linux/drivers/md/dm-table.c

1729 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (C) 2001 Sistina Software (UK) Limited.
dm table: rework reference counting Rework table reference counting. The existing code uses a reference counter. When the last reference is dropped and the counter reaches zero, the table destructor is called. Table reference counters are acquired/released from upcalls from other kernel code (dm_any_congested, dm_merge_bvec, dm_unplug_all). If the reference counter reaches zero in one of the upcalls, the table destructor is called from almost random kernel code. This leads to various problems: * dm_any_congested being called under a spinlock, which calls the destructor, which calls some sleeping function. * the destructor attempting to take a lock that is already taken by the same process. * stale reference from some other kernel code keeps the table constructed, which keeps some devices open, even after successful return from "dmsetup remove". This can confuse lvm and prevent closing of underlying devices or reusing device minor numbers. The patch changes reference counting so that the table destructor can be called only at predetermined places. The table has always exactly one reference from either mapped_device->map or hash_cell->new_map. After this patch, this reference is not counted in table->holders. A pair of dm_create_table/dm_destroy_table functions is used for table creation/destruction. Temporary references from the other code increase table->holders. A pair of dm_table_get/dm_table_put functions is used to manipulate it. When the table is about to be destroyed, we wait for table->holders to reach 0. Then, we call the table destructor. We use active waiting with msleep(1), because the situation happens rarely (to one user in 5 years) and removing the device isn't performance-critical task: the user doesn't care if it takes one tick more or not. This way, the destructor is called only at specific points (dm_table_destroy function) and the above problems associated with lazy destruction can't happen. Finally remove the temporary protection added to dm_any_congested(). Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2009-01-06 11:05:10 +08:00
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*
* This file is released under the GPL.
*/
#include "dm.h"
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/namei.h>
#include <linux/ctype.h>
tree-wide: convert open calls to remove spaces to skip_spaces() lib function Makes use of skip_spaces() defined in lib/string.c for removing leading spaces from strings all over the tree. It decreases lib.a code size by 47 bytes and reuses the function tree-wide: text data bss dec hex filename 64688 584 592 65864 10148 (TOTALS-BEFORE) 64641 584 592 65817 10119 (TOTALS-AFTER) Also, while at it, if we see (*str && isspace(*str)), we can be sure to remove the first condition (*str) as the second one (isspace(*str)) also evaluates to 0 whenever *str == 0, making it redundant. In other words, "a char equals zero is never a space". Julia Lawall tried the semantic patch (http://coccinelle.lip6.fr) below, and found occurrences of this pattern on 3 more files: drivers/leds/led-class.c drivers/leds/ledtrig-timer.c drivers/video/output.c @@ expression str; @@ ( // ignore skip_spaces cases while (*str && isspace(*str)) { \(str++;\|++str;\) } | - *str && isspace(*str) ) Signed-off-by: André Goddard Rosa <andre.goddard@gmail.com> Cc: Julia Lawall <julia@diku.dk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Neil Brown <neilb@suse.de> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Cc: David Howells <dhowells@redhat.com> Cc: <linux-ext4@vger.kernel.org> Cc: Samuel Ortiz <samuel@sortiz.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Takashi Iwai <tiwai@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 10:01:06 +08:00
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
dm table: rework reference counting Rework table reference counting. The existing code uses a reference counter. When the last reference is dropped and the counter reaches zero, the table destructor is called. Table reference counters are acquired/released from upcalls from other kernel code (dm_any_congested, dm_merge_bvec, dm_unplug_all). If the reference counter reaches zero in one of the upcalls, the table destructor is called from almost random kernel code. This leads to various problems: * dm_any_congested being called under a spinlock, which calls the destructor, which calls some sleeping function. * the destructor attempting to take a lock that is already taken by the same process. * stale reference from some other kernel code keeps the table constructed, which keeps some devices open, even after successful return from "dmsetup remove". This can confuse lvm and prevent closing of underlying devices or reusing device minor numbers. The patch changes reference counting so that the table destructor can be called only at predetermined places. The table has always exactly one reference from either mapped_device->map or hash_cell->new_map. After this patch, this reference is not counted in table->holders. A pair of dm_create_table/dm_destroy_table functions is used for table creation/destruction. Temporary references from the other code increase table->holders. A pair of dm_table_get/dm_table_put functions is used to manipulate it. When the table is about to be destroyed, we wait for table->holders to reach 0. Then, we call the table destructor. We use active waiting with msleep(1), because the situation happens rarely (to one user in 5 years) and removing the device isn't performance-critical task: the user doesn't care if it takes one tick more or not. This way, the destructor is called only at specific points (dm_table_destroy function) and the above problems associated with lazy destruction can't happen. Finally remove the temporary protection added to dm_any_congested(). Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2009-01-06 11:05:10 +08:00
#include <linux/delay.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
dm table: fall back to getting device using name_to_dev_t() If a device is used as the root filesystem, it can't be built off of devices which are within the root filesystem (just like command line arguments to root=). For this reason, Linux has a pseudo-filesystem for root= and MD initialization (based on the function name_to_dev_t) which handles different ways of specifying devices including PARTUUID and major:minor. Switch to using name_to_dev_t() in dm_get_device(). Rather than having DM assume that all things which are not major:minor are paths in an already-mounted filesystem, change dm_get_device() to first attempt to look up the device in the filesystem, and if not found it will fall back to using name_to_dev_t(). In terms of backwards compatibility, there are some cases where behavior will be different: - If you have a file in the current working directory named 1:2 and you initialze DM there, then it will try to use that file rather than the disk with that major:minor pair as a backing device. - Similarly for other bdev types which name_to_dev_t() knows how to interpret, the previous behavior was to repeatedly check for the existence of the file (e.g., while waiting for rootfs to come up) but the new behavior is to use the name_to_dev_t() interpretation. For example, if you have a file named /dev/ubiblock0_0 which is a symlink to /dev/sda3, but it is not yet present when DM starts to initialize, then the name_to_dev_t() interpretation will take precedence. These incompatibilities would only show up in really strange setups with bad practices so we shouldn't have to worry about them. Signed-off-by: Dan Ehrenberg <dehrenberg@chromium.org> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2015-02-11 07:20:51 +08:00
#include <linux/mount.h>
#define DM_MSG_PREFIX "table"
#define MAX_DEPTH 16
#define NODE_SIZE L1_CACHE_BYTES
#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
struct dm_table {
struct mapped_device *md;
unsigned type;
/* btree table */
unsigned int depth;
unsigned int counts[MAX_DEPTH]; /* in nodes */
sector_t *index[MAX_DEPTH];
unsigned int num_targets;
unsigned int num_allocated;
sector_t *highs;
struct dm_target *targets;
struct target_type *immutable_target_type;
unsigned integrity_supported:1;
unsigned singleton:1;
/*
* Indicates the rw permissions for the new logical
* device. This should be a combination of FMODE_READ
* and FMODE_WRITE.
*/
fmode_t mode;
/* a list of devices used by this table */
struct list_head devices;
/* events get handed up using this callback */
void (*event_fn)(void *);
void *event_context;
struct dm_md_mempools *mempools;
struct list_head target_callbacks;
};
/*
* Similar to ceiling(log_size(n))
*/
static unsigned int int_log(unsigned int n, unsigned int base)
{
int result = 0;
while (n > 1) {
n = dm_div_up(n, base);
result++;
}
return result;
}
/*
* Calculate the index of the child node of the n'th node k'th key.
*/
static inline unsigned int get_child(unsigned int n, unsigned int k)
{
return (n * CHILDREN_PER_NODE) + k;
}
/*
* Return the n'th node of level l from table t.
*/
static inline sector_t *get_node(struct dm_table *t,
unsigned int l, unsigned int n)
{
return t->index[l] + (n * KEYS_PER_NODE);
}
/*
* Return the highest key that you could lookup from the n'th
* node on level l of the btree.
*/
static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
{
for (; l < t->depth - 1; l++)
n = get_child(n, CHILDREN_PER_NODE - 1);
if (n >= t->counts[l])
return (sector_t) - 1;
return get_node(t, l, n)[KEYS_PER_NODE - 1];
}
/*
* Fills in a level of the btree based on the highs of the level
* below it.
