linux/arch/arm64/mm/dma-mapping.c

996 lines
27 KiB
C
Raw Normal View History

/*
* SWIOTLB-based DMA API implementation
*
* Copyright (C) 2012 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/gfp.h>
#include <linux/acpi.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/genalloc.h>
#include <linux/dma-mapping.h>
#include <linux/dma-contiguous.h>
#include <linux/vmalloc.h>
#include <linux/swiotlb.h>
#include <asm/cacheflush.h>
static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
bool coherent)
{
if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
return pgprot_writecombine(prot);
return prot;
}
static struct gen_pool *atomic_pool;
#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
static int __init early_coherent_pool(char *p)
{
atomic_pool_size = memparse(p, &p);
return 0;
}
early_param("coherent_pool", early_coherent_pool);
static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
{
unsigned long val;
void *ptr = NULL;
if (!atomic_pool) {
WARN(1, "coherent pool not initialised!\n");
return NULL;
}
val = gen_pool_alloc(atomic_pool, size);
if (val) {
phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
*ret_page = phys_to_page(phys);
ptr = (void *)val;
memset(ptr, 0, size);
}
return ptr;
}
static bool __in_atomic_pool(void *start, size_t size)
{
return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
}
static int __free_from_pool(void *start, size_t size)
{
if (!__in_atomic_pool(start, size))
return 0;
gen_pool_free(atomic_pool, (unsigned long)start, size);
return 1;
}
static void *__dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flags,
struct dma_attrs *attrs)
{
if (dev == NULL) {
WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
return NULL;
}
if (IS_ENABLED(CONFIG_ZONE_DMA) &&
dev->coherent_dma_mask <= DMA_BIT_MASK(32))
flags |= GFP_DMA;
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
struct page *page;
void *addr;
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
get_order(size));
if (!page)
return NULL;
*dma_handle = phys_to_dma(dev, page_to_phys(page));
addr = page_address(page);
memset(addr, 0, size);
return addr;
} else {
return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
}
}
static void __dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
bool freed;
phys_addr_t paddr = dma_to_phys(dev, dma_handle);
if (dev == NULL) {
WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
return;
}
freed = dma_release_from_contiguous(dev,
phys_to_page(paddr),
size >> PAGE_SHIFT);
if (!freed)
swiotlb_free_coherent(dev, size, vaddr, dma_handle);
}
static void *__dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flags,
struct dma_attrs *attrs)
{
struct page *page;
void *ptr, *coherent_ptr;
bool coherent = is_device_dma_coherent(dev);
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
size = PAGE_ALIGN(size);
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
if (!coherent && !gfpflags_allow_blocking(flags)) {
struct page *page = NULL;
void *addr = __alloc_from_pool(size, &page, flags);
if (addr)
*dma_handle = phys_to_dma(dev, page_to_phys(page));
return addr;
}
ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
if (!ptr)
goto no_mem;
/* no need for non-cacheable mapping if coherent */
if (coherent)
return ptr;
/* remove any dirty cache lines on the kernel alias */
__dma_flush_range(ptr, ptr + size);
/* create a coherent mapping */
page = virt_to_page(ptr);
coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
prot, NULL);
if (!coherent_ptr)
goto no_map;
return coherent_ptr;
no_map:
__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
no_mem:
*dma_handle = DMA_ERROR_CODE;
return NULL;
}
static void __dma_free(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
size = PAGE_ALIGN(size);
if (!is_device_dma_coherent(dev)) {
if (__free_from_pool(vaddr, size))
return;
vunmap(vaddr);
}
__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
}
static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
dma_addr_t dev_addr;
dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
if (!is_device_dma_coherent(dev))
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
return dev_addr;
}
static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
if (!is_device_dma_coherent(dev))
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
}
static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i, ret;
ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
if (!is_device_dma_coherent(dev))
for_each_sg(sgl, sg, ret, i)
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
return ret;
}
static void __swiotlb_unmap_sg_attrs(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
if (!is_device_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
}
static void __swiotlb_sync_single_for_cpu(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
if (!is_device_dma_coherent(dev))
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
}
static void __swiotlb_sync_single_for_device(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
if (!is_device_dma_coherent(dev))
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
}
static void __swiotlb_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (!is_device_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
}
static void __swiotlb_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
if (!is_device_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
}
static int __swiotlb_mmap(struct device *dev,
struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
struct dma_attrs *attrs)
{
int ret = -ENXIO;
unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
PAGE_SHIFT;
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
unsigned long off = vma->vm_pgoff;
