2019-05-23 17:14:39 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2011-11-03 16:20:04 +08:00
|
|
|
/*
|
|
|
|
* Virtio balloon implementation, inspired by Dor Laor and Marcelo
|
2008-02-05 12:50:12 +08:00
|
|
|
* Tosatti's implementations.
|
|
|
|
*
|
|
|
|
* Copyright 2008 Rusty Russell IBM Corporation
|
|
|
|
*/
|
2011-11-03 16:20:04 +08:00
|
|
|
|
2008-02-05 12:50:12 +08:00
|
|
|
#include <linux/virtio.h>
|
|
|
|
#include <linux/virtio_balloon.h>
|
|
|
|
#include <linux/swap.h>
|
2016-01-26 00:38:05 +08:00
|
|
|
#include <linux/workqueue.h>
|
2008-02-06 17:40:22 +08:00
|
|
|
#include <linux/delay.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
2011-07-04 04:20:30 +08:00
|
|
|
#include <linux/module.h>
|
2012-12-12 08:02:45 +08:00
|
|
|
#include <linux/balloon_compaction.h>
|
2015-03-10 09:25:08 +08:00
|
|
|
#include <linux/wait.h>
|
2016-03-18 05:19:08 +08:00
|
|
|
#include <linux/mm.h>
|
2016-07-27 06:23:09 +08:00
|
|
|
#include <linux/mount.h>
|
2017-02-05 23:03:58 +08:00
|
|
|
#include <linux/magic.h>
|
2019-03-26 00:38:25 +08:00
|
|
|
#include <linux/pseudo_fs.h>
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2012-04-12 21:38:00 +08:00
|
|
|
/*
|
|
|
|
* Balloon device works in 4K page units. So each page is pointed to by
|
|
|
|
* multiple balloon pages. All memory counters in this driver are in balloon
|
|
|
|
* page units.
|
|
|
|
*/
|
2012-12-12 08:02:45 +08:00
|
|
|
#define VIRTIO_BALLOON_PAGES_PER_PAGE (unsigned)(PAGE_SIZE >> VIRTIO_BALLOON_PFN_SHIFT)
|
|
|
|
#define VIRTIO_BALLOON_ARRAY_PFNS_MAX 256
|
2014-11-10 07:06:29 +08:00
|
|
|
#define VIRTBALLOON_OOM_NOTIFY_PRIORITY 80
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
#define VIRTIO_BALLOON_FREE_PAGE_ALLOC_FLAG (__GFP_NORETRY | __GFP_NOWARN | \
|
|
|
|
__GFP_NOMEMALLOC)
|
|
|
|
/* The order of free page blocks to report to host */
|
2019-11-19 18:21:47 +08:00
|
|
|
#define VIRTIO_BALLOON_HINT_BLOCK_ORDER (MAX_ORDER - 1)
|
2018-08-27 09:32:17 +08:00
|
|
|
/* The size of a free page block in bytes */
|
2019-11-19 18:21:47 +08:00
|
|
|
#define VIRTIO_BALLOON_HINT_BLOCK_BYTES \
|
|
|
|
(1 << (VIRTIO_BALLOON_HINT_BLOCK_ORDER + PAGE_SHIFT))
|
2019-11-19 18:25:24 +08:00
|
|
|
#define VIRTIO_BALLOON_HINT_BLOCK_PAGES (1 << VIRTIO_BALLOON_HINT_BLOCK_ORDER)
|
2018-08-27 09:32:17 +08:00
|
|
|
|
2016-07-27 06:23:09 +08:00
|
|
|
#ifdef CONFIG_BALLOON_COMPACTION
|
|
|
|
static struct vfsmount *balloon_mnt;
|
|
|
|
#endif
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
enum virtio_balloon_vq {
|
|
|
|
VIRTIO_BALLOON_VQ_INFLATE,
|
|
|
|
VIRTIO_BALLOON_VQ_DEFLATE,
|
|
|
|
VIRTIO_BALLOON_VQ_STATS,
|
|
|
|
VIRTIO_BALLOON_VQ_FREE_PAGE,
|
|
|
|
VIRTIO_BALLOON_VQ_MAX
|
|
|
|
};
|
|
|
|
|
2019-01-07 15:01:04 +08:00
|
|
|
enum virtio_balloon_config_read {
|
|
|
|
VIRTIO_BALLOON_CONFIG_READ_CMD_ID = 0,
|
|
|
|
};
|
|
|
|
|
2015-01-15 19:33:31 +08:00
|
|
|
struct virtio_balloon {
|
2008-02-05 12:50:12 +08:00
|
|
|
struct virtio_device *vdev;
|
2018-08-27 09:32:17 +08:00
|
|
|
struct virtqueue *inflate_vq, *deflate_vq, *stats_vq, *free_page_vq;
|
|
|
|
|
|
|
|
/* Balloon's own wq for cpu-intensive work items */
|
|
|
|
struct workqueue_struct *balloon_wq;
|
|
|
|
/* The free page reporting work item submitted to the balloon wq */
|
|
|
|
struct work_struct report_free_page_work;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2016-01-26 00:38:05 +08:00
|
|
|
/* The balloon servicing is delegated to a freezable workqueue. */
|
2016-01-26 00:38:06 +08:00
|
|
|
struct work_struct update_balloon_stats_work;
|
|
|
|
struct work_struct update_balloon_size_work;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2016-01-26 00:38:05 +08:00
|
|
|
/* Prevent updating balloon when it is being canceled. */
|
|
|
|
spinlock_t stop_update_lock;
|
|
|
|
bool stop_update;
|
2019-01-07 15:01:04 +08:00
|
|
|
/* Bitmap to indicate if reading the related config fields are needed */
|
|
|
|
unsigned long config_read_bitmap;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
/* The list of allocated free pages, waiting to be given back to mm */
|
|
|
|
struct list_head free_page_list;
|
|
|
|
spinlock_t free_page_list_lock;
|
|
|
|
/* The number of free page blocks on the above list */
|
|
|
|
unsigned long num_free_page_blocks;
|
2019-01-07 15:01:04 +08:00
|
|
|
/*
|
|
|
|
* The cmd id received from host.
|
|
|
|
* Read it via virtio_balloon_cmd_id_received to get the latest value
|
|
|
|
* sent from host.
|
|
|
|
*/
|
|
|
|
u32 cmd_id_received_cache;
|
2018-08-27 09:32:17 +08:00
|
|
|
/* The cmd id that is actively in use */
|
|
|
|
__virtio32 cmd_id_active;
|
|
|
|
/* Buffer to store the stop sign */
|
|
|
|
__virtio32 cmd_id_stop;
|
|
|
|
|
2008-02-05 12:50:12 +08:00
|
|
|
/* Waiting for host to ack the pages we released. */
|
2012-07-02 15:33:08 +08:00
|
|
|
wait_queue_head_t acked;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2012-04-12 21:38:00 +08:00
|
|
|
/* Number of balloon pages we've told the Host we're not using. */
|
2008-02-05 12:50:12 +08:00
|
|
|
unsigned int num_pages;
|
2012-04-12 21:38:00 +08:00
|
|
|
/*
|
2012-12-12 08:02:45 +08:00
|
|
|
* The pages we've told the Host we're not using are enqueued
|
|
|
|
* at vb_dev_info->pages list.
|
2012-04-12 21:38:00 +08:00
|
|
|
* Each page on this list adds VIRTIO_BALLOON_PAGES_PER_PAGE
|
|
|
|
* to num_pages above.
|
|
|
|
*/
|
2014-10-10 06:29:29 +08:00
|
|
|
struct balloon_dev_info vb_dev_info;
|
2012-12-12 08:02:45 +08:00
|
|
|
|
|
|
|
/* Synchronize access/update to this struct virtio_balloon elements */
|
|
|
|
struct mutex balloon_lock;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
|
|
|
/* The array of pfns we tell the Host about. */
|
|
|
|
unsigned int num_pfns;
|
2016-05-17 18:31:18 +08:00
|
|
|
__virtio32 pfns[VIRTIO_BALLOON_ARRAY_PFNS_MAX];
|
2009-12-01 00:14:15 +08:00
|
|
|
|
|
|
|
/* Memory statistics */
|
|
|
|
struct virtio_balloon_stat stats[VIRTIO_BALLOON_S_NR];
|
2014-11-10 07:06:29 +08:00
|
|
|
|
2018-08-16 15:50:58 +08:00
|
|
|
/* To register a shrinker to shrink memory upon memory pressure */
|
|
|
|
struct shrinker shrinker;
|
2008-02-05 12:50:12 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static struct virtio_device_id id_table[] = {
|
|
|
|
{ VIRTIO_ID_BALLOON, VIRTIO_DEV_ANY_ID },
|
|
|
|
{ 0 },
|
|
|
|
};
|
|
|
|
|
2008-11-14 05:48:33 +08:00
|
|
|
static u32 page_to_balloon_pfn(struct page *page)
|
|
|
|
{
|
|
|
|
unsigned long pfn = page_to_pfn(page);
|
|
|
|
|
|
|
|
BUILD_BUG_ON(PAGE_SHIFT < VIRTIO_BALLOON_PFN_SHIFT);
|
|
|
|
/* Convert pfn from Linux page size to balloon page size. */
|
2012-04-12 21:38:00 +08:00
|
|
|
return pfn * VIRTIO_BALLOON_PAGES_PER_PAGE;
|
|
|
|
}
|
|
|
|
|
2008-02-05 12:50:12 +08:00
|
|
|
static void balloon_ack(struct virtqueue *vq)
|
|
|
|
{
|
2012-07-02 15:33:08 +08:00
|
|
|
struct virtio_balloon *vb = vq->vdev->priv;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2012-07-02 15:33:08 +08:00
|
|
|
wake_up(&vb->acked);
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void tell_host(struct virtio_balloon *vb, struct virtqueue *vq)
|
|
|
|
{
|
|
|
|
struct scatterlist sg;
|
2012-07-02 15:33:08 +08:00
|
|
|
unsigned int len;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
|
|
|
sg_init_one(&sg, vb->pfns, sizeof(vb->pfns[0]) * vb->num_pfns);
|
|
|
|
|
|
|
|
/* We should always be able to add one buffer to an empty queue. */
|
2014-03-13 08:53:40 +08:00
|
|
|
virtqueue_add_outbuf(vq, &sg, 1, vb, GFP_KERNEL);
|
2010-04-12 21:18:28 +08:00
|
|
|
virtqueue_kick(vq);
|
2008-02-05 12:50:12 +08:00
|
|
|
|
|
|
|
/* When host has read buffer, this completes via balloon_ack */
|
2012-07-02 15:33:08 +08:00
|
|
|
wait_event(vb->acked, virtqueue_get_buf(vq, &len));
|
2016-01-26 00:38:06 +08:00
|
|
|
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
2016-05-17 18:31:18 +08:00
|
|
|
static void set_page_pfns(struct virtio_balloon *vb,
|
|
|
|
__virtio32 pfns[], struct page *page)
|
2012-04-12 21:38:00 +08:00
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
2017-07-12 20:40:15 +08:00
|
|
|
/*
|
|
|
|
* Set balloon pfns pointing at this page.