*/
static int setup_btree_index(unsigned int l, struct dm_table *t)
{
unsigned int n, k;
sector_t *node;
for (n = 0U; n < t->counts[l]; n++) {
node = get_node(t, l, n);
for (k = 0U; k < KEYS_PER_NODE; k++)
node[k] = high(t, l + 1, get_child(n, k));
}
return 0;
}
void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
{
unsigned long size;
void *addr;
/*
* Check that we're not going to overflow.
*/
if (nmemb > (ULONG_MAX / elem_size))
return NULL;
size = nmemb * elem_size;
addr = vzalloc(size);
return addr;
}
EXPORT_SYMBOL(dm_vcalloc);
/*
* highs, and targets are managed as dynamic arrays during a
* table load.
*/
static int alloc_targets(struct dm_table *t, unsigned int num)
{
sector_t *n_highs;
struct dm_target *n_targets;
/*
* Allocate both the target array and offset array at once.
* Append an empty entry to catch sectors beyond the end of
* the device.
*/
n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
sizeof(sector_t));
if (!n_highs)
return -ENOMEM;
n_targets = (struct dm_target *) (n_highs + num);
memset(n_highs, -1, sizeof(*n_highs) * num);
vfree(t->highs);
t->num_allocated = num;
t->highs = n_highs;
t->targets = n_targets;
return 0;
}
int dm_table_create(struct dm_table **result, fmode_t mode,
unsigned num_targets, struct mapped_device *md)
{
struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
if (!t)
return -ENOMEM;
INIT_LIST_HEAD(&t->devices);
INIT_LIST_HEAD(&t->target_callbacks);
if (!num_targets)
num_targets = KEYS_PER_NODE;
num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
if (!num_targets) {
kfree(t);
return -ENOMEM;
}
if (alloc_targets(t, num_targets)) {
kfree(t);
return -ENOMEM;
}
t->mode = mode;
t->md = md;
*result = t;
return 0;
}
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
static void free_devices(struct list_head *devices, struct mapped_device *md)
{
struct list_head *tmp, *next;
list_for_each_safe(tmp, next, devices) {
struct dm_dev_internal *dd =
list_entry(tmp, struct dm_dev_internal, list);
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
dm_device_name(md), dd->dm_dev->name);
dm_put_table_device(md, dd->dm_dev);
kfree(dd);
}
}
dm table: rework reference counting Rework table reference counting. The existing code uses a reference counter. When the last reference is dropped and the counter reaches zero, the table destructor is called. Table reference counters are acquired/released from upcalls from other kernel code (dm_any_congested, dm_merge_bvec, dm_unplug_all). If the reference counter reaches zero in one of the upcalls, the table destructor is called from almost random kernel code. This leads to various problems: * dm_any_congested being called under a spinlock, which calls the destructor, which calls some sleeping function. * the destructor attempting to take a lock that is already taken by the same process. * stale reference from some other kernel code keeps the table constructed, which keeps some devices open, even after successful return from "dmsetup remove". This can confuse lvm and prevent closing of underlying devices or reusing device minor numbers. The patch changes reference counting so that the table destructor can be called only at predetermined places. The table has always exactly one reference from either mapped_device->map or hash_cell->new_map. After this patch, this reference is not counted in table->holders. A pair of dm_create_table/dm_destroy_table functions is used for table creation/destruction. Temporary references from the other code increase table->holders. A pair of dm_table_get/dm_table_put functions is used to manipulate it. When the table is about to be destroyed, we wait for table->holders to reach 0. Then, we call the table destructor. We use active waiting with msleep(1), because the situation happens rarely (to one user in 5 years) and removing the device isn't performance-critical task: the user doesn't care if it takes one tick more or not. This way, the destructor is called only at specific points (dm_table_destroy function) and the above problems associated with lazy destruction can't happen. Finally remove the temporary protection added to dm_any_congested(). Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2009-01-06 11:05:10 +08:00
void dm_table_destroy(struct dm_table *t)
{
unsigned int i;
if (!t)
return;
/* free the indexes */
if (t->depth >= 2)
vfree(t->index[t->depth - 2]);
/* free the targets */
for (i = 0; i < t->num_targets; i++) {
struct dm_target *tgt = t->targets + i;
if (tgt->type->dtr)
tgt->type->dtr(tgt);
dm_put_target_type(tgt->type);
}
vfree(t->highs);
/* free the device list */
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
free_devices(&t->devices, t->md);
dm_free_md_mempools(t->mempools);
kfree(t);
}
/*
* See if we've already got a device in the list.
*/
static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
{
struct dm_dev_internal *dd;
list_for_each_entry (dd, l, list)
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
if (dd->dm_dev->bdev->bd_dev == dev)
return dd;
return NULL;
}
/*
* If possible, this checks an area of a destination device is invalid.
*/
static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct request_queue *q;
struct queue_limits *limits = data;
struct block_device *bdev = dev->bdev;
sector_t dev_size =
i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
unsigned short logical_block_size_sectors =
limits->logical_block_size >> SECTOR_SHIFT;
char b[BDEVNAME_SIZE];
/*
* Some devices exist without request functions,
* such as loop devices not yet bound to backing files.
* Forbid the use of such devices.
*/
q = bdev_get_queue(bdev);
if (!q || !q->make_request_fn) {
DMWARN("%s: %s is not yet initialised: "
"start=%llu, len=%llu, dev_size=%llu",
dm_device_name(ti->table->md), bdevname(bdev, b),
(unsigned long long)start,
(unsigned long long)len,
(unsigned long long)dev_size);
return 1;
}
if (!dev_size)
return 0;
if ((start >= dev_size) || (start + len > dev_size)) {
DMWARN("%s: %s too small for target: "
"start=%llu, len=%llu, dev_size=%llu",
dm_device_name(ti->table->md), bdevname(bdev, b),
(unsigned long long)start,
(unsigned long long)len,
(unsigned long long)dev_size);
return 1;
}
if (logical_block_size_sectors <= 1)
return 0;
if (start & (logical_block_size_sectors - 1)) {
DMWARN("%s: start=%llu not aligned to h/w "
"logical block size %u of %s",
dm_device_name(ti->table->md),
(unsigned long long)start,
limits->logical_block_size, bdevname(bdev, b));
return 1;
}
if (len & (logical_block_size_sectors - 1)) {
DMWARN("%s: len=%llu not aligned to h/w "
"logical block size %u of %s",
dm_device_name(ti->table->md),
(unsigned long long)len,
limits->logical_block_size, bdevname(bdev, b));
return 1;
}
return 0;
}
/*
* This upgrades the mode on an already open dm_dev, being
* careful to leave things as they were if we fail to reopen the
* device and not to touch the existing bdev field in case
* it is accessed concurrently inside dm_table_any_congested().
