irq = cxl_pci_setup_irq,
.handle_psl_slice_error = native_handle_psl_slice_error,
.psl_interrupt = NULL,
.ack_irq = native_ack_irq,
.irq_wait = native_irq_wait,
.attach_process = native_attach_process,
.detach_process = native_detach_process,
.update_ivtes = native_update_ivtes,
.support_attributes = native_support_attributes,
.link_ok = cxl_adapter_link_ok,
.release_afu = cxl_pci_release_afu,
.afu_read_err_buffer = cxl_pci_afu_read_err_buffer,
.afu_check_and_enable = native_afu_check_and_enable,
.afu_activate_mode = native_afu_activate_mode,
.afu_deactivate_mode = native_afu_deactivate_mode,
.afu_reset = native_afu_reset,
.afu_cr_read8 = native_afu_cr_read8,
.afu_cr_read16 = native_afu_cr_read16,
.afu_cr_read32 = native_afu_cr_read32,
.afu_cr_read64 = native_afu_cr_read64,
.afu_cr_write8 = native_afu_cr_write8,
.afu_cr_write16 = native_afu_cr_write16,
.afu_cr_write32 = native_afu_cr_write32,
.read_adapter_vpd = cxl_pci_read_adapter_vpd,
};