|
|
|
|
* Note that the first pfn points at start of the page.
|
|
|
|
*/
|
2012-04-12 21:38:00 +08:00
|
|
|
for (i = 0; i < VIRTIO_BALLOON_PAGES_PER_PAGE; i++)
|
2016-05-17 18:31:18 +08:00
|
|
|
pfns[i] = cpu_to_virtio32(vb->vdev,
|
|
|
|
page_to_balloon_pfn(page) + i);
|
2012-04-12 21:38:00 +08:00
|
|
|
}
|
|
|
|
|
2016-01-26 00:38:05 +08:00
|
|
|
static unsigned fill_balloon(struct virtio_balloon *vb, size_t num)
|
2008-02-05 12:50:12 +08:00
|
|
|
{
|
2016-01-26 00:38:05 +08:00
|
|
|
unsigned num_allocated_pages;
|
2017-10-13 21:11:48 +08:00
|
|
|
unsigned num_pfns;
|
|
|
|
struct page *page;
|
|
|
|
LIST_HEAD(pages);
|
2012-12-12 08:02:45 +08:00
|
|
|
|
2008-02-05 12:50:12 +08:00
|
|
|
/* We can only do one array worth at a time. */
|
|
|
|
num = min(num, ARRAY_SIZE(vb->pfns));
|
|
|
|
|
2017-10-13 21:11:48 +08:00
|
|
|
for (num_pfns = 0; num_pfns < num;
|
|
|
|
num_pfns += VIRTIO_BALLOON_PAGES_PER_PAGE) {
|
|
|
|
struct page *page = balloon_page_alloc();
|
2012-12-12 08:02:45 +08:00
|
|
|
|
2008-02-05 12:50:12 +08:00
|
|
|
if (!page) {
|
2012-10-31 06:57:22 +08:00
|
|
|
dev_info_ratelimited(&vb->vdev->dev,
|
2012-12-21 00:37:04 +08:00
|
|
|
"Out of puff! Can't get %u pages\n",
|
|
|
|
VIRTIO_BALLOON_PAGES_PER_PAGE);
|
2008-02-05 12:50:12 +08:00
|
|
|
/* Sleep for at least 1/5 of a second before retry. */
|
|
|
|
msleep(200);
|
|
|
|
break;
|
|
|
|
}
|
2017-10-13 21:11:48 +08:00
|
|
|
|
|
|
|
balloon_page_push(&pages, page);
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_lock(&vb->balloon_lock);
|
|
|
|
|
|
|
|
vb->num_pfns = 0;
|
|
|
|
|
|
|
|
while ((page = balloon_page_pop(&pages))) {
|
|
|
|
balloon_page_enqueue(&vb->vb_dev_info, page);
|
|
|
|
|
2016-05-17 18:31:18 +08:00
|
|
|
set_page_pfns(vb, vb->pfns + vb->num_pfns, page);
|
2012-04-12 21:38:00 +08:00
|
|
|
vb->num_pages += VIRTIO_BALLOON_PAGES_PER_PAGE;
|
2015-08-20 05:49:49 +08:00
|
|
|
if (!virtio_has_feature(vb->vdev,
|
|
|
|
VIRTIO_BALLOON_F_DEFLATE_ON_OOM))
|
|
|
|
adjust_managed_page_count(page, -1);
|
2017-12-01 17:50:28 +08:00
|
|
|
vb->num_pfns += VIRTIO_BALLOON_PAGES_PER_PAGE;
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
2016-01-26 00:38:05 +08:00
|
|
|
num_allocated_pages = vb->num_pfns;
|
2012-12-12 08:02:45 +08:00
|
|
|
/* Did we get any? */
|
|
|
|
if (vb->num_pfns != 0)
|
|
|
|
tell_host(vb, vb->inflate_vq);
|
|
|
|
mutex_unlock(&vb->balloon_lock);
|
2016-01-26 00:38:05 +08:00
|
|
|
|
|
|
|
return num_allocated_pages;
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
2017-07-12 20:40:14 +08:00
|
|
|
static void release_pages_balloon(struct virtio_balloon *vb,
|
|
|
|
struct list_head *pages)
|
2008-02-05 12:50:12 +08:00
|
|
|
{
|
2017-07-12 20:40:14 +08:00
|
|
|
struct page *page, *next;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2017-07-12 20:40:14 +08:00
|
|
|
list_for_each_entry_safe(page, next, pages, lru) {
|
2015-08-20 05:49:49 +08:00
|
|
|
if (!virtio_has_feature(vb->vdev,
|
|
|
|
VIRTIO_BALLOON_F_DEFLATE_ON_OOM))
|
|
|
|
adjust_managed_page_count(page, 1);
|
2017-07-12 20:40:14 +08:00
|
|
|
list_del(&page->lru);
|
2014-10-10 06:29:27 +08:00
|
|
|
put_page(page); /* balloon reference */
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-10 07:05:29 +08:00
|
|
|
static unsigned leak_balloon(struct virtio_balloon *vb, size_t num)
|
2008-02-05 12:50:12 +08:00
|
|
|
{
|
2014-11-10 07:05:29 +08:00
|
|
|
unsigned num_freed_pages;
|
2008-02-05 12:50:12 +08:00
|
|
|
struct page *page;
|
2014-10-10 06:29:29 +08:00
|
|
|
struct balloon_dev_info *vb_dev_info = &vb->vb_dev_info;
|
2017-07-12 20:40:14 +08:00
|
|
|
LIST_HEAD(pages);
|
2008-02-05 12:50:12 +08:00
|
|
|
|
|
|
|
/* We can only do one array worth at a time. */
|
|
|
|
num = min(num, ARRAY_SIZE(vb->pfns));
|
|
|
|
|
2012-12-12 08:02:45 +08:00
|
|
|
mutex_lock(&vb->balloon_lock);
|
2016-07-11 20:28:59 +08:00
|
|
|
/* We can't release more pages than taken */
|
|
|
|
num = min(num, (size_t)vb->num_pages);
|
2012-04-12 21:38:00 +08:00
|
|
|
for (vb->num_pfns = 0; vb->num_pfns < num;
|
|
|
|
vb->num_pfns += VIRTIO_BALLOON_PAGES_PER_PAGE) {
|
2012-12-12 08:02:45 +08:00
|
|
|
page = balloon_page_dequeue(vb_dev_info);
|
|
|
|
if (!page)
|
|
|
|
break;
|
2016-05-17 18:31:18 +08:00
|
|
|
set_page_pfns(vb, vb->pfns + vb->num_pfns, page);
|
2017-07-12 20:40:14 +08:00
|
|
|
list_add(&page->lru, &pages);
|
2012-04-12 21:38:00 +08:00
|
|
|
vb->num_pages -= VIRTIO_BALLOON_PAGES_PER_PAGE;
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
2014-11-10 07:05:29 +08:00
|
|
|
num_freed_pages = vb->num_pfns;
|
2011-04-08 01:43:25 +08:00
|
|
|
/*
|
|
|
|
* Note that if
|
|
|
|
* virtio_has_feature(vdev, VIRTIO_BALLOON_F_MUST_TELL_HOST);
|
|
|
|
* is true, we *have* to do it in this order
|
|
|
|
*/
|
2013-07-02 14:05:13 +08:00
|
|
|
if (vb->num_pfns != 0)
|
|
|
|
tell_host(vb, vb->deflate_vq);
|
2017-07-12 20:40:14 +08:00
|
|
|
release_pages_balloon(vb, &pages);
|
2015-12-28 07:35:12 +08:00
|
|
|
mutex_unlock(&vb->balloon_lock);
|
2014-11-10 07:05:29 +08:00
|
|
|
return num_freed_pages;
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
2009-12-01 00:14:15 +08:00
|
|
|
static inline void update_stat(struct virtio_balloon *vb, int idx,
|
|
|
|
u16 tag, u64 val)
|
|
|
|
{
|
|
|
|
BUG_ON(idx >= VIRTIO_BALLOON_S_NR);
|
2015-04-15 08:47:43 +08:00
|
|
|
vb->stats[idx].tag = cpu_to_virtio16(vb->vdev, tag);
|
|
|
|
vb->stats[idx].val = cpu_to_virtio64(vb->vdev, val);
|
2009-12-01 00:14:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#define pages_to_bytes(x) ((u64)(x) << PAGE_SHIFT)
|
|
|
|
|
2017-03-29 00:46:58 +08:00
|
|
|
static unsigned int update_balloon_stats(struct virtio_balloon *vb)
|
2009-12-01 00:14:15 +08:00
|
|
|
{
|
|
|
|
unsigned long events[NR_VM_EVENT_ITEMS];
|
|
|
|
struct sysinfo i;
|
2017-03-29 00:46:58 +08:00
|
|
|
unsigned int idx = 0;
|
2016-03-18 05:19:08 +08:00
|
|
|
long available;
|
2017-11-12 20:05:38 +08:00
|
|
|
unsigned long caches;
|
2009-12-01 00:14:15 +08:00
|
|
|
|
|
|
|
all_vm_events(events);
|
|
|
|
si_meminfo(&i);
|
|
|
|
|
2016-03-18 05:19:08 +08:00
|
|
|
available = si_mem_available();
|
2017-11-12 20:05:38 +08:00
|
|
|
caches = global_node_page_state(NR_FILE_PAGES);
|
2016-03-18 05:19:08 +08:00
|
|
|
|
2017-03-29 00:46:59 +08:00
|
|
|
#ifdef CONFIG_VM_EVENT_COUNTERS
|
2009-12-01 00:14:15 +08:00
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_SWAP_IN,
|
|
|
|
pages_to_bytes(events[PSWPIN]));
|
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_SWAP_OUT,
|
|
|
|
pages_to_bytes(events[PSWPOUT]));
|
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_MAJFLT, events[PGMAJFAULT]);
|
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_MINFLT, events[PGFAULT]);
|
2018-03-20 06:14:14 +08:00
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_HTLB_PGALLOC,
|
|
|
|
events[HTLB_BUDDY_PGALLOC]);
|
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_HTLB_PGFAIL,
|
|
|
|
events[HTLB_BUDDY_PGALLOC_FAIL]);
|
|
|
|
#endif
|
2017-03-29 00:46:59 +08:00
|
|
|
#endif
|
2009-12-01 00:14:15 +08:00
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_MEMFREE,
|
|
|
|
pages_to_bytes(i.freeram));
|
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_MEMTOT,
|
|
|
|
pages_to_bytes(i.totalram));
|
2016-03-18 05:19:08 +08:00
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_AVAIL,
|
|
|
|
pages_to_bytes(available));
|
2017-11-12 20:05:38 +08:00
|
|
|
update_stat(vb, idx++, VIRTIO_BALLOON_S_CACHES,
|
|
|
|
pages_to_bytes(caches));
|
2017-03-29 00:46:58 +08:00
|
|
|
|
|
|
|
return idx;
|
2009-12-01 00:14:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* While most virtqueues communicate guest-initiated requests to the hypervisor,
|
|
|
|
* the stats queue operates in reverse. The driver initializes the virtqueue
|
|
|
|
* with a single buffer. From that point forward, all conversations consist of
|
|
|
|
* a hypervisor request (a call to this function) which directs us to refill
|
2009-12-11 06:35:15 +08:00
|
|
|
* the virtqueue with a fresh stats buffer. Since stats collection can sleep,
|
2016-01-26 00:38:05 +08:00
|
|
|
* we delegate the job to a freezable workqueue that will do the actual work via
|
|
|
|
* stats_handle_request().
