linux/lib/list_sort.c

146 lines
3.6 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/list_sort.h>
#include <linux/list.h>
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
#define MAX_LIST_LENGTH_BITS 20
/*
* Returns a list organized in an intermediate format suited
* to chaining of merge() calls: null-terminated, no reserved or
* sentinel head node, "prev" links not maintained.
*/
static struct list_head *merge(void *priv,
int (*cmp)(void *priv, struct list_head *a,
struct list_head *b),
struct list_head *a, struct list_head *b)
{
struct list_head head, *tail = &head;
while (a && b) {
/* if equal, take 'a' -- important for sort stability */
if ((*cmp)(priv, a, b) <= 0) {
tail->next = a;
a = a->next;
} else {
tail->next = b;
b = b->next;
}
tail = tail->next;
}
tail->next = a?:b;
return head.next;
}
/*
* Combine final list merge with restoration of standard doubly-linked
* list structure. This approach duplicates code from merge(), but
* runs faster than the tidier alternatives of either a separate final
* prev-link restoration pass, or maintaining the prev links
* throughout.
*/
static void merge_and_restore_back_links(void *priv,
int (*cmp)(void *priv, struct list_head *a,
struct list_head *b),
struct list_head *head,
struct list_head *a, struct list_head *b)
{
struct list_head *tail = head;
u8 count = 0;
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
while (a && b) {
/* if equal, take 'a' -- important for sort stability */
if ((*cmp)(priv, a, b) <= 0) {
tail->next = a;
a->prev = tail;
a = a->next;
} else {
tail->next = b;
b->prev = tail;
b = b->next;
}
tail = tail->next;
}
tail->next = a ? : b;
do {
/*
* In worst cases this loop may run many iterations.
* Continue callbacks to the client even though no
* element comparison is needed, so the client's cmp()
* routine can invoke cond_resched() periodically.
*/
if (unlikely(!(++count)))
(*cmp)(priv, tail->next, tail->next);
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
tail->next->prev = tail;
tail = tail->next;
} while (tail->next);
tail->next = head;
head->prev = tail;
}
/**
* list_sort - sort a list
* @priv: private data, opaque to list_sort(), passed to @cmp
* @head: the list to sort
* @cmp: the elements comparison function
*
* This function implements "merge sort", which has O(nlog(n))
* complexity.
*
* The comparison function @cmp must return a negative value if @a
* should sort before @b, and a positive value if @a should sort after
* @b. If @a and @b are equivalent, and their original relative
* ordering is to be preserved, @cmp must return 0.
*/
void list_sort(void *priv, struct list_head *head,
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
int (*cmp)(void *priv, struct list_head *a,
struct list_head *b))
{
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
struct list_head *part[MAX_LIST_LENGTH_BITS+1]; /* sorted partial lists
-- last slot is a sentinel */
int lev; /* index into part[] */
int max_lev = 0;
struct list_head *list;
if (list_empty(head))
return;
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
memset(part, 0, sizeof(part));
head->prev->next = NULL;
list = head->next;
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
while (list) {
struct list_head *cur = list;
list = list->next;
cur->next = NULL;
for (lev = 0; part[lev]; lev++) {
cur = merge(priv, cmp, part[lev], cur);
part[lev] = NULL;
}
if (lev > max_lev) {
if (unlikely(lev >= ARRAY_SIZE(part)-1)) {
printk_once(KERN_DEBUG "list too long for efficiency\n");
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
lev--;
}
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
max_lev = lev;
}
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
part[lev] = cur;
}
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
for (lev = 0; lev < max_lev; lev++)
if (part[lev])
list = merge(priv, cmp, part[lev], list);
lib: more scalable list_sort() XFS and UBIFS can pass long lists to list_sort(); this alternative implementation scales better, reaching ~3x performance gain when list length exceeds the L2 cache size. Stand-alone program timings were run on a Core 2 duo L1=32KB L2=4MB, gcc-4.4, with flags extracted from an Ubuntu kernel build. Object size is 581 bytes compared to 455 for Mark J. Roberts' code. Worst case for either implementation is a list length just over a power of two, and to roughly the same degree, so here are timing results for a range of 2^N+1 lengths. List elements were 16 bytes each including malloc overhead; initial order was random. time (msec) Tatham-Roberts | generic-Mullis-v2 loop_count length | | ratio 4000000 2 206 294 1.427 2000000 3 176 227 1.289 1000000 5 199 172 0.864 500000 9 235 178 0.757 250000 17 243 182 0.748 125000 33 261 196 0.750 62500 65 277 209 0.754 31250 129 292 219 0.75 15625 257 317 235 0.741 7812 513 340 252 0.741 3906 1025 362 267 0.737 1953 2049 388 283 0.729 ~ L1 size 976 4097 556 323 0.580 488 8193 678 361 0.532 244 16385 773 395 0.510 122 32769 844 418 0.495 61 65537 917 454 0.495 30 131073 1128 543 0.481 15 262145 2355 869 0.369 ~ L2 size 7 524289 5597 1714 0.306 3 1048577 6218 2022 0.325 Mark's code does not actually implement the usual or generic mergesort, but rather a variant from Simon Tatham described here: http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html Simon's algorithm performs O(log N) passes over the entire input list, doing merges of sublists that double in size on each pass. The generic algorithm instead merges pairs of equal length lists as early as possible, in recursive order. For either algorithm, the elements that extend the list beyond power-of-two length are a special case, handled as nearly as possible as a "rounding-up" to a full POT. Some intuition for the locality of reference implications of merge order may be gotten by watching this animation: http://www.sorting-algorithms.com/merge-sort Simon's algorithm requires only O(1) extra space rather than the generic algorithm's O(log N), but in my non-recursive implementation the actual O(log N) data is merely a vector of ~20 pointers, which I've put on the stack. Long-running list_sort() calls: If the list passed in may be long, or the client's cmp() callback function is slow, the client's cmp() may periodically invoke cond_resched() to voluntarily yield the CPU. All inner loops of list_sort() call back to cmp(). Stability of the sort: distinct elements that compare equal emerge from the sort in the same order as with Mark's code, for simple test cases. A boot-time test is provided to verify this and other correctness requirements. A kernel that uses drm.ko appears to run normally with this change; I have no suitable hardware to similarly test the use by UBIFS. [akpm@linux-foundation.org: style tweaks, fix comment, make list_sort_test __init] Signed-off-by: Don Mullis <don.mullis@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Artem Bityutskiy <dedekind@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:43:15 +08:00
merge_and_restore_back_links(priv, cmp, head, part[max_lev], list);
}
EXPORT_SYMBOL(list_sort);