*/
static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
struct mapped_device *md)
{
int r;
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
struct dm_dev *old_dev, *new_dev;
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
old_dev = dd->dm_dev;
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
dd->dm_dev->mode | new_mode, &new_dev);
if (r)
return r;
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
dd->dm_dev = new_dev;
dm_put_table_device(md, old_dev);
return 0;
}
dm snapshot: disallow the COW and origin devices from being identical Otherwise loading a "snapshot" table using the same device for the origin and COW devices, e.g.: echo "0 20971520 snapshot 253:3 253:3 P 8" | dmsetup create snap will trigger: BUG: unable to handle kernel NULL pointer dereference at 0000000000000098 [ 1958.979934] IP: [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1958.989655] PGD 0 [ 1958.991903] Oops: 0000 [#1] SMP ... [ 1959.059647] CPU: 9 PID: 3556 Comm: dmsetup Tainted: G IO 4.5.0-rc5.snitm+ #150 ... [ 1959.083517] task: ffff8800b9660c80 ti: ffff88032a954000 task.ti: ffff88032a954000 [ 1959.091865] RIP: 0010:[<ffffffffa040efba>] [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1959.104295] RSP: 0018:ffff88032a957b30 EFLAGS: 00010246 [ 1959.110219] RAX: 0000000000000000 RBX: 0000000000000008 RCX: 0000000000000001 [ 1959.118180] RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffff880329334a00 [ 1959.126141] RBP: ffff88032a957b50 R08: 0000000000000000 R09: 0000000000000001 [ 1959.134102] R10: 000000000000000a R11: f000000000000000 R12: ffff880330884d80 [ 1959.142061] R13: 0000000000000008 R14: ffffc90001c13088 R15: ffff880330884d80 [ 1959.150021] FS: 00007f8926ba3840(0000) GS:ffff880333440000(0000) knlGS:0000000000000000 [ 1959.159047] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1959.165456] CR2: 0000000000000098 CR3: 000000032f48b000 CR4: 00000000000006e0 [ 1959.173415] Stack: [ 1959.175656] ffffc90001c13040 ffff880329334a00 ffff880330884ed0 ffff88032a957bdc [ 1959.183946] ffff88032a957bb8 ffffffffa040f225 ffff880329334a30 ffff880300000000 [ 1959.192233] ffffffffa04133e0 ffff880329334b30 0000000830884d58 00000000569c58cf [ 1959.200521] Call Trace: [ 1959.203248] [<ffffffffa040f225>] dm_exception_store_create+0x1d5/0x240 [dm_snapshot] [ 1959.211986] [<ffffffffa040d310>] snapshot_ctr+0x140/0x630 [dm_snapshot] [ 1959.219469] [<ffffffffa0005c44>] ? dm_split_args+0x64/0x150 [dm_mod] [ 1959.226656] [<ffffffffa0005ea7>] dm_table_add_target+0x177/0x440 [dm_mod] [ 1959.234328] [<ffffffffa0009203>] table_load+0x143/0x370 [dm_mod] [ 1959.241129] [<ffffffffa00090c0>] ? retrieve_status+0x1b0/0x1b0 [dm_mod] [ 1959.248607] [<ffffffffa0009e35>] ctl_ioctl+0x255/0x4d0 [dm_mod] [ 1959.255307] [<ffffffff813304e2>] ? memzero_explicit+0x12/0x20 [ 1959.261816] [<ffffffffa000a0c3>] dm_ctl_ioctl+0x13/0x20 [dm_mod] [ 1959.268615] [<ffffffff81215eb6>] do_vfs_ioctl+0xa6/0x5c0 [ 1959.274637] [<ffffffff81120d2f>] ? __audit_syscall_entry+0xaf/0x100 [ 1959.281726] [<ffffffff81003176>] ? do_audit_syscall_entry+0x66/0x70 [ 1959.288814] [<ffffffff81216449>] SyS_ioctl+0x79/0x90 [ 1959.294450] [<ffffffff8167e4ae>] entry_SYSCALL_64_fastpath+0x12/0x71 ... [ 1959.323277] RIP [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1959.333090] RSP <ffff88032a957b30> [ 1959.336978] CR2: 0000000000000098 [ 1959.344121] ---[ end trace b049991ccad1169e ]--- Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1195899 Cc: stable@vger.kernel.org Signed-off-by: Ding Xiang <dingxiang@huawei.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2016-02-02 12:29:18 +08:00
/*
* Convert the path to a device
*/
dev_t dm_get_dev_t(const char *path)
{
dev_t uninitialized_var(dev);
struct block_device *bdev;
bdev = lookup_bdev(path);
if (IS_ERR(bdev))
dev = name_to_dev_t(path);
else {
dev = bdev->bd_dev;
bdput(bdev);
}
return dev;
}
EXPORT_SYMBOL_GPL(dm_get_dev_t);
/*
* Add a device to the list, or just increment the usage count if
* it's already present.
*/
int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
struct dm_dev **result)
{
int r;
dm snapshot: disallow the COW and origin devices from being identical Otherwise loading a "snapshot" table using the same device for the origin and COW devices, e.g.: echo "0 20971520 snapshot 253:3 253:3 P 8" | dmsetup create snap will trigger: BUG: unable to handle kernel NULL pointer dereference at 0000000000000098 [ 1958.979934] IP: [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1958.989655] PGD 0 [ 1958.991903] Oops: 0000 [#1] SMP ... [ 1959.059647] CPU: 9 PID: 3556 Comm: dmsetup Tainted: G IO 4.5.0-rc5.snitm+ #150 ... [ 1959.083517] task: ffff8800b9660c80 ti: ffff88032a954000 task.ti: ffff88032a954000 [ 1959.091865] RIP: 0010:[<ffffffffa040efba>] [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1959.104295] RSP: 0018:ffff88032a957b30 EFLAGS: 00010246 [ 1959.110219] RAX: 0000000000000000 RBX: 0000000000000008 RCX: 0000000000000001 [ 1959.118180] RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffff880329334a00 [ 1959.126141] RBP: ffff88032a957b50 R08: 0000000000000000 R09: 0000000000000001 [ 1959.134102] R10: 000000000000000a R11: f000000000000000 R12: ffff880330884d80 [ 1959.142061] R13: 0000000000000008 R14: ffffc90001c13088 R15: ffff880330884d80 [ 1959.150021] FS: 00007f8926ba3840(0000) GS:ffff880333440000(0000) knlGS:0000000000000000 [ 1959.159047] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1959.165456] CR2: 0000000000000098 CR3: 000000032f48b000 CR4: 00000000000006e0 [ 1959.173415] Stack: [ 1959.175656] ffffc90001c13040 ffff880329334a00 ffff880330884ed0 ffff88032a957bdc [ 1959.183946] ffff88032a957bb8 ffffffffa040f225 ffff880329334a30 ffff880300000000 [ 1959.192233] ffffffffa04133e0 ffff880329334b30 0000000830884d58 00000000569c58cf [ 1959.200521] Call Trace: [ 1959.203248] [<ffffffffa040f225>] dm_exception_store_create+0x1d5/0x240 [dm_snapshot] [ 1959.211986] [<ffffffffa040d310>] snapshot_ctr+0x140/0x630 [dm_snapshot] [ 1959.219469] [<ffffffffa0005c44>] ? dm_split_args+0x64/0x150 [dm_mod] [ 1959.226656] [<ffffffffa0005ea7>] dm_table_add_target+0x177/0x440 [dm_mod] [ 1959.234328] [<ffffffffa0009203>] table_load+0x143/0x370 [dm_mod] [ 1959.241129] [<ffffffffa00090c0>] ? retrieve_status+0x1b0/0x1b0 [dm_mod] [ 1959.248607] [<ffffffffa0009e35>] ctl_ioctl+0x255/0x4d0 [dm_mod] [ 1959.255307] [<ffffffff813304e2>] ? memzero_explicit+0x12/0x20 [ 1959.261816] [<ffffffffa000a0c3>] dm_ctl_ioctl+0x13/0x20 [dm_mod] [ 1959.268615] [<ffffffff81215eb6>] do_vfs_ioctl+0xa6/0x5c0 [ 1959.274637] [<ffffffff81120d2f>] ? __audit_syscall_entry+0xaf/0x100 [ 1959.281726] [<ffffffff81003176>] ? do_audit_syscall_entry+0x66/0x70 [ 1959.288814] [<ffffffff81216449>] SyS_ioctl+0x79/0x90 [ 1959.294450] [<ffffffff8167e4ae>] entry_SYSCALL_64_fastpath+0x12/0x71 ... [ 1959.323277] RIP [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1959.333090] RSP <ffff88032a957b30> [ 1959.336978] CR2: 0000000000000098 [ 1959.344121] ---[ end trace b049991ccad1169e ]--- Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1195899 Cc: stable@vger.kernel.org Signed-off-by: Ding Xiang <dingxiang@huawei.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2016-02-02 12:29:18 +08:00