|
2009-12-01 00:14:15 +08:00
|
|
|
*/
|
2009-12-11 06:35:15 +08:00
|
|
|
static void stats_request(struct virtqueue *vq)
|
2009-12-01 00:14:15 +08:00
|
|
|
{
|
2012-07-02 15:33:08 +08:00
|
|
|
struct virtio_balloon *vb = vq->vdev->priv;
|
2009-12-01 00:14:15 +08:00
|
|
|
|
2016-01-26 00:38:05 +08:00
|
|
|
spin_lock(&vb->stop_update_lock);
|
|
|
|
if (!vb->stop_update)
|
2016-01-26 00:38:06 +08:00
|
|
|
queue_work(system_freezable_wq, &vb->update_balloon_stats_work);
|
2016-01-26 00:38:05 +08:00
|
|
|
spin_unlock(&vb->stop_update_lock);
|
2009-12-11 06:35:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void stats_handle_request(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
struct virtqueue *vq;
|
|
|
|
struct scatterlist sg;
|
2017-03-29 00:46:58 +08:00
|
|
|
unsigned int len, num_stats;
|
2009-12-01 00:14:15 +08:00
|
|
|
|
2017-03-29 00:46:58 +08:00
|
|
|
num_stats = update_balloon_stats(vb);
|
2009-12-01 00:14:15 +08:00
|
|
|
|
2009-12-11 06:35:15 +08:00
|
|
|
vq = vb->stats_vq;
|
2012-07-02 15:33:08 +08:00
|
|
|
if (!virtqueue_get_buf(vq, &len))
|
|
|
|
return;
|
2017-03-29 00:46:58 +08:00
|
|
|
sg_init_one(&sg, vb->stats, sizeof(vb->stats[0]) * num_stats);
|
2014-03-13 08:53:40 +08:00
|
|
|
virtqueue_add_outbuf(vq, &sg, 1, vb, GFP_KERNEL);
|
2010-04-12 21:18:28 +08:00
|
|
|
virtqueue_kick(vq);
|
2009-12-01 00:14:15 +08:00
|
|
|
}
|
|
|
|
|
2008-03-18 11:58:15 +08:00
|
|
|
static inline s64 towards_target(struct virtio_balloon *vb)
|
2008-02-05 12:50:12 +08:00
|
|
|
{
|
2012-04-12 13:36:34 +08:00
|
|
|
s64 target;
|
2015-04-15 08:47:43 +08:00
|
|
|
u32 num_pages;
|
2012-04-12 13:36:34 +08:00
|
|
|
|
2015-04-15 08:47:43 +08:00
|
|
|
virtio_cread(vb->vdev, struct virtio_balloon_config, num_pages,
|
|
|
|
&num_pages);
|
2013-10-14 15:41:51 +08:00
|
|
|
|
2015-04-15 08:47:43 +08:00
|
|
|
/* Legacy balloon config space is LE, unlike all other devices. */
|
|
|
|
if (!virtio_has_feature(vb->vdev, VIRTIO_F_VERSION_1))
|
|
|
|
num_pages = le32_to_cpu((__force __le32)num_pages);
|
|
|
|
|
|
|
|
target = num_pages;
|
2012-04-12 13:36:34 +08:00
|
|
|
return target - vb->num_pages;
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
/* Gives back @num_to_return blocks of free pages to mm. */
|
|
|
|
static unsigned long return_free_pages_to_mm(struct virtio_balloon *vb,
|
|
|
|
unsigned long num_to_return)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
unsigned long num_returned;
|
|
|
|
|
|
|
|
spin_lock_irq(&vb->free_page_list_lock);
|
|
|
|
for (num_returned = 0; num_returned < num_to_return; num_returned++) {
|
|
|
|
page = balloon_page_pop(&vb->free_page_list);
|
|
|
|
if (!page)
|
|
|
|
break;
|
|
|
|
free_pages((unsigned long)page_address(page),
|
2019-11-19 18:21:47 +08:00
|
|
|
VIRTIO_BALLOON_HINT_BLOCK_ORDER);
|
2018-08-27 09:32:17 +08:00
|
|
|
}
|
|
|
|
vb->num_free_page_blocks -= num_returned;
|
|
|
|
spin_unlock_irq(&vb->free_page_list_lock);
|
|
|
|
|
|
|
|
return num_returned;
|
|
|
|
}
|
|
|
|
|
2019-01-07 15:01:04 +08:00
|
|
|
static void virtio_balloon_queue_free_page_work(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
if (!virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_FREE_PAGE_HINT))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* No need to queue the work if the bit was already set. */
|
|
|
|
if (test_and_set_bit(VIRTIO_BALLOON_CONFIG_READ_CMD_ID,
|
|
|
|
&vb->config_read_bitmap))
|
|
|
|
return;
|
|
|
|
|
|
|
|
queue_work(vb->balloon_wq, &vb->report_free_page_work);
|
|
|
|
}
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
static void virtballoon_changed(struct virtio_device *vdev)
|
|
|
|
{
|
|
|
|
struct virtio_balloon *vb = vdev->priv;
|
|
|
|
unsigned long flags;
|
|
|
|
|
2019-01-07 15:01:04 +08:00
|
|
|
spin_lock_irqsave(&vb->stop_update_lock, flags);
|
|
|
|
if (!vb->stop_update) {
|
|
|
|
queue_work(system_freezable_wq,
|
|
|
|
&vb->update_balloon_size_work);
|
|
|
|
virtio_balloon_queue_free_page_work(vb);
|
2018-08-27 09:32:17 +08:00
|
|
|
}
|
2019-01-07 15:01:04 +08:00
|
|
|
spin_unlock_irqrestore(&vb->stop_update_lock, flags);
|
2018-08-27 09:32:17 +08:00
|
|
|
}
|
|
|
|
|
2008-02-05 12:50:12 +08:00
|
|
|
static void update_balloon_size(struct virtio_balloon *vb)
|
|
|
|
{
|
2015-04-15 08:47:43 +08:00
|
|
|
u32 actual = vb->num_pages;
|
|
|
|
|
|
|
|
/* Legacy balloon config space is LE, unlike all other devices. */
|
|
|
|
if (!virtio_has_feature(vb->vdev, VIRTIO_F_VERSION_1))
|
|
|
|
actual = (__force u32)cpu_to_le32(actual);
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2013-12-05 10:34:10 +08:00
|
|
|
virtio_cwrite(vb->vdev, struct virtio_balloon_config, actual,
|
2013-10-14 15:41:51 +08:00
|
|
|
&actual);
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
2016-01-26 00:38:06 +08:00
|
|
|
static void update_balloon_stats_func(struct work_struct *work)
|
2008-02-05 12:50:12 +08:00
|
|
|
{
|
2016-01-26 00:38:06 +08:00
|
|
|
struct virtio_balloon *vb;
|
2015-03-10 09:25:08 +08:00
|
|
|
|
2016-01-26 00:38:06 +08:00
|
|
|
vb = container_of(work, struct virtio_balloon,
|
|
|
|
update_balloon_stats_work);
|
|
|
|
stats_handle_request(vb);
|
|
|
|
}
|
2014-03-13 08:53:38 +08:00
|
|
|
|
2016-01-26 00:38:06 +08:00
|
|
|
static void update_balloon_size_func(struct work_struct *work)
|
2008-02-05 12:50:12 +08:00
|
|
|
{
|
2016-01-26 00:38:05 +08:00
|
|
|
struct virtio_balloon *vb;
|
|
|
|
s64 diff;
|
2015-03-10 09:25:08 +08:00
|
|
|
|
2016-01-26 00:38:06 +08:00
|
|
|
vb = container_of(work, struct virtio_balloon,
|
|
|
|
update_balloon_size_work);
|
2016-01-26 00:38:05 +08:00
|
|
|
diff = towards_target(vb);
|
2014-03-13 08:53:38 +08:00
|
|
|
|
2019-01-07 15:01:05 +08:00
|
|
|
if (!diff)
|
|
|
|
return;
|
|
|
|
|
2016-01-26 00:38:05 +08:00
|
|
|
if (diff > 0)
|
|
|
|
diff -= fill_balloon(vb, diff);
|
2019-01-07 15:01:05 +08:00
|
|
|
else
|
2016-01-26 00:38:05 +08:00
|
|
|
diff += leak_balloon(vb, -diff);
|
|
|
|
update_balloon_size(vb);
|
|
|
|
|
|
|
|
if (diff)
|
|
|
|
queue_work(system_freezable_wq, work);
|
2008-02-05 12:50:12 +08:00
|
|
|
}
|
|
|
|
|
2011-12-22 19:28:34 +08:00
|
|
|
static int init_vqs(struct virtio_balloon *vb)
|
2008-02-05 12:50:12 +08:00
|
|
|
{
|
2018-08-27 09:32:17 +08:00
|
|
|
struct virtqueue *vqs[VIRTIO_BALLOON_VQ_MAX];
|
|
|
|
vq_callback_t *callbacks[VIRTIO_BALLOON_VQ_MAX];
|
|
|
|
const char *names[VIRTIO_BALLOON_VQ_MAX];
|
|
|
|
int err;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2011-12-22 19:28:34 +08:00
|
|
|
/*
|
2018-08-27 09:32:17 +08:00
|
|
|
* Inflateq and deflateq are used unconditionally. The names[]
|
|
|
|
* will be NULL if the related feature is not enabled, which will
|
|
|
|
* cause no allocation for the corresponding virtqueue in find_vqs.
