linux/drivers/media/platform/ti-vpe/sc.c

308 lines
7.2 KiB
C
Raw Normal View History

/*
* Scaler library
*
* Copyright (c) 2013 Texas Instruments Inc.
*
* David Griego, <dagriego@biglakesoftware.com>
* Dale Farnsworth, <dale@farnsworth.org>
* Archit Taneja, <archit@ti.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "sc.h"
[media] v4l: ti-vpe: support loading of scaler coefficients The SC block in VPE/VIP contains a SRAM within it. This internal memory requires to be loaded with appropriate scaler coefficients from a contiguous block of memory through VPDMA. The horizontal and vertical scaler each require 2 sets of scaler coefficients for luma and chroma scaling. The horizontal polyphase scaler requires coefficients for a 32 phase and 8 tap filter. Similarly, the vertical scaler requires coefficients for a 5 tap filter. The choice of the scaler coefficients depends on the scaling ratio. Add coefficient tables for different scaling ratios in sc_coeffs.h. In the case of horizontal downscaling, we need to consider the change in ratio caused by decimation performed by the horizontal scaler. In order to load the scaler coefficients via VPDMA, a configuration descriptor is used in block mode. The payload for the descriptor is the scaler coefficients copied to memory. Coefficients for each phase have to be placed in memory in a particular order understood by the scaler hardware. The choice of the scaler coefficients, and the loading of the coefficients from our tables to a contiguous buffer is managed by the functions sc_set_hs_coefficients and sc_set_vs_coefficients. The sc_data handle is now added with some parameters to describe the state of the coefficients loaded in the SC block. 'loaded_coeff_h' and 'loaded_coeff_v' hold the address of the last dma buffer which was used by VPDMA to copy coefficients. This information can be used by a vpe mem-to-mem context to decide whether it should load coefficients or not. 'hs_index' and 'vs_index' provide some optimization by preventing loading of coefficients if the scaling ratio didn't change between 2 contexts. 'load_coeff_h' and 'load_coeff_v' tell the vpe/vip driver whether we need to load the coefficients through VPDMA or not. Signed-off-by: Archit Taneja <archit@ti.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-12-12 16:35:58 +08:00
#include "sc_coeff.h"
void sc_dump_regs(struct sc_data *sc)
{
struct device *dev = &sc->pdev->dev;
#define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, \
ioread32(sc->base + CFG_##r))
DUMPREG(SC0);
DUMPREG(SC1);
DUMPREG(SC2);
DUMPREG(SC3);
DUMPREG(SC4);
DUMPREG(SC5);
DUMPREG(SC6);
DUMPREG(SC8);
DUMPREG(SC9);
DUMPREG(SC10);
DUMPREG(SC11);
DUMPREG(SC12);
DUMPREG(SC13);
DUMPREG(SC17);
DUMPREG(SC18);
DUMPREG(SC19);
DUMPREG(SC20);
DUMPREG(SC21);
DUMPREG(SC22);
DUMPREG(SC23);
DUMPREG(SC24);
DUMPREG(SC25);
#undef DUMPREG
}
[media] v4l: ti-vpe: support loading of scaler coefficients The SC block in VPE/VIP contains a SRAM within it. This internal memory requires to be loaded with appropriate scaler coefficients from a contiguous block of memory through VPDMA. The horizontal and vertical scaler each require 2 sets of scaler coefficients for luma and chroma scaling. The horizontal polyphase scaler requires coefficients for a 32 phase and 8 tap filter. Similarly, the vertical scaler requires coefficients for a 5 tap filter. The choice of the scaler coefficients depends on the scaling ratio. Add coefficient tables for different scaling ratios in sc_coeffs.h. In the case of horizontal downscaling, we need to consider the change