dev_t dev;
struct dm_dev_internal *dd;
struct dm_table *t = ti->table;
BUG_ON(!t);
dm snapshot: disallow the COW and origin devices from being identical Otherwise loading a "snapshot" table using the same device for the origin and COW devices, e.g.: echo "0 20971520 snapshot 253:3 253:3 P 8" | dmsetup create snap will trigger: BUG: unable to handle kernel NULL pointer dereference at 0000000000000098 [ 1958.979934] IP: [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1958.989655] PGD 0 [ 1958.991903] Oops: 0000 [#1] SMP ... [ 1959.059647] CPU: 9 PID: 3556 Comm: dmsetup Tainted: G IO 4.5.0-rc5.snitm+ #150 ... [ 1959.083517] task: ffff8800b9660c80 ti: ffff88032a954000 task.ti: ffff88032a954000 [ 1959.091865] RIP: 0010:[<ffffffffa040efba>] [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1959.104295] RSP: 0018:ffff88032a957b30 EFLAGS: 00010246 [ 1959.110219] RAX: 0000000000000000 RBX: 0000000000000008 RCX: 0000000000000001 [ 1959.118180] RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffff880329334a00 [ 1959.126141] RBP: ffff88032a957b50 R08: 0000000000000000 R09: 0000000000000001 [ 1959.134102] R10: 000000000000000a R11: f000000000000000 R12: ffff880330884d80 [ 1959.142061] R13: 0000000000000008 R14: ffffc90001c13088 R15: ffff880330884d80 [ 1959.150021] FS: 00007f8926ba3840(0000) GS:ffff880333440000(0000) knlGS:0000000000000000 [ 1959.159047] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1959.165456] CR2: 0000000000000098 CR3: 000000032f48b000 CR4: 00000000000006e0 [ 1959.173415] Stack: [ 1959.175656] ffffc90001c13040 ffff880329334a00 ffff880330884ed0 ffff88032a957bdc [ 1959.183946] ffff88032a957bb8 ffffffffa040f225 ffff880329334a30 ffff880300000000 [ 1959.192233] ffffffffa04133e0 ffff880329334b30 0000000830884d58 00000000569c58cf [ 1959.200521] Call Trace: [ 1959.203248] [<ffffffffa040f225>] dm_exception_store_create+0x1d5/0x240 [dm_snapshot] [ 1959.211986] [<ffffffffa040d310>] snapshot_ctr+0x140/0x630 [dm_snapshot] [ 1959.219469] [<ffffffffa0005c44>] ? dm_split_args+0x64/0x150 [dm_mod] [ 1959.226656] [<ffffffffa0005ea7>] dm_table_add_target+0x177/0x440 [dm_mod] [ 1959.234328] [<ffffffffa0009203>] table_load+0x143/0x370 [dm_mod] [ 1959.241129] [<ffffffffa00090c0>] ? retrieve_status+0x1b0/0x1b0 [dm_mod] [ 1959.248607] [<ffffffffa0009e35>] ctl_ioctl+0x255/0x4d0 [dm_mod] [ 1959.255307] [<ffffffff813304e2>] ? memzero_explicit+0x12/0x20 [ 1959.261816] [<ffffffffa000a0c3>] dm_ctl_ioctl+0x13/0x20 [dm_mod] [ 1959.268615] [<ffffffff81215eb6>] do_vfs_ioctl+0xa6/0x5c0 [ 1959.274637] [<ffffffff81120d2f>] ? __audit_syscall_entry+0xaf/0x100 [ 1959.281726] [<ffffffff81003176>] ? do_audit_syscall_entry+0x66/0x70 [ 1959.288814] [<ffffffff81216449>] SyS_ioctl+0x79/0x90 [ 1959.294450] [<ffffffff8167e4ae>] entry_SYSCALL_64_fastpath+0x12/0x71 ... [ 1959.323277] RIP [<ffffffffa040efba>] dm_exception_store_set_chunk_size+0x7a/0x110 [dm_snapshot] [ 1959.333090] RSP <ffff88032a957b30> [ 1959.336978] CR2: 0000000000000098 [ 1959.344121] ---[ end trace b049991ccad1169e ]--- Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1195899 Cc: stable@vger.kernel.org Signed-off-by: Ding Xiang <dingxiang@huawei.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2016-02-02 12:29:18 +08:00
dev = dm_get_dev_t(path);
if (!dev)
return -ENODEV;
dd = find_device(&t->devices, dev);
if (!dd) {
dd = kmalloc(sizeof(*dd), GFP_KERNEL);
if (!dd)
return -ENOMEM;
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
kfree(dd);
return r;
}
atomic_set(&dd->count, 0);
list_add(&dd->list, &t->devices);
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
r = upgrade_mode(dd, mode, t->md);
if (r)
return r;
}
atomic_inc(&dd->count);
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
*result = dd->dm_dev;
return 0;
}
EXPORT_SYMBOL(dm_get_device);
static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct queue_limits *limits = data;
struct block_device *bdev = dev->bdev;
struct request_queue *q = bdev_get_queue(bdev);
char b[BDEVNAME_SIZE];
if (unlikely(!q)) {
DMWARN("%s: Cannot set limits for nonexistent device %s",
dm_device_name(ti->table->md), bdevname(bdev, b));
return 0;
}
if (bdev_stack_limits(limits, bdev, start) < 0)
DMWARN("%s: adding target device %s caused an alignment inconsistency: "
"physical_block_size=%u, logical_block_size=%u, "
"alignment_offset=%u, start=%llu",
dm_device_name(ti->table->md), bdevname(bdev, b),
q->limits.physical_block_size,
q->limits.logical_block_size,
q->limits.alignment_offset,
(unsigned long long) start << SECTOR_SHIFT);
return 0;
}
/*
* Decrement a device's use count and remove it if necessary.
*/
void dm_put_device(struct dm_target *ti, struct dm_dev *d)
{
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
int found = 0;
struct list_head *devices = &ti->table->devices;
struct dm_dev_internal *dd;
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
list_for_each_entry(dd, devices, list) {
if (dd->dm_dev == d) {
found = 1;
break;
}
}
if (!found) {
DMWARN("%s: device %s not in table devices list",
dm_device_name(ti->table->md), d->name);
return;
}
if (atomic_dec_and_test(&dd->count)) {
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
dm_put_table_device(ti->table->md, d);
list_del(&dd->list);
kfree(dd);
}
}
EXPORT_SYMBOL(dm_put_device);
/*
* Checks to see if the target joins onto the end of the table.
*/
static int adjoin(struct dm_table *table, struct dm_target *ti)
{
struct dm_target *prev;
if (!table->num_targets)
return !ti->begin;
prev = &table->targets[table->num_targets - 1];
return (ti->begin == (prev->begin + prev->len));
}
/*
* Used to dynamically allocate the arg array.
*
* We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
* process messages even if some device is suspended. These messages have a
* small fixed number of arguments.
*
* On the other hand, dm-switch needs to process bulk data using messages and
* excessive use of GFP_NOIO could cause trouble.
*/
static char **realloc_argv(unsigned *array_size, char **old_argv)
{
char **argv;
unsigned new_size;
gfp_t gfp;
if (*array_size) {
new_size = *array_size * 2;
gfp = GFP_KERNEL;
} else {
new_size = 8;
gfp = GFP_NOIO;
}
argv = kmalloc(new_size * sizeof(*argv), gfp);
if (argv) {
memcpy(argv, old_argv, *array_size * sizeof(*argv));
*array_size = new_size;
}
kfree(old_argv);
return argv;
}
/*
* Destructively splits up the argument list to pass to ctr.