|
2011-12-22 19:28:34 +08:00
|
|
|
*/
|
2018-08-27 09:32:17 +08:00
|
|
|
callbacks[VIRTIO_BALLOON_VQ_INFLATE] = balloon_ack;
|
|
|
|
names[VIRTIO_BALLOON_VQ_INFLATE] = "inflate";
|
|
|
|
callbacks[VIRTIO_BALLOON_VQ_DEFLATE] = balloon_ack;
|
|
|
|
names[VIRTIO_BALLOON_VQ_DEFLATE] = "deflate";
|
|
|
|
names[VIRTIO_BALLOON_VQ_STATS] = NULL;
|
|
|
|
names[VIRTIO_BALLOON_VQ_FREE_PAGE] = NULL;
|
|
|
|
|
|
|
|
if (virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_STATS_VQ)) {
|
|
|
|
names[VIRTIO_BALLOON_VQ_STATS] = "stats";
|
|
|
|
callbacks[VIRTIO_BALLOON_VQ_STATS] = stats_request;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_FREE_PAGE_HINT)) {
|
|
|
|
names[VIRTIO_BALLOON_VQ_FREE_PAGE] = "free_page_vq";
|
|
|
|
callbacks[VIRTIO_BALLOON_VQ_FREE_PAGE] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = vb->vdev->config->find_vqs(vb->vdev, VIRTIO_BALLOON_VQ_MAX,
|
|
|
|
vqs, callbacks, names, NULL, NULL);
|
2009-06-13 12:16:36 +08:00
|
|
|
if (err)
|
2011-12-22 19:28:34 +08:00
|
|
|
return err;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
vb->inflate_vq = vqs[VIRTIO_BALLOON_VQ_INFLATE];
|
|
|
|
vb->deflate_vq = vqs[VIRTIO_BALLOON_VQ_DEFLATE];
|
2009-12-01 00:14:15 +08:00
|
|
|
if (virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_STATS_VQ)) {
|
|
|
|
struct scatterlist sg;
|
2017-03-29 00:46:58 +08:00
|
|
|
unsigned int num_stats;
|
2018-08-27 09:32:17 +08:00
|
|
|
vb->stats_vq = vqs[VIRTIO_BALLOON_VQ_STATS];
|
2009-12-01 00:14:15 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Prime this virtqueue with one buffer so the hypervisor can
|
2014-03-13 08:53:40 +08:00
|
|
|
* use it to signal us later (it can't be broken yet!).
|
2009-12-01 00:14:15 +08:00
|
|
|
*/
|
2017-03-29 00:46:58 +08:00
|
|
|
num_stats = update_balloon_stats(vb);
|
2017-03-23 15:04:18 +08:00
|
|
|
|
2017-03-29 00:46:58 +08:00
|
|
|
sg_init_one(&sg, vb->stats, sizeof(vb->stats[0]) * num_stats);
|
2018-08-16 15:50:56 +08:00
|
|
|
err = virtqueue_add_outbuf(vb->stats_vq, &sg, 1, vb,
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (err) {
|
|
|
|
dev_warn(&vb->vdev->dev, "%s: add stat_vq failed\n",
|
|
|
|
__func__);
|
|
|
|
return err;
|
|
|
|
}
|
2010-04-12 21:18:28 +08:00
|
|
|
virtqueue_kick(vb->stats_vq);
|
2009-12-01 00:14:15 +08:00
|
|
|
}
|
2018-08-27 09:32:17 +08:00
|
|
|
|
|
|
|
if (virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_FREE_PAGE_HINT))
|
|
|
|
vb->free_page_vq = vqs[VIRTIO_BALLOON_VQ_FREE_PAGE];
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-01-07 15:01:04 +08:00
|
|
|
static u32 virtio_balloon_cmd_id_received(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
if (test_and_clear_bit(VIRTIO_BALLOON_CONFIG_READ_CMD_ID,
|
|
|
|
&vb->config_read_bitmap))
|
|
|
|
virtio_cread(vb->vdev, struct virtio_balloon_config,
|
|
|
|
free_page_report_cmd_id,
|
|
|
|
&vb->cmd_id_received_cache);
|
|
|
|
|
|
|
|
return vb->cmd_id_received_cache;
|
|
|
|
}
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
static int send_cmd_id_start(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
struct scatterlist sg;
|
|
|
|
struct virtqueue *vq = vb->free_page_vq;
|
|
|
|
int err, unused;
|
|
|
|
|
|
|
|
/* Detach all the used buffers from the vq */
|
|
|
|
while (virtqueue_get_buf(vq, &unused))
|
|
|
|
;
|
|
|
|
|
2019-01-07 15:01:04 +08:00
|
|
|
vb->cmd_id_active = virtio32_to_cpu(vb->vdev,
|
|
|
|
virtio_balloon_cmd_id_received(vb));
|
2018-08-27 09:32:17 +08:00
|
|
|
sg_init_one(&sg, &vb->cmd_id_active, sizeof(vb->cmd_id_active));
|
|
|
|
err = virtqueue_add_outbuf(vq, &sg, 1, &vb->cmd_id_active, GFP_KERNEL);
|
|
|
|
if (!err)
|
|
|
|
virtqueue_kick(vq);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int send_cmd_id_stop(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
struct scatterlist sg;
|
|
|
|
struct virtqueue *vq = vb->free_page_vq;
|
|
|
|
int err, unused;
|
|
|
|
|
|
|
|
/* Detach all the used buffers from the vq */
|
|
|
|
while (virtqueue_get_buf(vq, &unused))
|
|
|
|
;
|
|
|
|
|
|
|
|
sg_init_one(&sg, &vb->cmd_id_stop, sizeof(vb->cmd_id_stop));
|
|
|
|
err = virtqueue_add_outbuf(vq, &sg, 1, &vb->cmd_id_stop, GFP_KERNEL);
|
|
|
|
if (!err)
|
|
|
|
virtqueue_kick(vq);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int get_free_page_and_send(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
struct virtqueue *vq = vb->free_page_vq;
|
|
|
|
struct page *page;
|
|
|
|
struct scatterlist sg;
|
|
|
|
int err, unused;
|
|
|
|
void *p;
|
|
|
|
|
|
|
|
/* Detach all the used buffers from the vq */
|
|
|
|
while (virtqueue_get_buf(vq, &unused))
|
|
|
|
;
|
|
|
|
|
|
|
|
page = alloc_pages(VIRTIO_BALLOON_FREE_PAGE_ALLOC_FLAG,
|
2019-11-19 18:21:47 +08:00
|
|
|
VIRTIO_BALLOON_HINT_BLOCK_ORDER);
|
2018-08-27 09:32:17 +08:00
|
|
|
/*
|
|
|
|
* When the allocation returns NULL, it indicates that we have got all
|
|
|
|
* the possible free pages, so return -EINTR to stop.
|
|
|
|
*/
|
|
|
|
if (!page)
|
|
|
|
return -EINTR;
|
|
|
|
|
|
|
|
p = page_address(page);
|
2019-11-19 18:21:47 +08:00
|
|
|
sg_init_one(&sg, p, VIRTIO_BALLOON_HINT_BLOCK_BYTES);
|
2018-08-27 09:32:17 +08:00
|
|
|
/* There is always 1 entry reserved for the cmd id to use. */
|
|
|
|
if (vq->num_free > 1) {
|
|
|
|
err = virtqueue_add_inbuf(vq, &sg, 1, p, GFP_KERNEL);
|
|
|
|
if (unlikely(err)) {
|
|
|
|
free_pages((unsigned long)p,
|
2019-11-19 18:21:47 +08:00
|
|
|
VIRTIO_BALLOON_HINT_BLOCK_ORDER);
|
2018-08-27 09:32:17 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
virtqueue_kick(vq);
|
|
|
|
spin_lock_irq(&vb->free_page_list_lock);
|
|
|
|
balloon_page_push(&vb->free_page_list, page);
|
|
|
|
vb->num_free_page_blocks++;
|
|
|
|
spin_unlock_irq(&vb->free_page_list_lock);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* The vq has no available entry to add this page block, so
|
|
|
|
* just free it.
|
|
|
|
*/
|
2019-11-19 18:21:47 +08:00
|
|
|
free_pages((unsigned long)p, VIRTIO_BALLOON_HINT_BLOCK_ORDER);
|
2018-08-27 09:32:17 +08:00
|
|
|
}
|
|
|
|
|
2011-12-22 19:28:34 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
static int send_free_pages(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
u32 cmd_id_active;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
/*
|
|
|
|
* If a stop id or a new cmd id was just received from host,
|
|
|
|
* stop the reporting.
|
|
|
|
*/
|
|
|
|
cmd_id_active = virtio32_to_cpu(vb->vdev, vb->cmd_id_active);
|
2019-01-07 15:01:04 +08:00
|
|
|
if (unlikely(cmd_id_active !=
|
|
|
|
virtio_balloon_cmd_id_received(vb)))
|
2018-08-27 09:32:17 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The free page blocks are allocated and sent to host one by
|
|
|
|
* one.
|
|
|
|
*/
|
|
|
|
err = get_free_page_and_send(vb);
|
|
|
|
if (err == -EINTR)
|
|
|
|
break;
|
|
|
|
else if (unlikely(err))
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-01-07 15:01:04 +08:00
|
|
|
static void virtio_balloon_report_free_page(struct virtio_balloon *vb)
|
2018-08-27 09:32:17 +08:00
|
|
|
{
|
|
|
|
int err;
|
|
|
|
struct device *dev = &vb->vdev->dev;
|
|
|
|
|
|
|
|
/* Start by sending the received cmd id to host with an outbuf. */
|
|
|
|
err = send_cmd_id_start(vb);
|
|
|
|
if (unlikely(err))
|
|
|
|
dev_err(dev, "Failed to send a start id, err = %d\n", err);
|
|
|
|
|
|
|
|
err = send_free_pages(vb);
|
|
|
|
if (unlikely(err))
|
|
|
|
dev_err(dev, "Failed to send a free page, err = %d\n", err);
|
|
|
|
|
|
|
|
/* End by sending a stop id to host with an outbuf. */
|
|
|
|
err = send_cmd_id_stop(vb);
|
|
|
|
if (unlikely(err))
|
|
|
|
dev_err(dev, "Failed to send a stop id, err = %d\n", err);
|
|
|
|
}
|
|
|
|
|
2019-01-07 15:01:04 +08:00
|
|
|
static void report_free_page_func(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct virtio_balloon *vb = container_of(work, struct virtio_balloon,
|
|
|
|
report_free_page_work);
|
|
|
|
u32 cmd_id_received;
|
|
|
|
|
|
|
|
cmd_id_received = virtio_balloon_cmd_id_received(vb);
|
|
|
|
if (cmd_id_received == VIRTIO_BALLOON_CMD_ID_DONE) {
|
|
|
|
/* Pass ULONG_MAX to give back all the free pages */
|
|
|
|
return_free_pages_to_mm(vb, ULONG_MAX);
|
|
|
|
} else if (cmd_id_received != VIRTIO_BALLOON_CMD_ID_STOP &&
|
|
|
|
cmd_id_received !=
|
|
|
|
virtio32_to_cpu(vb->vdev, vb->cmd_id_active)) {
|
|
|
|
virtio_balloon_report_free_page(vb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-12 08:02:45 +08:00
|
|
|
#ifdef CONFIG_BALLOON_COMPACTION
|
|
|
|
/*
|
|
|
|
* virtballoon_migratepage - perform the balloon page migration on behalf of
|
|
|
|
* a compation thread. (called under page lock)
|
2014-10-10 06:29:29 +08:00
|
|
|
* @vb_dev_info: the balloon device
|
2012-12-12 08:02:45 +08:00
|
|
|
* @newpage: page that will replace the isolated page after migration finishes.