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
is_device_dma_coherent(dev));
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
ret = remap_pfn_range(vma, vma->vm_start,
pfn + off,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
return ret;
}
static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t handle, size_t size,
struct dma_attrs *attrs)
{
int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
PAGE_ALIGN(size), 0);
return ret;
}
static struct dma_map_ops swiotlb_dma_ops = {
.alloc = __dma_alloc,
.free = __dma_free,
.mmap = __swiotlb_mmap,
.get_sgtable = __swiotlb_get_sgtable,
.map_page = __swiotlb_map_page,
.unmap_page = __swiotlb_unmap_page,
.map_sg = __swiotlb_map_sg_attrs,
.unmap_sg = __swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
.sync_single_for_device = __swiotlb_sync_single_for_device,
.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = __swiotlb_sync_sg_for_device,
.dma_supported = swiotlb_dma_supported,
.mapping_error = swiotlb_dma_mapping_error,
};
static int __init atomic_pool_init(void)
{
pgprot_t prot = __pgprot(PROT_NORMAL_NC);
unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
struct page *page;
void *addr;
unsigned int pool_size_order = get_order(atomic_pool_size);
if (dev_get_cma_area(NULL))
page = dma_alloc_from_contiguous(NULL, nr_pages,
pool_size_order);
else
page = alloc_pages(GFP_DMA, pool_size_order);
if (page) {
int ret;
void *page_addr = page_address(page);
memset(page_addr, 0, atomic_pool_size);
__dma_flush_range(page_addr, page_addr + atomic_pool_size);
atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
if (!atomic_pool)
goto free_page;
addr = dma_common_contiguous_remap(page, atomic_pool_size,
VM_USERMAP, prot, atomic_pool_init);
if (!addr)
goto destroy_genpool;
ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
page_to_phys(page),
atomic_pool_size, -1);
if (ret)
goto remove_mapping;
gen_pool_set_algo(atomic_pool,
gen_pool_first_fit_order_align,
(void *)PAGE_SHIFT);
pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
atomic_pool_size / 1024);
return 0;
}
goto out;
remove_mapping:
dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
destroy_genpool:
gen_pool_destroy(atomic_pool);
atomic_pool = NULL;
free_page:
if (!dma_release_from_contiguous(NULL, page, nr_pages))
__free_pages(page, pool_size_order);
out:
pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
atomic_pool_size / 1024);
return -ENOMEM;
}
/********************************************
* The following APIs are for dummy DMA ops *
********************************************/
static void *__dummy_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flags,
struct dma_attrs *attrs)
{
return NULL;
}
static void __dummy_free(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
}
static int __dummy_mmap(struct device *dev,
struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
struct dma_attrs *attrs)
{
return -ENXIO;
}
static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
return DMA_ERROR_CODE;
}
static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
}
static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
return 0;
}
static void __dummy_unmap_sg(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
}
static void __dummy_sync_single(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
}
static void __dummy_sync_sg(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
}
static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
{
return 1;
}
static int __dummy_dma_supported(struct device *hwdev, u64 mask)
{
return 0;
}
struct dma_map_ops dummy_dma_ops = {
.alloc = __dummy_alloc,
.free = __dummy_free,
.mmap = __dummy_mmap,
.map_page = __dummy_map_page,
.unmap_page = __dummy_unmap_page,
.map_sg = __dummy_map_sg,
.unmap_sg = __dummy_unmap_sg,
.sync_single_for_cpu = __dummy_sync_single,
.sync_single_for_device = __dummy_sync_single,
.sync_sg_for_cpu = __dummy_sync_sg,
.sync_sg_for_device = __dummy_sync_sg,
.mapping_error = __dummy_mapping_error,
.dma_supported = __dummy_dma_supported,
};
EXPORT_SYMBOL(dummy_dma_ops);
static int __init arm64_dma_init(void)
{
return atomic_pool_init();
}
arch_initcall(arm64_dma_init);
#define PREALLOC_DMA_DEBUG_ENTRIES 4096
static int __init dma_debug_do_init(void)
{
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
return 0;
}
fs_initcall(dma_debug_do_init);
#ifdef CONFIG_IOMMU_DMA
#include <linux/dma-iommu.h>
#include <linux/platform_device.h>
#include <linux/amba/bus.h>
/* Thankfully, all cache ops are by VA so we can ignore phys here */
static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
{
__dma_flush_range(virt, virt + PAGE_SIZE);
}
static void *__iommu_alloc_attrs(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t gfp,
struct dma_attrs *attrs)
{
bool coherent = is_device_dma_coherent(dev);
int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
size_t iosize = size;
void *addr;
if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
return NULL;
size = PAGE_ALIGN(size);
/*
* Some drivers rely on this, and we probably don't want the
* possibility of stale kernel data being read by devices anyway.
*/
gfp |= __GFP_ZERO;
if (gfpflags_allow_blocking(gfp)) {
struct page **pages;
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
pages = iommu_dma_alloc(dev, iosize, gfp, ioprot, handle,
flush_page);
if (!pages)
return NULL;
addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
__builtin_return_address(0));
if (!addr)
iommu_dma_free(dev, pages, iosize, handle);
} else {
struct page *page;
/*
* In atomic context we can't remap anything, so we'll only
* get the virtually contiguous buffer we need by way of a
* physically contiguous allocation.