*/
int dm_split_args(int *argc, char ***argvp, char *input)
{
char *start, *end = input, *out, **argv = NULL;
unsigned array_size = 0;
*argc = 0;
if (!input) {
*argvp = NULL;
return 0;
}
argv = realloc_argv(&array_size, argv);
if (!argv)
return -ENOMEM;
while (1) {
/* Skip whitespace */
tree-wide: convert open calls to remove spaces to skip_spaces() lib function Makes use of skip_spaces() defined in lib/string.c for removing leading spaces from strings all over the tree. It decreases lib.a code size by 47 bytes and reuses the function tree-wide: text data bss dec hex filename 64688 584 592 65864 10148 (TOTALS-BEFORE) 64641 584 592 65817 10119 (TOTALS-AFTER) Also, while at it, if we see (*str && isspace(*str)), we can be sure to remove the first condition (*str) as the second one (isspace(*str)) also evaluates to 0 whenever *str == 0, making it redundant. In other words, "a char equals zero is never a space". Julia Lawall tried the semantic patch (http://coccinelle.lip6.fr) below, and found occurrences of this pattern on 3 more files: drivers/leds/led-class.c drivers/leds/ledtrig-timer.c drivers/video/output.c @@ expression str; @@ ( // ignore skip_spaces cases while (*str && isspace(*str)) { \(str++;\|++str;\) } | - *str && isspace(*str) ) Signed-off-by: André Goddard Rosa <andre.goddard@gmail.com> Cc: Julia Lawall <julia@diku.dk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Neil Brown <neilb@suse.de> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Cc: David Howells <dhowells@redhat.com> Cc: <linux-ext4@vger.kernel.org> Cc: Samuel Ortiz <samuel@sortiz.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Takashi Iwai <tiwai@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 10:01:06 +08:00
start = skip_spaces(end);
if (!*start)
break; /* success, we hit the end */
/* 'out' is used to remove any back-quotes */
end = out = start;
while (*end) {
/* Everything apart from '\0' can be quoted */
if (*end == '\\' && *(end + 1)) {
*out++ = *(end + 1);
end += 2;
continue;
}
if (isspace(*end))
break; /* end of token */
*out++ = *end++;
}
/* have we already filled the array ? */
if ((*argc + 1) > array_size) {
argv = realloc_argv(&array_size, argv);
if (!argv)
return -ENOMEM;
}
/* we know this is whitespace */
if (*end)
end++;
/* terminate the string and put it in the array */
*out = '\0';
argv[*argc] = start;
(*argc)++;
}
*argvp = argv;
return 0;
}
/*
* Impose necessary and sufficient conditions on a devices's table such
* that any incoming bio which respects its logical_block_size can be
* processed successfully. If it falls across the boundary between
* two or more targets, the size of each piece it gets split into must
* be compatible with the logical_block_size of the target processing it.
*/
static int validate_hardware_logical_block_alignment(struct dm_table *table,
struct queue_limits *limits)
{
/*
* This function uses arithmetic modulo the logical_block_size
* (in units of 512-byte sectors).
*/
unsigned short device_logical_block_size_sects =
limits->logical_block_size >> SECTOR_SHIFT;
/*
* Offset of the start of the next table entry, mod logical_block_size.
*/
unsigned short next_target_start = 0;
/*
* Given an aligned bio that extends beyond the end of a
* target, how many sectors must the next target handle?
*/
unsigned short remaining = 0;
struct dm_target *uninitialized_var(ti);
struct queue_limits ti_limits;
unsigned i = 0;
/*
* Check each entry in the table in turn.
*/
while (i < dm_table_get_num_targets(table)) {
ti = dm_table_get_target(table, i++);
blk_set_stacking_limits(&ti_limits);
/* combine all target devices' limits */
if (ti->type->iterate_devices)
ti->type->iterate_devices(ti, dm_set_device_limits,
&ti_limits);
/*
* If the remaining sectors fall entirely within this
* table entry are they compatible with its logical_block_size?
*/
if (remaining < ti->len &&
remaining & ((ti_limits.logical_block_size >>
SECTOR_SHIFT) - 1))
break; /* Error */
next_target_start =
(unsigned short) ((next_target_start + ti->len) &
(device_logical_block_size_sects - 1));
remaining = next_target_start ?
device_logical_block_size_sects - next_target_start : 0;
}
if (remaining) {
DMWARN("%s: table line %u (start sect %llu len %llu) "
"not aligned to h/w logical block size %u",
dm_device_name(table->md), i,
(unsigned long long) ti->begin,
(unsigned long long) ti->len,
limits->logical_block_size);
return -EINVAL;
}
return 0;
}
int dm_table_add_target(struct dm_table *t, const char *type,
sector_t start, sector_t len, char *params)
{
int r = -EINVAL, argc;
char **argv;
struct dm_target *tgt;
if (t->singleton) {
DMERR("%s: target type %s must appear alone in table",
dm_device_name(t->md), t->targets->type->name);
return -EINVAL;
}
BUG_ON(t->num_targets >= t->num_allocated);
tgt = t->targets + t->num_targets;
memset(tgt, 0, sizeof(*tgt));
if (!len) {
DMERR("%s: zero-length target", dm_device_name(t->md));
return -EINVAL;
}
tgt->type = dm_get_target_type(type);
if (!tgt->type) {
DMERR("%s: %s: unknown target type", dm_device_name(t->md),
type);
return -EINVAL;
}
if (dm_target_needs_singleton(tgt->type)) {
if (t->num_targets) {
DMERR("%s: target type %s must appear alone in table",
dm_device_name(t->md), type);
return -EINVAL;
}
t->singleton = 1;
}
if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
DMERR("%s: target type %s may not be included in read-only tables",
dm_device_name(t->md), type);
return -EINVAL;
}
if (t->immutable_target_type) {
if (t->immutable_target_type != tgt->type) {
DMERR("%s: immutable target type %s cannot be mixed with other target types",
dm_device_name(t->md), t->immutable_target_type->name);
return -EINVAL;
}
} else if (dm_target_is_immutable(tgt->type)) {
if (t->num_targets) {
DMERR("%s: immutable target type %s cannot be mixed with other target types",
dm_device_name(t->md), tgt->type->name);
return -EINVAL;
}
t->immutable_target_type = tgt->type;
}
tgt->table = t;
tgt->begin = start;
tgt->len = len;
tgt->error = "Unknown error";
/*
* Does this target adjoin the previous one ?
*/
if (!adjoin(t, tgt)) {
tgt->error = "Gap in table";
r = -EINVAL;
goto bad;
}
r = dm_split_args(&argc, &argv, params);
if (r) {
tgt->error = "couldn't split parameters (insufficient memory)";
goto bad;
}
r = tgt->type->ctr(tgt, argc, argv);
kfree(argv);
if (r)
goto bad;
t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
if (!tgt->num_discard_bios && tgt->discards_supported)
DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
dm_device_name(t->md), type);
return 0;
bad:
DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
dm_put_target_type(tgt->type);
return r;
}
/*
* Target argument parsing helpers.
*/
static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
unsigned *value, char **error, unsigned grouped)
{
const char *arg_str = dm_shift_arg(arg_set);
char dummy;
if (!arg_str ||
(sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
(*value < arg->min) ||
(*value > arg->max) ||
(grouped && arg_set->argc < *value)) {
*error = arg->error;
return -EINVAL;
}
return 0;
}
int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
unsigned *value, char **error)
{
return validate_next_arg(arg, arg_set, value, error, 0);
}
EXPORT_SYMBOL(dm_read_arg);
int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
unsigned *value, char **error)
{
return validate_next_arg(arg, arg_set, value, error, 1);
}
EXPORT_SYMBOL(dm_read_arg_group);
const char *dm_shift_arg(struct dm_arg_set *as)
{
char *r;
if (as->argc) {
as->argc--;
r = *as->argv;
as->argv++;
return r;
}
return NULL;
}
EXPORT_SYMBOL(dm_shift_arg);
void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
{
BUG_ON(as->argc < num_args);
as->argc -= num_args;
as->argv += num_args;
}
EXPORT_SYMBOL(dm_consume_args);
static bool __table_type_request_based(unsigned table_type)
{
return (table_type == DM_TYPE_REQUEST_BASED ||
table_type == DM_TYPE_MQ_REQUEST_BASED);
}
static int dm_table_set_type(struct dm_table *t)
{
unsigned i;
unsigned bio_based = 0, request_based = 0, hybrid = 0;
2014-12-18 10:08:12 +08:00
bool use_blk_mq = false;
struct dm_target *tgt;
struct dm_dev_internal *dd;
struct list_head *devices;
unsigned live_md_type = dm_get_md_type(t->md);
for (i = 0; i < t->num_targets; i++) {
tgt = t->targets + i;
if (dm_target_hybrid(tgt))
hybrid = 1;
else if (dm_target_request_based(tgt))
request_based = 1;
else
bio_based = 1;
if (bio_based && request_based) {
DMWARN("Inconsistent table: different target types"
" can't be mixed up");
return -EINVAL;
}
}
if (hybrid && !bio_based && !request_based) {
/*
* The targets can work either way.