|
|
|
|
* @page : the isolated (old) page that is about to be migrated to newpage.
|
|
|
|
* @mode : compaction mode -- not used for balloon page migration.
|
|
|
|
*
|
|
|
|
* After a ballooned page gets isolated by compaction procedures, this is the
|
|
|
|
* function that performs the page migration on behalf of a compaction thread
|
|
|
|
* The page migration for virtio balloon is done in a simple swap fashion which
|
|
|
|
* follows these two macro steps:
|
|
|
|
* 1) insert newpage into vb->pages list and update the host about it;
|
|
|
|
* 2) update the host about the old page removed from vb->pages list;
|
|
|
|
*
|
|
|
|
* This function preforms the balloon page migration task.
|
|
|
|
* Called through balloon_mapping->a_ops->migratepage
|
|
|
|
*/
|
2014-10-10 06:29:29 +08:00
|
|
|
static int virtballoon_migratepage(struct balloon_dev_info *vb_dev_info,
|
2012-12-12 08:02:45 +08:00
|
|
|
struct page *newpage, struct page *page, enum migrate_mode mode)
|
|
|
|
{
|
2014-10-10 06:29:29 +08:00
|
|
|
struct virtio_balloon *vb = container_of(vb_dev_info,
|
|
|
|
struct virtio_balloon, vb_dev_info);
|
2012-12-12 08:02:45 +08:00
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In order to avoid lock contention while migrating pages concurrently
|
|
|
|
* to leak_balloon() or fill_balloon() we just give up the balloon_lock
|
|
|
|
* this turn, as it is easier to retry the page migration later.
|
|
|
|
* This also prevents fill_balloon() getting stuck into a mutex
|
|
|
|
* recursion in the case it ends up triggering memory compaction
|
|
|
|
* while it is attempting to inflate the ballon.
|
|
|
|
*/
|
|
|
|
if (!mutex_trylock(&vb->balloon_lock))
|
|
|
|
return -EAGAIN;
|
|
|
|
|
2014-10-10 06:29:27 +08:00
|
|
|
get_page(newpage); /* balloon reference */
|
|
|
|
|
virtio-balloon: fix managed page counts when migrating pages between zones
In case we have to migrate a ballon page to a newpage of another zone, the
managed page count of both zones is wrong. Paired with memory offlining
(which will adjust the managed page count), we can trigger kernel crashes
and all kinds of different symptoms.
One way to reproduce:
1. Start a QEMU guest with 4GB, no NUMA
2. Hotplug a 1GB DIMM and online the memory to ZONE_NORMAL
3. Inflate the balloon to 1GB
4. Unplug the DIMM (be quick, otherwise unmovable data ends up on it)
5. Observe /proc/zoneinfo
Node 0, zone Normal
pages free 16810
min 24848885473806
low 18471592959183339
high 36918337032892872
spanned 262144
present 262144
managed 18446744073709533486
6. Do anything that requires some memory (e.g., inflate the balloon some
more). The OOM goes crazy and the system crashes
[ 238.324946] Out of memory: Killed process 537 (login) total-vm:27584kB, anon-rss:860kB, file-rss:0kB, shmem-rss:00
[ 238.338585] systemd invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0
[ 238.339420] CPU: 0 PID: 1 Comm: systemd Tainted: G D W 5.4.0-next-20191204+ #75
[ 238.340139] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu4
[ 238.341121] Call Trace:
[ 238.341337] dump_stack+0x8f/0xd0
[ 238.341630] dump_header+0x61/0x5ea
[ 238.341942] oom_kill_process.cold+0xb/0x10
[ 238.342299] out_of_memory+0x24d/0x5a0
[ 238.342625] __alloc_pages_slowpath+0xd12/0x1020
[ 238.343024] __alloc_pages_nodemask+0x391/0x410
[ 238.343407] pagecache_get_page+0xc3/0x3a0
[ 238.343757] filemap_fault+0x804/0xc30
[ 238.344083] ? ext4_filemap_fault+0x28/0x42
[ 238.344444] ext4_filemap_fault+0x30/0x42
[ 238.344789] __do_fault+0x37/0x1a0
[ 238.345087] __handle_mm_fault+0x104d/0x1ab0
[ 238.345450] handle_mm_fault+0x169/0x360
[ 238.345790] do_user_addr_fault+0x20d/0x490
[ 238.346154] do_page_fault+0x31/0x210
[ 238.346468] async_page_fault+0x43/0x50
[ 238.346797] RIP: 0033:0x7f47eba4197e
[ 238.347110] Code: Bad RIP value.
[ 238.347387] RSP: 002b:00007ffd7c0c1890 EFLAGS: 00010293
[ 238.347834] RAX: 0000000000000002 RBX: 000055d196a20a20 RCX: 00007f47eba4197e
[ 238.348437] RDX: 0000000000000033 RSI: 00007ffd7c0c18c0 RDI: 0000000000000004
[ 238.349047] RBP: 00007ffd7c0c1c20 R08: 0000000000000000 R09: 0000000000000033
[ 238.349660] R10: 00000000ffffffff R11: 0000000000000293 R12: 0000000000000001
[ 238.350261] R13: ffffffffffffffff R14: 0000000000000000 R15: 00007ffd7c0c18c0
[ 238.350878] Mem-Info:
[ 238.351085] active_anon:3121 inactive_anon:51 isolated_anon:0
[ 238.351085] active_file:12 inactive_file:7 isolated_file:0
[ 238.351085] unevictable:0 dirty:0 writeback:0 unstable:0
[ 238.351085] slab_reclaimable:5565 slab_unreclaimable:10170
[ 238.351085] mapped:3 shmem:111 pagetables:155 bounce:0
[ 238.351085] free:720717 free_pcp:2 free_cma:0
[ 238.353757] Node 0 active_anon:12484kB inactive_anon:204kB active_file:48kB inactive_file:28kB unevictable:0kB iss
[ 238.355979] Node 0 DMA free:11556kB min:36kB low:48kB high:60kB reserved_highatomic:0KB active_anon:152kB inactivB
[ 238.358345] lowmem_reserve[]: 0 2955 2884 2884 2884
[ 238.358761] Node 0 DMA32 free:2677864kB min:7004kB low:10028kB high:13052kB reserved_highatomic:0KB active_anon:0B
[ 238.361202] lowmem_reserve[]: 0 0 72057594037927865 72057594037927865 72057594037927865
[ 238.361888] Node 0 Normal free:193448kB min:99395541895224kB low:73886371836733356kB high:147673348131571488kB reB
[ 238.364765] lowmem_reserve[]: 0 0 0 0 0
[ 238.365101] Node 0 DMA: 7*4kB (U) 5*8kB (UE) 6*16kB (UME) 2*32kB (UM) 1*64kB (U) 2*128kB (UE) 3*256kB (UME) 2*512B
[ 238.366379] Node 0 DMA32: 0*4kB 1*8kB (U) 2*16kB (UM) 2*32kB (UM) 2*64kB (UM) 1*128kB (U) 1*256kB (U) 1*512kB (U)B
[ 238.367654] Node 0 Normal: 1985*4kB (UME) 1321*8kB (UME) 844*16kB (UME) 524*32kB (UME) 300*64kB (UME) 138*128kB (B
[ 238.369184] Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
[ 238.369915] 130 total pagecache pages
[ 238.370241] 0 pages in swap cache
[ 238.370533] Swap cache stats: add 0, delete 0, find 0/0
[ 238.370981] Free swap = 0kB
[ 238.371239] Total swap = 0kB
[ 238.371488] 1048445 pages RAM
[ 238.371756] 0 pages HighMem/MovableOnly
[ 238.372090] 306992 pages reserved
[ 238.372376] 0 pages cma reserved
[ 238.372661] 0 pages hwpoisoned
In another instance (older kernel), I was able to observe this
(negative page count :/):
[ 180.896971] Offlined Pages 32768
[ 182.667462] Offlined Pages 32768
[ 184.408117] Offlined Pages 32768
[ 186.026321] Offlined Pages 32768
[ 187.684861] Offlined Pages 32768
[ 189.227013] Offlined Pages 32768
[ 190.830303] Offlined Pages 32768
[ 190.833071] Built 1 zonelists, mobility grouping on. Total pages: -36920272750453009
In another instance (older kernel), I was no longer able to start any
process:
[root@vm ~]# [ 214.348068] Offlined Pages 32768
[ 215.973009] Offlined Pages 32768
cat /proc/meminfo
-bash: fork: Cannot allocate memory
[root@vm ~]# cat /proc/meminfo
-bash: fork: Cannot allocate memory
Fix it by properly adjusting the managed page count when migrating if
the zone changed. The managed page count of the zones now looks after
unplug of the DIMM (and after deflating the balloon) just like before
inflating the balloon (and plugging+onlining the DIMM).
We'll temporarily modify the totalram page count. If this ever becomes a
problem, we can fine tune by providing helpers that don't touch
the totalram pages (e.g., adjust_zone_managed_page_count()).
Please note that fixing up the managed page count is only necessary when
we adjusted the managed page count when inflating - only if we
don't have VIRTIO_BALLOON_F_DEFLATE_ON_OOM. With that feature, the
managed page count is not touched when inflating/deflating.