in ratio caused by decimation performed by the horizontal scaler. In order to load the scaler coefficients via VPDMA, a configuration descriptor is used in block mode. The payload for the descriptor is the scaler coefficients copied to memory. Coefficients for each phase have to be placed in memory in a particular order understood by the scaler hardware. The choice of the scaler coefficients, and the loading of the coefficients from our tables to a contiguous buffer is managed by the functions sc_set_hs_coefficients and sc_set_vs_coefficients. The sc_data handle is now added with some parameters to describe the state of the coefficients loaded in the SC block. 'loaded_coeff_h' and 'loaded_coeff_v' hold the address of the last dma buffer which was used by VPDMA to copy coefficients. This information can be used by a vpe mem-to-mem context to decide whether it should load coefficients or not. 'hs_index' and 'vs_index' provide some optimization by preventing loading of coefficients if the scaling ratio didn't change between 2 contexts. 'load_coeff_h' and 'load_coeff_v' tell the vpe/vip driver whether we need to load the coefficients through VPDMA or not. Signed-off-by: Archit Taneja <archit@ti.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-12-12 16:35:58 +08:00
/*
* set the horizontal scaler coefficients according to the ratio of output to
* input widths, after accounting for up to two levels of decimation
*/
void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w,
unsigned int dst_w)
{
int sixteenths;
int idx;
int i, j;
u16 *coeff_h = addr;
const u16 *cp;
if (dst_w > src_w) {
idx = HS_UP_SCALE;
} else {
if ((dst_w << 1) < src_w)
dst_w <<= 1; /* first level decimation */
if ((dst_w << 1) < src_w)
dst_w <<= 1; /* second level decimation */
if (dst_w == src_w) {
idx = HS_LE_16_16_SCALE;
} else {
sixteenths = (dst_w << 4) / src_w;
if (sixteenths < 8)
sixteenths = 8;
idx = HS_LT_9_16_SCALE + sixteenths - 8;
}
}
if (idx == sc->hs_index)
return;
cp = scaler_hs_coeffs[idx];
for (i = 0; i < SC_NUM_PHASES * 2; i++) {
for (j = 0; j < SC_H_NUM_TAPS; j++)
*coeff_h++ = *cp++;
/*
* for each phase, the scaler expects space for 8 coefficients
* in it's memory. For the horizontal scaler, we copy the first
* 7 coefficients and skip the last slot to move to the next
* row to hold coefficients for the next phase
*/
coeff_h += SC_NUM_TAPS_MEM_ALIGN - SC_H_NUM_TAPS;
}
sc->hs_index = idx;
sc->load_coeff_h = true;
}
/*
* set the vertical scaler coefficients according to the ratio of output to
* input heights
*/
void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h,
unsigned int dst_h)
{
int sixteenths;
int idx;
int i, j;
u16 *coeff_v = addr;
const u16 *cp;
if (dst_h > src_h) {
idx = VS_UP_SCALE;
} else if (dst_h == src_h) {
idx = VS_1_TO_1_SCALE;
} else {
sixteenths = (dst_h << 4) / src_h;
if (sixteenths < 8)
sixteenths = 8;
idx = VS_LT_9_16_SCALE + sixteenths - 8;
}
if (idx == sc->vs_index)
return;
cp = scaler_vs_coeffs[idx];
for (i = 0; i < SC_NUM_PHASES * 2; i++) {
for (j = 0; j < SC_V_NUM_TAPS; j++)
*coeff_v++ = *cp++;
/*
* for the vertical scaler, we copy the first 5 coefficients and
* skip the last 3 slots to move to the next row to hold
* coefficients for the next phase
*/
coeff_v += SC_NUM_TAPS_MEM_ALIGN - SC_V_NUM_TAPS;
}
sc->vs_index = idx;
sc->load_coeff_v = true;
}
void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8,
u32 *sc_reg17, unsigned int src_w, unsigned int src_h,
unsigned int dst_w, unsigned int dst_h)
{
struct device *dev = &sc->pdev->dev;
u32 val;
int dcm_x, dcm_shift;
bool use_rav;