* Determine the type from the live device.
* Default to bio-based if device is new.
*/
if (__table_type_request_based(live_md_type))
request_based = 1;
else
bio_based = 1;
}
if (bio_based) {
/* We must use this table as bio-based */
t->type = DM_TYPE_BIO_BASED;
return 0;
}
BUG_ON(!request_based); /* No targets in this table */
/*
* Request-based dm supports only tables that have a single target now.
* To support multiple targets, request splitting support is needed,
* and that needs lots of changes in the block-layer.
* (e.g. request completion process for partial completion.)
*/
if (t->num_targets > 1) {
DMWARN("Request-based dm doesn't support multiple targets yet");
return -EINVAL;
}
/* Non-request-stackable devices can't be used for request-based dm */
devices = dm_table_get_devices(t);
list_for_each_entry(dd, devices, list) {
2014-12-18 10:08:12 +08:00
struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
if (!blk_queue_stackable(q)) {
DMERR("table load rejected: including"
" non-request-stackable devices");
return -EINVAL;
}
2014-12-18 10:08:12 +08:00
if (q->mq_ops)
use_blk_mq = true;
}
if (use_blk_mq) {
/* verify _all_ devices in the table are blk-mq devices */
list_for_each_entry(dd, devices, list)
if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
DMERR("table load rejected: not all devices"
" are blk-mq request-stackable");
return -EINVAL;
}
t->type = DM_TYPE_MQ_REQUEST_BASED;
} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
/* inherit live MD type */
t->type = live_md_type;
} else
t->type = DM_TYPE_REQUEST_BASED;
return 0;
}
unsigned dm_table_get_type(struct dm_table *t)
{
return t->type;
}
struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
{
return t->immutable_target_type;
}
struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
{
/* Immutable target is implicitly a singleton */
if (t->num_targets > 1 ||
!dm_target_is_immutable(t->targets[0].type))
return NULL;
return t->targets;
}
struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
{
struct dm_target *uninitialized_var(ti);
unsigned i = 0;
while (i < dm_table_get_num_targets(t)) {
ti = dm_table_get_target(t, i++);
if (dm_target_is_wildcard(ti->type))
return ti;
}
return NULL;
}
bool dm_table_request_based(struct dm_table *t)
{
return __table_type_request_based(dm_table_get_type(t));
2014-12-18 10:08:12 +08:00
}
bool dm_table_mq_request_based(struct dm_table *t)
{
return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
}
static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
{
unsigned type = dm_table_get_type(t);
unsigned per_io_data_size = 0;
struct dm_target *tgt;
unsigned i;
if (unlikely(type == DM_TYPE_NONE)) {
DMWARN("no table type is set, can't allocate mempools");
return -EINVAL;
}
if (type == DM_TYPE_BIO_BASED)
for (i = 0; i < t->num_targets; i++) {
tgt = t->targets + i;
per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
}
t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
if (!t->mempools)
return -ENOMEM;
return 0;
}
void dm_table_free_md_mempools(struct dm_table *t)
{
dm_free_md_mempools(t->mempools);
t->mempools = NULL;
}
struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
{
return t->mempools;
}
static int setup_indexes(struct dm_table *t)
{
int i;
unsigned int total = 0;
sector_t *indexes;
/* allocate the space for *all* the indexes */
for (i = t->depth - 2; i >= 0; i--) {
t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
total += t->counts[i];
}
indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
if (!indexes)
return -ENOMEM;
/* set up internal nodes, bottom-up */
for (i = t->depth - 2; i >= 0; i--) {
t->index[i] = indexes;
indexes += (KEYS_PER_NODE * t->counts[i]);
setup_btree_index(i, t);
}
return 0;
}
/*
* Builds the btree to index the map.
*/
static int dm_table_build_index(struct dm_table *t)
{
int r = 0;
unsigned int leaf_nodes;
/* how many indexes will the btree have ? */
leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
/* leaf layer has already been set up */
t->counts[t->depth - 1] = leaf_nodes;
t->index[t->depth - 1] = t->highs;
if (t->depth >= 2)
r = setup_indexes(t);
return r;
}
static bool integrity_profile_exists(struct gendisk *disk)
{
return !!blk_get_integrity(disk);
}
/*
* Get a disk whose integrity profile reflects the table's profile.
* Returns NULL if integrity support was inconsistent or unavailable.
*/
static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
{
struct list_head *devices = dm_table_get_devices(t);
struct dm_dev_internal *dd = NULL;
struct gendisk *prev_disk = NULL, *template_disk = NULL;
list_for_each_entry(dd, devices, list) {
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
template_disk = dd->dm_dev->bdev->bd_disk;
if (!integrity_profile_exists(template_disk))
goto no_integrity;
else if (prev_disk &&
blk_integrity_compare(prev_disk, template_disk) < 0)
goto no_integrity;
prev_disk = template_disk;
}
return template_disk;
no_integrity:
if (prev_disk)
DMWARN("%s: integrity not set: %s and %s profile mismatch",
dm_device_name(t->md),
prev_disk->disk_name,
template_disk->disk_name);
return NULL;
}
/*
* Register the mapped device for blk_integrity support if the
* underlying devices have an integrity profile. But all devices may
* not have matching profiles (checking all devices isn't reliable
* during table load because this table may use other DM device(s) which
* must be resumed before they will have an initialized integity
* profile). Consequently, stacked DM devices force a 2 stage integrity
* profile validation: First pass during table load, final pass during
* resume.
*/
static int dm_table_register_integrity(struct dm_table *t)
{
struct mapped_device *md = t->md;
struct gendisk *template_disk = NULL;
template_disk = dm_table_get_integrity_disk(t);
if (!template_disk)
return 0;
if (!integrity_profile_exists(dm_disk(md))) {
t->integrity_supported = 1;
/*
* Register integrity profile during table load; we can do
* this because the final profile must match during resume.
*/
blk_integrity_register(dm_disk(md),
blk_get_integrity(template_disk));
return 0;
}
/*
* If DM device already has an initialized integrity
* profile the new profile should not conflict.
*/
if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
DMWARN("%s: conflict with existing integrity profile: "
"%s profile mismatch",
dm_device_name(t->md),
template_disk->disk_name);
return 1;
}
/* Preserve existing integrity profile */
t->integrity_supported = 1;
return 0;
}
/*
* Prepares the table for use by building the indices,
* setting the type, and allocating mempools.
*/
int dm_table_complete(struct dm_table *t)
{
int r;
r = dm_table_set_type(t);
if (r) {
DMERR("unable to set table type");
return r;
}
r = dm_table_build_index(t);
if (r) {
DMERR("unable to build btrees");
return r;
}
r = dm_table_register_integrity(t);
if (r) {
DMERR("could not register integrity profile.");
return r;
}
r = dm_table_alloc_md_mempools(t, t->md);
if (r)
DMERR("unable to allocate mempools");
return r;
}
static DEFINE_MUTEX(_event_lock);
void dm_table_event_callback(struct dm_table *t,
void (*fn)(void *), void *context)
{
mutex_lock(&_event_lock);
t->event_fn = fn;
t->event_context = context;
mutex_unlock(&_event_lock);
}
void dm_table_event(struct dm_table *t)
{
/*
* You can no longer call dm_table_event() from interrupt
* context, use a bottom half instead.
*/
BUG_ON(in_interrupt());
mutex_lock(&_event_lock);
if (t->event_fn)
t->event_fn(t->event_context);
mutex_unlock(&_event_lock);
}
EXPORT_SYMBOL(dm_table_event);
sector_t dm_table_get_size(struct dm_table *t)
{
return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
}
EXPORT_SYMBOL(dm_table_get_size);
struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
{
if (index >= t->num_targets)
return NULL;
return t->targets + index;
}
/*
* Search the btree for the correct target.