Reported-by: Yumei Huang <yuhuang@redhat.com>
Fixes: 3dcc0571cd64 ("mm: correctly update zone->managed_pages")
Cc: <stable@vger.kernel.org> # v3.11+
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2019-12-11 19:11:52 +08:00
|
|
|
/*
|
|
|
|
* When we migrate a page to a different zone and adjusted the
|
|
|
|
* managed page count when inflating, we have to fixup the count of
|
|
|
|
* both involved zones.
|
|
|
|
*/
|
|
|
|
if (!virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_DEFLATE_ON_OOM) &&
|
|
|
|
page_zone(page) != page_zone(newpage)) {
|
|
|
|
adjust_managed_page_count(page, 1);
|
|
|
|
adjust_managed_page_count(newpage, -1);
|
|
|
|
}
|
|
|
|
|
2012-12-12 08:02:45 +08:00
|
|
|
/* balloon's page migration 1st step -- inflate "newpage" */
|
|
|
|
spin_lock_irqsave(&vb_dev_info->pages_lock, flags);
|
2014-10-10 06:29:29 +08:00
|
|
|
balloon_page_insert(vb_dev_info, newpage);
|
2012-12-12 08:02:45 +08:00
|
|
|
vb_dev_info->isolated_pages--;
|
2014-10-10 06:29:32 +08:00
|
|
|
__count_vm_event(BALLOON_MIGRATE);
|
2012-12-12 08:02:45 +08:00
|
|
|
spin_unlock_irqrestore(&vb_dev_info->pages_lock, flags);
|
|
|
|
vb->num_pfns = VIRTIO_BALLOON_PAGES_PER_PAGE;
|
2016-05-17 18:31:18 +08:00
|
|
|
set_page_pfns(vb, vb->pfns, newpage);
|
2012-12-12 08:02:45 +08:00
|
|
|
tell_host(vb, vb->inflate_vq);
|
|
|
|
|
2014-10-10 06:29:27 +08:00
|
|
|
/* balloon's page migration 2nd step -- deflate "page" */
|
2018-07-18 10:29:28 +08:00
|
|
|
spin_lock_irqsave(&vb_dev_info->pages_lock, flags);
|
2012-12-12 08:02:45 +08:00
|
|
|
balloon_page_delete(page);
|
2018-07-18 10:29:28 +08:00
|
|
|
spin_unlock_irqrestore(&vb_dev_info->pages_lock, flags);
|
2012-12-12 08:02:45 +08:00
|
|
|
vb->num_pfns = VIRTIO_BALLOON_PAGES_PER_PAGE;
|
2016-05-17 18:31:18 +08:00
|
|
|
set_page_pfns(vb, vb->pfns, page);
|
2012-12-12 08:02:45 +08:00
|
|
|
tell_host(vb, vb->deflate_vq);
|
|
|
|
|
|
|
|
mutex_unlock(&vb->balloon_lock);
|
|
|
|
|
2014-10-10 06:29:27 +08:00
|
|
|
put_page(page); /* balloon reference */
|
|
|
|
|
2016-07-27 06:26:50 +08:00
|
|
|
return MIGRATEPAGE_SUCCESS;
|
2012-12-12 08:02:45 +08:00
|
|
|
}
|
2016-07-27 06:23:09 +08:00
|
|
|
|
2019-03-26 00:38:25 +08:00
|
|
|
static int balloon_init_fs_context(struct fs_context *fc)
|
2016-07-27 06:23:09 +08:00
|
|
|
{
|
2019-03-26 00:38:25 +08:00
|
|
|
return init_pseudo(fc, BALLOON_KVM_MAGIC) ? 0 : -ENOMEM;
|
2016-07-27 06:23:09 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct file_system_type balloon_fs = {
|
|
|
|
.name = "balloon-kvm",
|
2019-03-26 00:38:25 +08:00
|
|
|
.init_fs_context = balloon_init_fs_context,
|
2016-07-27 06:23:09 +08:00
|
|
|
.kill_sb = kill_anon_super,
|
|
|
|
};
|
|
|
|
|
2012-12-12 08:02:45 +08:00
|
|
|
#endif /* CONFIG_BALLOON_COMPACTION */
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
static unsigned long shrink_free_pages(struct virtio_balloon *vb,
|
|
|
|
unsigned long pages_to_free)
|
2018-08-16 15:50:58 +08:00
|
|
|
{
|
2018-08-27 09:32:17 +08:00
|
|
|
unsigned long blocks_to_free, blocks_freed;
|
2018-08-16 15:50:58 +08:00
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
pages_to_free = round_up(pages_to_free,
|
2019-11-19 18:25:24 +08:00
|
|
|
VIRTIO_BALLOON_HINT_BLOCK_PAGES);
|
|
|
|
blocks_to_free = pages_to_free / VIRTIO_BALLOON_HINT_BLOCK_PAGES;
|
2018-08-27 09:32:17 +08:00
|
|
|
blocks_freed = return_free_pages_to_mm(vb, blocks_to_free);
|
|
|
|
|
2019-11-19 18:25:24 +08:00
|
|
|
return blocks_freed * VIRTIO_BALLOON_HINT_BLOCK_PAGES;
|
2018-08-27 09:32:17 +08:00
|
|
|
}
|
|
|
|
|
2019-11-19 17:50:35 +08:00
|
|
|
static unsigned long leak_balloon_pages(struct virtio_balloon *vb,
|
|
|
|
unsigned long pages_to_free)
|
|
|
|
{
|
|
|
|
return leak_balloon(vb, pages_to_free * VIRTIO_BALLOON_PAGES_PER_PAGE) /
|
|
|
|
VIRTIO_BALLOON_PAGES_PER_PAGE;
|
|
|
|
}
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
static unsigned long shrink_balloon_pages(struct virtio_balloon *vb,
|
|
|
|
unsigned long pages_to_free)
|
|
|
|
{
|
|
|
|
unsigned long pages_freed = 0;
|
2018-08-16 15:50:58 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* One invocation of leak_balloon can deflate at most
|
|
|
|
* VIRTIO_BALLOON_ARRAY_PFNS_MAX balloon pages, so we call it
|
|
|
|
* multiple times to deflate pages till reaching pages_to_free.
|
|
|
|
*/
|
2019-11-19 17:50:35 +08:00
|
|
|
while (vb->num_pages && pages_freed < pages_to_free)
|
|
|
|
pages_freed += leak_balloon_pages(vb,
|
|
|
|
pages_to_free - pages_freed);
|
|
|
|
|
2018-08-16 15:50:58 +08:00
|
|
|
update_balloon_size(vb);
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
return pages_freed;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long virtio_balloon_shrinker_scan(struct shrinker *shrinker,
|
|
|
|
struct shrink_control *sc)
|
|
|
|
{
|
|
|
|
unsigned long pages_to_free, pages_freed = 0;
|
|
|
|
struct virtio_balloon *vb = container_of(shrinker,
|
|
|
|
struct virtio_balloon, shrinker);
|
|
|
|
|
2019-11-19 17:50:35 +08:00
|
|
|
pages_to_free = sc->nr_to_scan;
|
2018-08-27 09:32:17 +08:00
|
|
|
|
|
|
|
if (virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_FREE_PAGE_HINT))
|
|
|
|
pages_freed = shrink_free_pages(vb, pages_to_free);
|
|
|
|
|
|
|
|
if (pages_freed >= pages_to_free)
|
|
|
|
return pages_freed;
|
|
|
|
|
|
|
|
pages_freed += shrink_balloon_pages(vb, pages_to_free - pages_freed);
|
|
|
|
|
|
|
|
return pages_freed;
|
2018-08-16 15:50:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long virtio_balloon_shrinker_count(struct shrinker *shrinker,
|
|
|
|
struct shrink_control *sc)
|
|
|
|
{
|
|
|
|
struct virtio_balloon *vb = container_of(shrinker,
|
|
|
|
struct virtio_balloon, shrinker);
|
2018-08-27 09:32:17 +08:00
|
|
|
unsigned long count;
|
2018-08-16 15:50:58 +08:00
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
count = vb->num_pages / VIRTIO_BALLOON_PAGES_PER_PAGE;
|
2019-11-19 18:25:24 +08:00
|
|
|
count += vb->num_free_page_blocks * VIRTIO_BALLOON_HINT_BLOCK_PAGES;
|
2018-08-27 09:32:17 +08:00
|
|
|
|
|
|
|
return count;
|
2018-08-16 15:50:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void virtio_balloon_unregister_shrinker(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
unregister_shrinker(&vb->shrinker);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int virtio_balloon_register_shrinker(struct virtio_balloon *vb)
|
|
|
|
{
|
|
|
|
vb->shrinker.scan_objects = virtio_balloon_shrinker_scan;
|
|
|
|
vb->shrinker.count_objects = virtio_balloon_shrinker_count;
|
|
|
|
vb->shrinker.seeks = DEFAULT_SEEKS;
|
|
|
|
|
|
|
|
return register_shrinker(&vb->shrinker);
|
|
|
|
}
|
|
|
|
|
2011-12-22 19:28:34 +08:00
|
|
|
static int virtballoon_probe(struct virtio_device *vdev)
|
|
|
|
{
|
|
|
|
struct virtio_balloon *vb;
|
2018-08-27 09:32:19 +08:00
|
|
|
__u32 poison_val;
|
2011-12-22 19:28:34 +08:00
|
|
|
int err;
|
|
|
|
|
2015-01-12 22:23:37 +08:00
|
|
|
if (!vdev->config->get) {
|
|
|
|
dev_err(&vdev->dev, "%s failure: config access disabled\n",
|
|
|
|
__func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2018-08-16 15:50:57 +08:00
|
|
|
vdev->priv = vb = kzalloc(sizeof(*vb), GFP_KERNEL);
|
2011-12-22 19:28:34 +08:00
|
|
|
if (!vb) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2016-01-26 00:38:06 +08:00
|
|
|
INIT_WORK(&vb->update_balloon_stats_work, update_balloon_stats_func);
|
|
|
|
INIT_WORK(&vb->update_balloon_size_work, update_balloon_size_func);
|
2016-01-26 00:38:05 +08:00
|
|
|
spin_lock_init(&vb->stop_update_lock);
|
2012-12-12 08:02:45 +08:00
|
|
|
mutex_init(&vb->balloon_lock);
|
2012-07-02 15:33:08 +08:00
|
|
|
init_waitqueue_head(&vb->acked);
|
2011-12-22 19:28:34 +08:00
|
|
|
vb->vdev = vdev;
|
|
|
|
|
2014-10-10 06:29:29 +08:00
|
|
|
balloon_devinfo_init(&vb->vb_dev_info);
|
2012-12-12 08:02:45 +08:00
|
|
|
|
2011-12-22 19:28:34 +08:00
|
|
|
err = init_vqs(vb);
|
|
|
|
if (err)
|
2014-10-10 06:29:29 +08:00
|
|
|
goto out_free_vb;
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2016-07-27 06:23:09 +08:00
|
|
|
#ifdef CONFIG_BALLOON_COMPACTION
|
|
|
|
balloon_mnt = kern_mount(&balloon_fs);
|
|
|
|
if (IS_ERR(balloon_mnt)) {
|
|
|
|
err = PTR_ERR(balloon_mnt);
|
|
|
|
goto out_del_vqs;
|
|
|
|
}
|
|
|
|
|
|
|
|
vb->vb_dev_info.migratepage = virtballoon_migratepage;
|
|
|
|
vb->vb_dev_info.inode = alloc_anon_inode(balloon_mnt->mnt_sb);
|
|
|
|
if (IS_ERR(vb->vb_dev_info.inode)) {
|
|
|
|
err = PTR_ERR(vb->vb_dev_info.inode);
|
|
|
|
kern_unmount(balloon_mnt);
|
|
|
|
goto out_del_vqs;
|
|
|
|
}
|
|
|
|
vb->vb_dev_info.inode->i_mapping->a_ops = &balloon_aops;
|
|
|
|
#endif
|
2018-08-27 09:32:17 +08:00
|
|
|
if (virtio_has_feature(vdev, VIRTIO_BALLOON_F_FREE_PAGE_HINT)) {
|
|
|
|
/*
|
|
|
|
* There is always one entry reserved for cmd id, so the ring
|
|
|
|
* size needs to be at least two to report free page hints.