*/
if (coherent) {
page = alloc_pages(gfp, get_order(size));
addr = page ? page_address(page) : NULL;
} else {
addr = __alloc_from_pool(size, &page, gfp);
}
if (!addr)
return NULL;
*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
if (iommu_dma_mapping_error(dev, *handle)) {
if (coherent)
__free_pages(page, get_order(size));
else
__free_from_pool(addr, size);
addr = NULL;
}
}
return addr;
}
static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t handle, struct dma_attrs *attrs)
{
size_t iosize = size;
size = PAGE_ALIGN(size);
/*
* @cpu_addr will be one of 3 things depending on how it was allocated:
* - A remapped array of pages from iommu_dma_alloc(), for all
* non-atomic allocations.
* - A non-cacheable alias from the atomic pool, for atomic
* allocations by non-coherent devices.
* - A normal lowmem address, for atomic allocations by
* coherent devices.
* Hence how dodgy the below logic looks...
*/
if (__in_atomic_pool(cpu_addr, size)) {
iommu_dma_unmap_page(dev, handle, iosize, 0, NULL);
__free_from_pool(cpu_addr, size);
} else if (is_vmalloc_addr(cpu_addr)){
struct vm_struct *area = find_vm_area(cpu_addr);
if (WARN_ON(!area || !area->pages))
return;
iommu_dma_free(dev, area->pages, iosize, &handle);
dma_common_free_remap(cpu_addr, size, VM_USERMAP);
} else {
iommu_dma_unmap_page(dev, handle, iosize, 0, NULL);
__free_pages(virt_to_page(cpu_addr), get_order(size));
}
}
static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
struct dma_attrs *attrs)
{
struct vm_struct *area;
int ret;
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
is_device_dma_coherent(dev));
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
area = find_vm_area(cpu_addr);
if (WARN_ON(!area || !area->pages))
return -ENXIO;
return iommu_dma_mmap(area->pages, size, vma);
}
static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr,
size_t size, struct dma_attrs *attrs)
{
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
struct vm_struct *area = find_vm_area(cpu_addr);
if (WARN_ON(!area || !area->pages))
return -ENXIO;
return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
GFP_KERNEL);
}
static void __iommu_sync_single_for_cpu(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
phys_addr_t phys;
if (is_device_dma_coherent(dev))
return;
phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
__dma_unmap_area(phys_to_virt(phys), size, dir);
}
static void __iommu_sync_single_for_device(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
phys_addr_t phys;
if (is_device_dma_coherent(dev))
return;
phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
__dma_map_area(phys_to_virt(phys), size, dir);
}
static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
bool coherent = is_device_dma_coherent(dev);
int prot = dma_direction_to_prot(dir, coherent);
dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
if (!iommu_dma_mapping_error(dev, dev_addr) &&
!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
__iommu_sync_single_for_device(dev, dev_addr, size, dir);
return dev_addr;
}
static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
}
static void __iommu_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (is_device_dma_coherent(dev))
return;
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(sg_virt(sg), sg->length, dir);
}
static void __iommu_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (is_device_dma_coherent(dev))
return;
for_each_sg(sgl, sg, nelems, i)
__dma_map_area(sg_virt(sg), sg->length, dir);
}
static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
bool coherent = is_device_dma_coherent(dev);
if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
return iommu_dma_map_sg(dev, sgl, nelems,
dma_direction_to_prot(dir, coherent));
}
static void __iommu_unmap_sg_attrs(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
}
static struct dma_map_ops iommu_dma_ops = {
.alloc = __iommu_alloc_attrs,
.free = __iommu_free_attrs,
.mmap = __iommu_mmap_attrs,
.get_sgtable = __iommu_get_sgtable,
.map_page = __iommu_map_page,
.unmap_page = __iommu_unmap_page,
.map_sg = __iommu_map_sg_attrs,
.unmap_sg = __iommu_unmap_sg_attrs,
.sync_single_for_cpu = __iommu_sync_single_for_cpu,
.sync_single_for_device = __iommu_sync_single_for_device,
.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
.sync_sg_for_device = __iommu_sync_sg_for_device,
.dma_supported = iommu_dma_supported,
.mapping_error = iommu_dma_mapping_error,
};
/*
* TODO: Right now __iommu_setup_dma_ops() gets called too early to do
* everything it needs to - the device is only partially created and the
* IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
* need this delayed attachment dance. Once IOMMU probe ordering is sorted
* to move the arch_setup_dma_ops() call later, all the notifier bits below
* become unnecessary, and will go away.