*
* Caller should check returned pointer with dm_target_is_valid()
* to trap I/O beyond end of device.
*/
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
{
unsigned int l, n = 0, k = 0;
sector_t *node;
for (l = 0; l < t->depth; l++) {
n = get_child(n, k);
node = get_node(t, l, n);
for (k = 0; k < KEYS_PER_NODE; k++)
if (node[k] >= sector)
break;
}
return &t->targets[(KEYS_PER_NODE * n) + k];
}
static int count_device(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
unsigned *num_devices = data;
(*num_devices)++;
return 0;
}
/*
* Check whether a table has no data devices attached using each
* target's iterate_devices method.
* Returns false if the result is unknown because a target doesn't
* support iterate_devices.
*/
bool dm_table_has_no_data_devices(struct dm_table *table)
{
struct dm_target *uninitialized_var(ti);
unsigned i = 0, num_devices = 0;
while (i < dm_table_get_num_targets(table)) {
ti = dm_table_get_target(table, i++);
if (!ti->type->iterate_devices)
return false;
ti->type->iterate_devices(ti, count_device, &num_devices);
if (num_devices)
return false;
}
return true;
}
/*
* Establish the new table's queue_limits and validate them.
*/
int dm_calculate_queue_limits(struct dm_table *table,
struct queue_limits *limits)
{
struct dm_target *uninitialized_var(ti);
struct queue_limits ti_limits;
unsigned i = 0;
blk_set_stacking_limits(limits);
while (i < dm_table_get_num_targets(table)) {
blk_set_stacking_limits(&ti_limits);
ti = dm_table_get_target(table, i++);
if (!ti->type->iterate_devices)
goto combine_limits;
/*
* Combine queue limits of all the devices this target uses.
*/
ti->type->iterate_devices(ti, dm_set_device_limits,
&ti_limits);
/* Set I/O hints portion of queue limits */
if (ti->type->io_hints)
ti->type->io_hints(ti, &ti_limits);
/*
* Check each device area is consistent with the target's
* overall queue limits.
*/
if (ti->type->iterate_devices(ti, device_area_is_invalid,
&ti_limits))
return -EINVAL;
combine_limits:
/*
* Merge this target's queue limits into the overall limits
* for the table.
*/
if (blk_stack_limits(limits, &ti_limits, 0) < 0)
DMWARN("%s: adding target device "
"(start sect %llu len %llu) "
"caused an alignment inconsistency",
dm_device_name(table->md),
(unsigned long long) ti->begin,
(unsigned long long) ti->len);
}
return validate_hardware_logical_block_alignment(table, limits);
}
/*
* Verify that all devices have an integrity profile that matches the
* DM device's registered integrity profile. If the profiles don't
* match then unregister the DM device's integrity profile.
*/
static void dm_table_verify_integrity(struct dm_table *t)
{
struct gendisk *template_disk = NULL;
if (t->integrity_supported) {
/*
* Verify that the original integrity profile
* matches all the devices in this table.
*/
template_disk = dm_table_get_integrity_disk(t);
if (template_disk &&
blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
return;
}
if (integrity_profile_exists(dm_disk(t->md))) {
DMWARN("%s: unable to establish an integrity profile",
dm_device_name(t->md));
blk_integrity_unregister(dm_disk(t->md));
}
}
static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
unsigned flush = (*(unsigned *)data);
struct request_queue *q = bdev_get_queue(dev->bdev);
return q && (q->flush_flags & flush);
}
static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
{
struct dm_target *ti;
unsigned i = 0;
/*
* Require at least one underlying device to support flushes.
* t->devices includes internal dm devices such as mirror logs
* so we need to use iterate_devices here, which targets
* supporting flushes must provide.
*/
while (i < dm_table_get_num_targets(t)) {
ti = dm_table_get_target(t, i++);
if (!ti->num_flush_bios)
continue;
if (ti->flush_supported)
return true;
if (ti->type->iterate_devices &&
ti->type->iterate_devices(ti, device_flush_capable, &flush))
return true;
}
return false;
}
static bool dm_table_discard_zeroes_data(struct dm_table *t)
{
struct dm_target *ti;
unsigned i = 0;
/* Ensure that all targets supports discard_zeroes_data. */
while (i < dm_table_get_num_targets(t)) {
ti = dm_table_get_target(t, i++);
if (ti->discard_zeroes_data_unsupported)
return false;
}
return true;
}
static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct request_queue *q = bdev_get_queue(dev->bdev);
return q && blk_queue_nonrot(q);
}
static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct request_queue *q = bdev_get_queue(dev->bdev);
return q && !blk_queue_add_random(q);
}
dm table: propagate QUEUE_FLAG_NO_SG_MERGE Commit 05f1dd5 ("block: add queue flag for disabling SG merging") introduced a new queue flag: QUEUE_FLAG_NO_SG_MERGE. This gets set by default in blk_mq_init_queue for mq-enabled devices. The effect of the flag is to bypass the SG segment merging. Instead, the bio->bi_vcnt is used as the number of hardware segments. With a device mapper target on top of a device with QUEUE_FLAG_NO_SG_MERGE set, we can end up sending down more segments than a driver is prepared to handle. I ran into this when backporting the virtio_blk mq support. It triggerred this BUG_ON, in virtio_queue_rq: BUG_ON(req->nr_phys_segments + 2 > vblk->sg_elems); The queue's max is set here: blk_queue_max_segments(q, vblk->sg_elems-2); Basically, what happens is that a bio is built up for the dm device (which does not have the QUEUE_FLAG_NO_SG_MERGE flag set) using bio_add_page. That path will call into __blk_recalc_rq_segments, so what you end up with is bi_phys_segments being much smaller than bi_vcnt (and bi_vcnt grows beyond the maximum sg elements). Then, when the bio is submitted, it gets cloned. When the cloned bio is submitted, it will end up in blk_recount_segments, here: if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags)) bio->bi_phys_segments = bio->bi_vcnt; and now we've set bio->bi_phys_segments to a number that is beyond what was registered as queue_max_segments by the driver. The right way to fix this is to propagate the queue flag up the stack. The rules for propagating the flag are simple: - if the flag is set for any underlying device, it must be set for the upper device - consequently, if the flag is not set for any underlying device, it should not be set for the upper device. Signed-off-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org # 3.16+
2014-08-08 23:03:41 +08:00
static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct request_queue *q = bdev_get_queue(dev->bdev);
return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
}
static bool dm_table_all_devices_attribute(struct dm_table *t,
iterate_devices_callout_fn func)
{
struct dm_target *ti;
unsigned i = 0;
while (i < dm_table_get_num_targets(t)) {
ti = dm_table_get_target(t, i++);
if (!ti->type->iterate_devices ||
!ti->type->iterate_devices(ti, func, NULL))
return false;
}
return true;
}
static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct request_queue *q = bdev_get_queue(dev->bdev);
return q && !q->limits.max_write_same_sectors;
}
static bool dm_table_supports_write_same(struct dm_table *t)
{
struct dm_target *ti;
unsigned i = 0;
while (i < dm_table_get_num_targets(t)) {
ti = dm_table_get_target(t, i++);
if (!ti->num_write_same_bios)
return false;
if (!ti->type->iterate_devices ||
ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
return false;
}
return true;
}
static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct request_queue *q = bdev_get_queue(dev->bdev);
return q && blk_queue_discard(q);
}
static bool dm_table_supports_discards(struct dm_table *t)
{
struct dm_target *ti;
unsigned i = 0;
/*
* Unless any target used by the table set discards_supported,
* require at least one underlying device to support discards.
* t->devices includes internal dm devices such as mirror logs
* so we need to use iterate_devices here, which targets
* supporting discard selectively must provide.