|
|
|
|
*/
|
|
|
|
if (virtqueue_get_vring_size(vb->free_page_vq) < 2) {
|
|
|
|
err = -ENOSPC;
|
|
|
|
goto out_del_vqs;
|
|
|
|
}
|
|
|
|
vb->balloon_wq = alloc_workqueue("balloon-wq",
|
|
|
|
WQ_FREEZABLE | WQ_CPU_INTENSIVE, 0);
|
|
|
|
if (!vb->balloon_wq) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto out_del_vqs;
|
|
|
|
}
|
|
|
|
INIT_WORK(&vb->report_free_page_work, report_free_page_func);
|
2019-01-07 15:01:04 +08:00
|
|
|
vb->cmd_id_received_cache = VIRTIO_BALLOON_CMD_ID_STOP;
|
2018-08-27 09:32:17 +08:00
|
|
|
vb->cmd_id_active = cpu_to_virtio32(vb->vdev,
|
|
|
|
VIRTIO_BALLOON_CMD_ID_STOP);
|
|
|
|
vb->cmd_id_stop = cpu_to_virtio32(vb->vdev,
|
|
|
|
VIRTIO_BALLOON_CMD_ID_STOP);
|
|
|
|
spin_lock_init(&vb->free_page_list_lock);
|
|
|
|
INIT_LIST_HEAD(&vb->free_page_list);
|
2018-08-27 09:32:19 +08:00
|
|
|
if (virtio_has_feature(vdev, VIRTIO_BALLOON_F_PAGE_POISON)) {
|
|
|
|
memset(&poison_val, PAGE_POISON, sizeof(poison_val));
|
|
|
|
virtio_cwrite(vb->vdev, struct virtio_balloon_config,
|
|
|
|
poison_val, &poison_val);
|
|
|
|
}
|
2018-08-27 09:32:17 +08:00
|
|
|
}
|
2018-08-16 15:50:58 +08:00
|
|
|
/*
|
|
|
|
* We continue to use VIRTIO_BALLOON_F_DEFLATE_ON_OOM to decide if a
|
|
|
|
* shrinker needs to be registered to relieve memory pressure.
|
|
|
|
*/
|
|
|
|
if (virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_DEFLATE_ON_OOM)) {
|
|
|
|
err = virtio_balloon_register_shrinker(vb);
|
|
|
|
if (err)
|
2018-08-27 09:32:17 +08:00
|
|
|
goto out_del_balloon_wq;
|
2018-08-16 15:50:58 +08:00
|
|
|
}
|
2015-03-05 10:54:41 +08:00
|
|
|
virtio_device_ready(vdev);
|
|
|
|
|
2016-09-29 18:17:12 +08:00
|
|
|
if (towards_target(vb))
|
|
|
|
virtballoon_changed(vdev);
|
2008-02-05 12:50:12 +08:00
|
|
|
return 0;
|
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
out_del_balloon_wq:
|
|
|
|
if (virtio_has_feature(vdev, VIRTIO_BALLOON_F_FREE_PAGE_HINT))
|
|
|
|
destroy_workqueue(vb->balloon_wq);
|
2016-07-27 06:23:09 +08:00
|
|
|
out_del_vqs:
|
2009-06-13 12:16:36 +08:00
|
|
|
vdev->config->del_vqs(vdev);
|
2008-02-05 12:50:12 +08:00
|
|
|
out_free_vb:
|
|
|
|
kfree(vb);
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2012-04-27 03:15:57 +08:00
|
|
|
static void remove_common(struct virtio_balloon *vb)
|
2008-02-05 12:50:12 +08:00
|
|
|
{
|
|
|
|
/* There might be pages left in the balloon: free them. */
|
|
|
|
while (vb->num_pages)
|
|
|
|
leak_balloon(vb, vb->num_pages);
|
2012-04-27 03:15:56 +08:00
|
|
|
update_balloon_size(vb);
|
2008-02-05 12:50:12 +08:00
|
|
|
|
|
|
|
/* Now we reset the device so we can clean up the queues. */
|
2012-04-27 03:15:57 +08:00
|
|
|
vb->vdev->config->reset(vb->vdev);
|
2008-02-05 12:50:12 +08:00
|
|
|
|
2012-04-27 03:15:57 +08:00
|
|
|
vb->vdev->config->del_vqs(vb->vdev);
|
|
|
|
}
|
|
|
|
|
2012-12-22 05:05:30 +08:00
|
|
|
static void virtballoon_remove(struct virtio_device *vdev)
|
2012-04-27 03:15:57 +08:00
|
|
|
{
|
|
|
|
struct virtio_balloon *vb = vdev->priv;
|
|
|
|
|
2018-08-16 15:50:58 +08:00
|
|
|
if (virtio_has_feature(vb->vdev, VIRTIO_BALLOON_F_DEFLATE_ON_OOM))
|
|
|
|
virtio_balloon_unregister_shrinker(vb);
|
2016-01-26 00:38:05 +08:00
|
|
|
spin_lock_irq(&vb->stop_update_lock);
|
|
|
|
vb->stop_update = true;
|
|
|
|
spin_unlock_irq(&vb->stop_update_lock);
|
2016-01-26 00:38:06 +08:00
|
|
|
cancel_work_sync(&vb->update_balloon_size_work);
|
|
|
|
cancel_work_sync(&vb->update_balloon_stats_work);
|
2016-01-26 00:38:05 +08:00
|
|
|
|
2018-08-27 09:32:17 +08:00
|
|
|
if (virtio_has_feature(vdev, VIRTIO_BALLOON_F_FREE_PAGE_HINT)) {
|
|
|
|
cancel_work_sync(&vb->report_free_page_work);
|
|
|
|
destroy_workqueue(vb->balloon_wq);
|
|
|
|
}
|
|
|
|
|
2012-04-27 03:15:57 +08:00
|
|
|
remove_common(vb);
|
2017-02-25 07:00:40 +08:00
|
|
|
#ifdef CONFIG_BALLOON_COMPACTION
|
2016-07-27 06:23:09 +08:00
|
|
|
if (vb->vb_dev_info.inode)
|
|
|
|
iput(vb->vb_dev_info.inode);
|
2017-02-25 07:00:40 +08:00
|
|
|
|
|
|
|
kern_unmount(balloon_mnt);
|
|
|
|
#endif
|
2008-02-05 12:50:12 +08:00
|
|
|
kfree(vb);
|
|
|
|
}
|
|
|
|
|
2013-09-17 07:55:23 +08:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
virtio: balloon: Add freeze, restore handlers to support S4
Handling balloon hibernate / restore is tricky. If the balloon was
inflated before going into the hibernation state, upon resume, the host
will not have any memory of that. Any pages that were passed on to the
host earlier would most likely be invalid, and the host will have to
re-balloon to the previous value to get in the pre-hibernate state.
So the only sane thing for the guest to do here is to discard all the
pages that were put in the balloon. When to discard the pages is the
next question.
One solution is to deflate the balloon just before writing the image to
the disk (in the freeze() PM callback). However, asking for pages from
the host just to discard them immediately after seems wasteful of
resources. Hence, it makes sense to do this by just fudging our
counters soon after wakeup. This means we don't deflate the balloon
before sleep, and also don't put unnecessary pressure on the host.
This also helps in the thaw case: if the freeze fails for whatever
reason, the balloon should continue to remain in the inflated state.
This was tested by issuing 'swapoff -a' and trying to go into the S4
state. That fails, and the balloon stays inflated, as expected. Both
the host and the guest are happy.
Finally, in the restore() callback, we empty the list of pages that were
previously given off to the host, add the appropriate number of pages to
the totalram_pages counter, reset the num_pages counter to 0, and
all is fine.
As a last step, delete the vqs on the freeze callback to prepare for
hibernation, and re-create them in the restore and thaw callbacks to
resume normal operation.
The kthread doesn't race with any operations here, since it's frozen
before the freeze() call and is thawed after the thaw() and restore()
callbacks, so we're safe with that.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-12-22 19:28:35 +08:00
|
|
|
static int virtballoon_freeze(struct virtio_device *vdev)
|
|
|
|
{
|
2012-02-29 20:12:51 +08:00
|
|
|
struct virtio_balloon *vb = vdev->priv;
|
|
|
|
|
virtio: balloon: Add freeze, restore handlers to support S4
Handling balloon hibernate / restore is tricky. If the balloon was
inflated before going into the hibernation state, upon resume, the host
will not have any memory of that. Any pages that were passed on to the
host earlier would most likely be invalid, and the host will have to
re-balloon to the previous value to get in the pre-hibernate state.
So the only sane thing for the guest to do here is to discard all the
pages that were put in the balloon. When to discard the pages is the
next question.
One solution is to deflate the balloon just before writing the image to
the disk (in the freeze() PM callback). However, asking for pages from
the host just to discard them immediately after seems wasteful of
resources. Hence, it makes sense to do this by just fudging our
counters soon after wakeup. This means we don't deflate the balloon
before sleep, and also don't put unnecessary pressure on the host.
This also helps in the thaw case: if the freeze fails for whatever
reason, the balloon should continue to remain in the inflated state.