*/
struct iommu_dma_notifier_data {
struct list_head list;
struct device *dev;
const struct iommu_ops *ops;
u64 dma_base;
u64 size;
};
static LIST_HEAD(iommu_dma_masters);
static DEFINE_MUTEX(iommu_dma_notifier_lock);
/*
* Temporarily "borrow" a domain feature flag to to tell if we had to resort
* to creating our own domain here, in case we need to clean it up again.
*/
#define __IOMMU_DOMAIN_FAKE_DEFAULT (1U << 31)
static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
u64 dma_base, u64 size)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
/*
* Best case: The device is either part of a group which was
* already attached to a domain in a previous call, or it's
* been put in a default DMA domain by the IOMMU core.
*/
if (!domain) {
/*
* Urgh. The IOMMU core isn't going to do default domains
* for non-PCI devices anyway, until it has some means of
* abstracting the entirely implementation-specific
* sideband data/SoC topology/unicorn dust that may or
* may not differentiate upstream masters.
* So until then, HORRIBLE HACKS!
*/
domain = ops->domain_alloc(IOMMU_DOMAIN_DMA);
if (!domain)
goto out_no_domain;
domain->ops = ops;
domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT;
if (iommu_attach_device(domain, dev))
goto out_put_domain;
}
if (iommu_dma_init_domain(domain, dma_base, size))
goto out_detach;
dev->archdata.dma_ops = &iommu_dma_ops;
return true;
out_detach:
iommu_detach_device(domain, dev);
out_put_domain:
if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
iommu_domain_free(domain);
out_no_domain:
pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
dev_name(dev));
return false;
}
static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
u64 dma_base, u64 size)
{
struct iommu_dma_notifier_data *iommudata;
iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
if (!iommudata)
return;
iommudata->dev = dev;
iommudata->ops = ops;
iommudata->dma_base = dma_base;
iommudata->size = size;
mutex_lock(&iommu_dma_notifier_lock);
list_add(&iommudata->list, &iommu_dma_masters);
mutex_unlock(&iommu_dma_notifier_lock);
}
static int __iommu_attach_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct iommu_dma_notifier_data *master, *tmp;
if (action != BUS_NOTIFY_ADD_DEVICE)
return 0;
mutex_lock(&iommu_dma_notifier_lock);
list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
if (do_iommu_attach(master->dev, master->ops,
master->dma_base, master->size)) {
list_del(&master->list);
kfree(master);
}
}
mutex_unlock(&iommu_dma_notifier_lock);
return 0;
}
static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
{
struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
int ret;
if (!nb)
return -ENOMEM;
/*
* The device must be attached to a domain before the driver probe
* routine gets a chance to start allocating DMA buffers. However,
* the IOMMU driver also needs a chance to configure the iommu_group
* via its add_device callback first, so we need to make the attach
* happen between those two points. Since the IOMMU core uses a bus
* notifier with default priority for add_device, do the same but
* with a lower priority to ensure the appropriate ordering.
*/
nb->notifier_call = __iommu_attach_notifier;
nb->priority = -100;
ret = bus_register_notifier(bus, nb);
if (ret) {
pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
bus->name);
kfree(nb);
}
return ret;
}
static int __init __iommu_dma_init(void)
{
int ret;
ret = iommu_dma_init();
if (!ret)
ret = register_iommu_dma_ops_notifier(&platform_bus_type);
if (!ret)
ret = register_iommu_dma_ops_notifier(&amba_bustype);
/* handle devices queued before this arch_initcall */
if (!ret)
__iommu_attach_notifier(NULL, BUS_NOTIFY_ADD_DEVICE, NULL);
return ret;
}
arch_initcall(__iommu_dma_init);
static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *ops)
{
struct iommu_group *group;
if (!ops)
return;
/*
* TODO: As a concession to the future, we're ready to handle being
* called both early and late (i.e. after bus_add_device). Once all
* the platform bus code is reworked to call us late and the notifier
* junk above goes away, move the body of do_iommu_attach here.
*/
group = iommu_group_get(dev);
if (group) {
do_iommu_attach(dev, ops, dma_base, size);
iommu_group_put(group);
} else {
queue_iommu_attach(dev, ops, dma_base, size);
}
}
void arch_teardown_dma_ops(struct device *dev)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
if (domain) {
iommu_detach_device(domain, dev);
if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
iommu_domain_free(domain);
}
dev->archdata.dma_ops = NULL;
}
#else
static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *iommu)
{ }
#endif /* CONFIG_IOMMU_DMA */
void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *iommu, bool coherent)
{
if (!dev->archdata.dma_ops)
dev->archdata.dma_ops = &swiotlb_dma_ops;
dev->archdata.dma_coherent = coherent;
__iommu_setup_dma_ops(dev, dma_base, size, iommu);
}