unsigned long lltmp;
u32 lin_acc_inc, lin_acc_inc_u;
u32 col_acc_offset;
u16 factor = 0;
int row_acc_init_rav = 0, row_acc_init_rav_b = 0;
u32 row_acc_inc = 0, row_acc_offset = 0, row_acc_offset_b = 0;
/*
* location of SC register in payload memory with respect to the first
* register in the mmr address data block
*/
u32 *sc_reg9 = sc_reg8 + 1;
u32 *sc_reg12 = sc_reg8 + 4;
u32 *sc_reg13 = sc_reg8 + 5;
u32 *sc_reg24 = sc_reg17 + 7;
val = sc_reg0[0];
/* clear all the features(they may get enabled elsewhere later) */
val &= ~(CFG_SELFGEN_FID | CFG_TRIM | CFG_ENABLE_SIN2_VER_INTP |
CFG_INTERLACE_I | CFG_DCM_4X | CFG_DCM_2X | CFG_AUTO_HS |
CFG_ENABLE_EV | CFG_USE_RAV | CFG_INVT_FID | CFG_SC_BYPASS |
CFG_INTERLACE_O | CFG_Y_PK_EN | CFG_HP_BYPASS | CFG_LINEAR);
if (src_w == dst_w && src_h == dst_h) {
val |= CFG_SC_BYPASS;
sc_reg0[0] = val;
return;
}
/* we only support linear scaling for now */
val |= CFG_LINEAR;
/* configure horizontal scaler */
/* enable 2X or 4X decimation */
dcm_x = src_w / dst_w;
if (dcm_x > 4) {
val |= CFG_DCM_4X;
dcm_shift = 2;
} else if (dcm_x > 2) {
val |= CFG_DCM_2X;
dcm_shift = 1;
} else {
dcm_shift = 0;
}
lltmp = dst_w - 1;
lin_acc_inc = div64_u64(((u64)(src_w >> dcm_shift) - 1) << 24, lltmp);
lin_acc_inc_u = 0;
col_acc_offset = 0;
dev_dbg(dev, "hs config: src_w = %d, dst_w = %d, decimation = %s, lin_acc_inc = %08x\n",
src_w, dst_w, dcm_shift == 2 ? "4x" :
(dcm_shift == 1 ? "2x" : "none"), lin_acc_inc);
/* configure vertical scaler */
/* use RAV for vertical scaler if vertical downscaling is > 4x */
if (dst_h < (src_h >> 2)) {
use_rav = true;
val |= CFG_USE_RAV;
} else {
use_rav = false;
}
if (use_rav) {
/* use RAV */
factor = (u16) ((dst_h << 10) / src_h);
row_acc_init_rav = factor + ((1 + factor) >> 1);
if (row_acc_init_rav >= 1024)
row_acc_init_rav -= 1024;
row_acc_init_rav_b = row_acc_init_rav +
(1 + (row_acc_init_rav >> 1)) -
(1024 >> 1);
if (row_acc_init_rav_b < 0) {
row_acc_init_rav_b += row_acc_init_rav;
row_acc_init_rav *= 2;
}
dev_dbg(dev, "vs config(RAV): src_h = %d, dst_h = %d, factor = %d, acc_init = %08x, acc_init_b = %08x\n",
src_h, dst_h, factor, row_acc_init_rav,
row_acc_init_rav_b);
} else {
/* use polyphase */
row_acc_inc = ((src_h - 1) << 16) / (dst_h - 1);
row_acc_offset = 0;
row_acc_offset_b = 0;
dev_dbg(dev, "vs config(POLY): src_h = %d, dst_h = %d,row_acc_inc = %08x\n",
src_h, dst_h, row_acc_inc);
}
sc_reg0[0] = val;
sc_reg0[1] = row_acc_inc;
sc_reg0[2] = row_acc_offset;
sc_reg0[3] = row_acc_offset_b;
sc_reg0[4] = ((lin_acc_inc_u & CFG_LIN_ACC_INC_U_MASK) <<
CFG_LIN_ACC_INC_U_SHIFT) | (dst_w << CFG_TAR_W_SHIFT) |
(dst_h << CFG_TAR_H_SHIFT);
sc_reg0[5] = (src_w << CFG_SRC_W_SHIFT) | (src_h << CFG_SRC_H_SHIFT);
sc_reg0[6] = (row_acc_init_rav_b << CFG_ROW_ACC_INIT_RAV_B_SHIFT) |
(row_acc_init_rav << CFG_ROW_ACC_INIT_RAV_SHIFT);
*sc_reg9 = lin_acc_inc;
*sc_reg12 = col_acc_offset << CFG_COL_ACC_OFFSET_SHIFT;
*sc_reg13 = factor;
*sc_reg24 = (src_w << CFG_ORG_W_SHIFT) | (src_h << CFG_ORG_H_SHIFT);
}
struct sc_data *sc_create(struct platform_device *pdev)
{
struct sc_data *sc;
dev_dbg(&pdev->dev, "sc_create\n");
sc = devm_kzalloc(&pdev->dev, sizeof(*sc), GFP_KERNEL);
if (!sc) {
dev_err(&pdev->dev, "couldn't alloc sc_data\n");
return ERR_PTR(-ENOMEM);
}
sc->pdev = pdev;
sc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sc");
if (!sc->res) {
dev_err(&pdev->dev, "missing platform resources data\n");
return ERR_PTR(-ENODEV);
}
sc->base = devm_ioremap_resource(&pdev->dev, sc->res);
if (IS_ERR(sc->base)) {
dev_err(&pdev->dev, "failed to ioremap\n");
return sc->base;
}
return sc;
}