This was tested by issuing 'swapoff -a' and trying to go into the S4
state. That fails, and the balloon stays inflated, as expected. Both
the host and the guest are happy.
Finally, in the restore() callback, we empty the list of pages that were
previously given off to the host, add the appropriate number of pages to
the totalram_pages counter, reset the num_pages counter to 0, and
all is fine.
As a last step, delete the vqs on the freeze callback to prepare for
hibernation, and re-create them in the restore and thaw callbacks to
resume normal operation.
The kthread doesn't race with any operations here, since it's frozen
before the freeze() call and is thawed after the thaw() and restore()
callbacks, so we're safe with that.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-12-22 19:28:35 +08:00
|
|
|
/*
|
2016-01-26 00:38:05 +08:00
|
|
|
* The workqueue is already frozen by the PM core before this
|
virtio: balloon: Add freeze, restore handlers to support S4
Handling balloon hibernate / restore is tricky. If the balloon was
inflated before going into the hibernation state, upon resume, the host
will not have any memory of that. Any pages that were passed on to the
host earlier would most likely be invalid, and the host will have to
re-balloon to the previous value to get in the pre-hibernate state.
So the only sane thing for the guest to do here is to discard all the
pages that were put in the balloon. When to discard the pages is the
next question.
One solution is to deflate the balloon just before writing the image to
the disk (in the freeze() PM callback). However, asking for pages from
the host just to discard them immediately after seems wasteful of
resources. Hence, it makes sense to do this by just fudging our
counters soon after wakeup. This means we don't deflate the balloon
before sleep, and also don't put unnecessary pressure on the host.
This also helps in the thaw case: if the freeze fails for whatever
reason, the balloon should continue to remain in the inflated state.
This was tested by issuing 'swapoff -a' and trying to go into the S4
state. That fails, and the balloon stays inflated, as expected. Both
the host and the guest are happy.
Finally, in the restore() callback, we empty the list of pages that were
previously given off to the host, add the appropriate number of pages to
the totalram_pages counter, reset the num_pages counter to 0, and
all is fine.
As a last step, delete the vqs on the freeze callback to prepare for
hibernation, and re-create them in the restore and thaw callbacks to
resume normal operation.
The kthread doesn't race with any operations here, since it's frozen
before the freeze() call and is thawed after the thaw() and restore()
callbacks, so we're safe with that.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-12-22 19:28:35 +08:00
|
|
|
* function is called.
|
|
|
|
*/
|
2012-04-27 03:15:57 +08:00
|
|
|
remove_common(vb);
|
virtio: balloon: Add freeze, restore handlers to support S4
Handling balloon hibernate / restore is tricky. If the balloon was
inflated before going into the hibernation state, upon resume, the host
will not have any memory of that. Any pages that were passed on to the
host earlier would most likely be invalid, and the host will have to
re-balloon to the previous value to get in the pre-hibernate state.
So the only sane thing for the guest to do here is to discard all the
pages that were put in the balloon. When to discard the pages is the
next question.
One solution is to deflate the balloon just before writing the image to
the disk (in the freeze() PM callback). However, asking for pages from
the host just to discard them immediately after seems wasteful of
resources. Hence, it makes sense to do this by just fudging our
counters soon after wakeup. This means we don't deflate the balloon
before sleep, and also don't put unnecessary pressure on the host.
This also helps in the thaw case: if the freeze fails for whatever
reason, the balloon should continue to remain in the inflated state.
This was tested by issuing 'swapoff -a' and trying to go into the S4
state. That fails, and the balloon stays inflated, as expected. Both
the host and the guest are happy.
Finally, in the restore() callback, we empty the list of pages that were
previously given off to the host, add the appropriate number of pages to
the totalram_pages counter, reset the num_pages counter to 0, and
all is fine.
As a last step, delete the vqs on the freeze callback to prepare for
hibernation, and re-create them in the restore and thaw callbacks to
resume normal operation.
The kthread doesn't race with any operations here, since it's frozen
before the freeze() call and is thawed after the thaw() and restore()
callbacks, so we're safe with that.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-12-22 19:28:35 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-04-27 03:15:55 +08:00
|
|
|
static int virtballoon_restore(struct virtio_device *vdev)
|
2012-02-29 20:12:51 +08:00
|
|
|
{
|
|
|
|
struct virtio_balloon *vb = vdev->priv;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = init_vqs(vdev->priv);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2014-10-15 07:52:33 +08:00
|
|
|
virtio_device_ready(vdev);
|
|
|
|
|
2016-01-26 00:38:05 +08:00
|
|
|
if (towards_target(vb))
|
|
|
|
virtballoon_changed(vdev);
|
2012-02-29 20:12:51 +08:00
|
|
|
update_balloon_size(vb);
|
|
|
|
return 0;
|
|
|
|
}
|
virtio: balloon: Add freeze, restore handlers to support S4
Handling balloon hibernate / restore is tricky. If the balloon was
inflated before going into the hibernation state, upon resume, the host
will not have any memory of that. Any pages that were passed on to the
host earlier would most likely be invalid, and the host will have to
re-balloon to the previous value to get in the pre-hibernate state.
So the only sane thing for the guest to do here is to discard all the
pages that were put in the balloon. When to discard the pages is the
next question.
One solution is to deflate the balloon just before writing the image to
the disk (in the freeze() PM callback). However, asking for pages from
the host just to discard them immediately after seems wasteful of
resources. Hence, it makes sense to do this by just fudging our
counters soon after wakeup. This means we don't deflate the balloon
before sleep, and also don't put unnecessary pressure on the host.
This also helps in the thaw case: if the freeze fails for whatever
reason, the balloon should continue to remain in the inflated state.
This was tested by issuing 'swapoff -a' and trying to go into the S4
state. That fails, and the balloon stays inflated, as expected. Both
the host and the guest are happy.
Finally, in the restore() callback, we empty the list of pages that were
previously given off to the host, add the appropriate number of pages to
the totalram_pages counter, reset the num_pages counter to 0, and
all is fine.
As a last step, delete the vqs on the freeze callback to prepare for
hibernation, and re-create them in the restore and thaw callbacks to
resume normal operation.
The kthread doesn't race with any operations here, since it's frozen
before the freeze() call and is thawed after the thaw() and restore()
callbacks, so we're safe with that.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-12-22 19:28:35 +08:00
|
|
|
#endif
|
|
|
|
|
2017-06-14 01:56:44 +08:00
|
|
|
static int virtballoon_validate(struct virtio_device *vdev)
|
|
|
|
{
|
2018-08-27 09:32:19 +08:00
|
|
|
if (!page_poisoning_enabled())
|
|
|
|
__virtio_clear_bit(vdev, VIRTIO_BALLOON_F_PAGE_POISON);
|
|
|
|
|
2017-06-14 01:56:44 +08:00
|
|
|
__virtio_clear_bit(vdev, VIRTIO_F_IOMMU_PLATFORM);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-12-01 00:14:15 +08:00
|
|
|
static unsigned int features[] = {
|
|
|
|
VIRTIO_BALLOON_F_MUST_TELL_HOST,
|
|
|
|
VIRTIO_BALLOON_F_STATS_VQ,
|
2014-11-10 07:06:29 +08:00
|
|
|
VIRTIO_BALLOON_F_DEFLATE_ON_OOM,
|
2018-08-27 09:32:17 +08:00
|
|
|
VIRTIO_BALLOON_F_FREE_PAGE_HINT,
|
2018-08-27 09:32:19 +08:00
|
|
|
VIRTIO_BALLOON_F_PAGE_POISON,
|
2009-12-01 00:14:15 +08:00
|
|
|
};
|
2008-05-03 10:50:50 +08:00
|
|
|
|
2010-01-16 09:01:26 +08:00
|
|
|
static struct virtio_driver virtio_balloon_driver = {
|
2008-05-03 10:50:50 +08:00
|
|
|
.feature_table = features,
|
|
|
|
.feature_table_size = ARRAY_SIZE(features),
|
2008-02-05 12:50:12 +08:00
|
|
|
.driver.name = KBUILD_MODNAME,
|
|
|
|
.driver.owner = THIS_MODULE,
|
|
|
|
.id_table = id_table,
|
2017-06-14 01:56:44 +08:00
|
|
|
.validate = virtballoon_validate,
|
2008-02-05 12:50:12 +08:00
|
|
|
.probe = virtballoon_probe,
|
2012-12-22 05:05:30 +08:00
|
|
|
.remove = virtballoon_remove,
|
2008-02-05 12:50:12 +08:00
|
|
|
.config_changed = virtballoon_changed,
|
2013-09-17 07:55:23 +08:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
virtio: balloon: Add freeze, restore handlers to support S4
Handling balloon hibernate / restore is tricky. If the balloon was
inflated before going into the hibernation state, upon resume, the host
will not have any memory of that. Any pages that were passed on to the
host earlier would most likely be invalid, and the host will have to
re-balloon to the previous value to get in the pre-hibernate state.
So the only sane thing for the guest to do here is to discard all the
pages that were put in the balloon. When to discard the pages is the
next question.
One solution is to deflate the balloon just before writing the image to
the disk (in the freeze() PM callback). However, asking for pages from
the host just to discard them immediately after seems wasteful of
resources. Hence, it makes sense to do this by just fudging our
counters soon after wakeup. This means we don't deflate the balloon
before sleep, and also don't put unnecessary pressure on the host.
This also helps in the thaw case: if the freeze fails for whatever
reason, the balloon should continue to remain in the inflated state.
This was tested by issuing 'swapoff -a' and trying to go into the S4
state. That fails, and the balloon stays inflated, as expected. Both
the host and the guest are happy.
Finally, in the restore() callback, we empty the list of pages that were
previously given off to the host, add the appropriate number of pages to
the totalram_pages counter, reset the num_pages counter to 0, and
all is fine.
As a last step, delete the vqs on the freeze callback to prepare for
hibernation, and re-create them in the restore and thaw callbacks to
resume normal operation.
The kthread doesn't race with any operations here, since it's frozen
before the freeze() call and is thawed after the thaw() and restore()
callbacks, so we're safe with that.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-12-22 19:28:35 +08:00
|
|
|
.freeze = virtballoon_freeze,
|
|
|
|
.restore = virtballoon_restore,
|
|
|
|
#endif
|
2008-02-05 12:50:12 +08:00
|
|
|
};
|
|
|
|
|
2013-02-13 14:29:28 +08:00
|
|
|
module_virtio_driver(virtio_balloon_driver);
|
2008-02-05 12:50:12 +08:00
|
|
|
MODULE_DEVICE_TABLE(virtio, id_table);
|
|
|
|
MODULE_DESCRIPTION("Virtio balloon driver");
|
|
|
|
MODULE_LICENSE("GPL");
|