*/
while (i < dm_table_get_num_targets(t)) {
ti = dm_table_get_target(t, i++);
if (!ti->num_discard_bios)
continue;
if (ti->discards_supported)
return true;
if (ti->type->iterate_devices &&
ti->type->iterate_devices(ti, device_discard_capable, NULL))
return true;
}
return false;
}
void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
struct queue_limits *limits)
{
unsigned flush = 0;
/*
* Copy table's limits to the DM device's request_queue
*/
q->limits = *limits;
if (!dm_table_supports_discards(t))
queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
else
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
if (dm_table_supports_flush(t, REQ_FLUSH)) {
flush |= REQ_FLUSH;
if (dm_table_supports_flush(t, REQ_FUA))
flush |= REQ_FUA;
}
blk_queue_flush(q, flush);
if (!dm_table_discard_zeroes_data(t))
q->limits.discard_zeroes_data = 0;
/* Ensure that all underlying devices are non-rotational. */
if (dm_table_all_devices_attribute(t, device_is_nonrot))
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
else
queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
if (!dm_table_supports_write_same(t))
q->limits.max_write_same_sectors = 0;
dm table: propagate QUEUE_FLAG_NO_SG_MERGE Commit 05f1dd5 ("block: add queue flag for disabling SG merging") introduced a new queue flag: QUEUE_FLAG_NO_SG_MERGE. This gets set by default in blk_mq_init_queue for mq-enabled devices. The effect of the flag is to bypass the SG segment merging. Instead, the bio->bi_vcnt is used as the number of hardware segments. With a device mapper target on top of a device with QUEUE_FLAG_NO_SG_MERGE set, we can end up sending down more segments than a driver is prepared to handle. I ran into this when backporting the virtio_blk mq support. It triggerred this BUG_ON, in virtio_queue_rq: BUG_ON(req->nr_phys_segments + 2 > vblk->sg_elems); The queue's max is set here: blk_queue_max_segments(q, vblk->sg_elems-2); Basically, what happens is that a bio is built up for the dm device (which does not have the QUEUE_FLAG_NO_SG_MERGE flag set) using bio_add_page. That path will call into __blk_recalc_rq_segments, so what you end up with is bi_phys_segments being much smaller than bi_vcnt (and bi_vcnt grows beyond the maximum sg elements). Then, when the bio is submitted, it gets cloned. When the cloned bio is submitted, it will end up in blk_recount_segments, here: if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags)) bio->bi_phys_segments = bio->bi_vcnt; and now we've set bio->bi_phys_segments to a number that is beyond what was registered as queue_max_segments by the driver. The right way to fix this is to propagate the queue flag up the stack. The rules for propagating the flag are simple: - if the flag is set for any underlying device, it must be set for the upper device - consequently, if the flag is not set for any underlying device, it should not be set for the upper device. Signed-off-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org # 3.16+
2014-08-08 23:03:41 +08:00
if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
else
queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
dm_table_verify_integrity(t);
/*
* Determine whether or not this queue's I/O timings contribute
* to the entropy pool, Only request-based targets use this.
* Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
* have it set.
*/
if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
/*
* QUEUE_FLAG_STACKABLE must be set after all queue settings are
* visible to other CPUs because, once the flag is set, incoming bios
* are processed by request-based dm, which refers to the queue
* settings.
* Until the flag set, bios are passed to bio-based dm and queued to
* md->deferred where queue settings are not needed yet.
* Those bios are passed to request-based dm at the resume time.
*/
smp_mb();
if (dm_table_request_based(t))
queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
}
unsigned int dm_table_get_num_targets(struct dm_table *t)
{
return t->num_targets;
}
struct list_head *dm_table_get_devices(struct dm_table *t)
{
return &t->devices;
}
fmode_t dm_table_get_mode(struct dm_table *t)
{
return t->mode;
}
EXPORT_SYMBOL(dm_table_get_mode);
enum suspend_mode {
PRESUSPEND,
PRESUSPEND_UNDO,
POSTSUSPEND,
};
static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
{
int i = t->num_targets;
struct dm_target *ti = t->targets;
while (i--) {
switch (mode) {
case PRESUSPEND:
if (ti->type->presuspend)
ti->type->presuspend(ti);
break;
case PRESUSPEND_UNDO:
if (ti->type->presuspend_undo)
ti->type->presuspend_undo(ti);
break;
case POSTSUSPEND:
if (ti->type->postsuspend)
ti->type->postsuspend(ti);
break;
}
ti++;
}
}
void dm_table_presuspend_targets(struct dm_table *t)
{
if (!t)
return;
suspend_targets(t, PRESUSPEND);
}
void dm_table_presuspend_undo_targets(struct dm_table *t)
{
if (!t)
return;
suspend_targets(t, PRESUSPEND_UNDO);
}
void dm_table_postsuspend_targets(struct dm_table *t)
{
if (!t)
return;
suspend_targets(t, POSTSUSPEND);
}
int dm_table_resume_targets(struct dm_table *t)
{
int i, r = 0;
for (i = 0; i < t->num_targets; i++) {
struct dm_target *ti = t->targets + i;
if (!ti->type->preresume)
continue;
r = ti->type->preresume(ti);
if (r) {
DMERR("%s: %s: preresume failed, error = %d",
dm_device_name(t->md), ti->type->name, r);
return r;
}
}
for (i = 0; i < t->num_targets; i++) {
struct dm_target *ti = t->targets + i;
if (ti->type->resume)
ti->type->resume(ti);
}
return 0;
}
void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
{
list_add(&cb->list, &t->target_callbacks);
}
EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
int dm_table_any_congested(struct dm_table *t, int bdi_bits)
{
struct dm_dev_internal *dd;
struct list_head *devices = dm_table_get_devices(t);
struct dm_target_callbacks *cb;
int r = 0;
list_for_each_entry(dd, devices, list) {
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
char b[BDEVNAME_SIZE];
if (likely(q))
r |= bdi_congested(&q->backing_dev_info, bdi_bits);
else
DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
dm_device_name(t->md),
dm: allow active and inactive tables to share dm_devs Until this change, when loading a new DM table, DM core would re-open all of the devices in the DM table. Now, DM core will avoid redundant device opens (and closes when destroying the old table) if the old table already has a device open using the same mode. This is achieved by managing reference counts on the table_devices that DM core now stores in the mapped_device structure (rather than in the dm_table structure). So a mapped_device's active and inactive dm_tables' dm_dev lists now just point to the dm_devs stored in the mapped_device's table_devices list. This improvement in DM core's device reference counting has the side-effect of fixing a long-standing limitation of the multipath target: a DM multipath table couldn't include any paths that were unusable (failed). For example: if all paths have failed and you add a new, working, path to the table; you can't use it since the table load would fail due to it still containing failed paths. Now a re-load of a multipath table can include failed devices and when those devices become active again they can be used instantly. The device list code in dm.c isn't a straight copy/paste from the code in dm-table.c, but it's very close (aside from some variable renames). One subtle difference is that find_table_device for the tables_devices list will only match devices with the same name and mode. This is because we don't want to upgrade a device's mode in the active table when an inactive table is loaded. Access to the mapped_device structure's tables_devices list requires a mutex (tables_devices_lock), so that tables cannot be created and destroyed concurrently. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2014-08-14 02:53:43 +08:00
bdevname(dd->dm_dev->bdev, b));
}
list_for_each_entry(cb, &t->target_callbacks, list)
if (cb->congested_fn)
r |= cb->congested_fn(cb, bdi_bits);
return r;
}
struct mapped_device *dm_table_get_md(struct dm_table *t)
{
return t->md;
}
EXPORT_SYMBOL(dm_table_get_md);
void dm_table_run_md_queue_async(struct dm_table *t)
{
struct mapped_device *md;
struct request_queue *queue;
unsigned long flags;
if (!dm_table_request_based(t))
return;
md = dm_table_get_md(t);
queue = dm_get_md_queue(md);
if (queue) {
if (queue->mq_ops)
blk_mq_run_hw_queues(queue, true);
else {
spin_lock_irqsave(queue->queue_lock, flags);
blk_run_queue_async(queue);
spin_unlock_irqrestore(queue->queue_lock, flags);
}
}
}
EXPORT_SYMBOL(dm_table_run_md_queue_async);