linux/arch/arm/mach-iop13xx/pci.c

1134 lines
32 KiB
C
Raw Normal View History

/*
* iop13xx PCI support
* Copyright (c) 2005-2006, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
*/
#include <linux/pci.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <asm/irq.h>
#include <mach/hardware.h>
#include <asm/sizes.h>
#include <asm/signal.h>
#include <asm/mach/pci.h>
#include <mach/pci.h>
#define IOP13XX_PCI_DEBUG 0
#define PRINTK(x...) ((void)(IOP13XX_PCI_DEBUG && printk(x)))
u32 iop13xx_atux_pmmr_offset; /* This offset can change based on strapping */
u32 iop13xx_atue_pmmr_offset; /* This offset can change based on strapping */
static struct pci_bus *pci_bus_atux = 0;
static struct pci_bus *pci_bus_atue = 0;
u32 iop13xx_atue_mem_base;
u32 iop13xx_atux_mem_base;
size_t iop13xx_atue_mem_size;
size_t iop13xx_atux_mem_size;
unsigned long iop13xx_pcibios_min_io = 0;
unsigned long iop13xx_pcibios_min_mem = 0;
EXPORT_SYMBOL(iop13xx_atue_mem_base);
EXPORT_SYMBOL(iop13xx_atux_mem_base);
EXPORT_SYMBOL(iop13xx_atue_mem_size);
EXPORT_SYMBOL(iop13xx_atux_mem_size);
int init_atu = 0; /* Flag to select which ATU(s) to initialize / disable */
static unsigned long atux_trhfa_timeout = 0; /* Trhfa = RST# high to first
access */
/* Scan the initialized busses and ioremap the requested memory range
*/
void iop13xx_map_pci_memory(void)
{
int atu;
struct pci_bus *bus;
struct pci_dev *dev;
resource_size_t end = 0;
for (atu = 0; atu < 2; atu++) {
bus = atu ? pci_bus_atue : pci_bus_atux;
if (bus) {
list_for_each_entry(dev, &bus->devices, bus_list) {
int i;
int max = 7;
if (dev->subordinate)
max = DEVICE_COUNT_RESOURCE;
for (i = 0; i < max; i++) {
struct resource *res = &dev->resource[i];
if (res->flags & IORESOURCE_MEM)
end = max(res->end, end);
}
}
switch(atu) {
case 0:
iop13xx_atux_mem_size =
(end - IOP13XX_PCIX_LOWER_MEM_RA) + 1;
/* 16MB align the request */
if (iop13xx_atux_mem_size & (SZ_16M - 1)) {
iop13xx_atux_mem_size &= ~(SZ_16M - 1);
iop13xx_atux_mem_size += SZ_16M;
}
if (end) {
iop13xx_atux_mem_base =
(u32) __arm_ioremap_pfn(
__phys_to_pfn(IOP13XX_PCIX_LOWER_MEM_PA)
, 0, iop13xx_atux_mem_size, MT_DEVICE);
if (!iop13xx_atux_mem_base) {
printk("%s: atux allocation "
"failed\n", __func__);
BUG();
}
} else
iop13xx_atux_mem_size = 0;
PRINTK("%s: atu: %d bus_size: %d mem_base: %x\n",
__func__, atu, iop13xx_atux_mem_size,
iop13xx_atux_mem_base);
break;
case 1:
iop13xx_atue_mem_size =
(end - IOP13XX_PCIE_LOWER_MEM_RA) + 1;
/* 16MB align the request */
if (iop13xx_atue_mem_size & (SZ_16M - 1)) {
iop13xx_atue_mem_size &= ~(SZ_16M - 1);
iop13xx_atue_mem_size += SZ_16M;
}
if (end) {
iop13xx_atue_mem_base =
(u32) __arm_ioremap_pfn(
__phys_to_pfn(IOP13XX_PCIE_LOWER_MEM_PA)
, 0, iop13xx_atue_mem_size, MT_DEVICE);
if (!iop13xx_atue_mem_base) {
printk("%s: atue allocation "
"failed\n", __func__);
BUG();
}
} else
iop13xx_atue_mem_size = 0;
PRINTK("%s: atu: %d bus_size: %d mem_base: %x\n",
__func__, atu, iop13xx_atue_mem_size,
iop13xx_atue_mem_base);
break;
}
printk("%s: Initialized (%uM @ resource/virtual: %08lx/%08x)\n",
atu ? "ATUE" : "ATUX",
(atu ? iop13xx_atue_mem_size : iop13xx_atux_mem_size) /
SZ_1M,
atu ? IOP13XX_PCIE_LOWER_MEM_RA :
IOP13XX_PCIX_LOWER_MEM_RA,
atu ? iop13xx_atue_mem_base :
iop13xx_atux_mem_base);
end = 0;
}
}
}
static int iop13xx_atu_function(int atu)
{
int func = 0;
/* the function number depends on the value of the
* IOP13XX_INTERFACE_SEL_PCIX reset strap
* see C-Spec section 3.17
*/
switch(atu) {
case IOP13XX_INIT_ATU_ATUX:
if (__raw_readl(IOP13XX_ESSR0) & IOP13XX_INTERFACE_SEL_PCIX)
func = 5;
else
func = 0;
break;
case IOP13XX_INIT_ATU_ATUE:
if (__raw_readl(IOP13XX_ESSR0) & IOP13XX_INTERFACE_SEL_PCIX)
func = 0;
else
func = 5;
break;
default:
BUG();
}
return func;
}
/* iop13xx_atux_cfg_address - format a configuration address for atux
* @bus: Target bus to access
* @devfn: Combined device number and function number
* @where: Desired register's address offset
*
* Convert the parameters to a configuration address formatted
* according the PCI-X 2.0 specification
*/
static u32 iop13xx_atux_cfg_address(struct pci_bus *bus, int devfn, int where)
{
struct pci_sys_data *sys = bus->sysdata;
u32 addr;
if (sys->busnr == bus->number)
addr = 1 << (PCI_SLOT(devfn) + 16) | (PCI_SLOT(devfn) << 11);
else
addr = bus->number << 16 | PCI_SLOT(devfn) << 11 | 1;
addr |= PCI_FUNC(devfn) << 8 | ((where & 0xff) & ~3);
addr |= ((where & 0xf00) >> 8) << 24; /* upper register number */
return addr;
}
/* iop13xx_atue_cfg_address - format a configuration address for atue
* @bus: Target bus to access
* @devfn: Combined device number and function number
* @where: Desired register's address offset
*
* Convert the parameters to an address usable by the ATUE_OCCAR
*/
static u32 iop13xx_atue_cfg_address(struct pci_bus *bus, int devfn, int where)
{
struct pci_sys_data *sys = bus->sysdata;
u32 addr;
PRINTK("iop13xx_atue_cfg_address: bus: %d dev: %d func: %d",
bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
addr = ((u32) bus->number) << IOP13XX_ATUE_OCCAR_BUS_NUM |
((u32) PCI_SLOT(devfn)) << IOP13XX_ATUE_OCCAR_DEV_NUM |
((u32) PCI_FUNC(devfn)) << IOP13XX_ATUE_OCCAR_FUNC_NUM |
(where & ~0x3);
if (sys->busnr != bus->number)
addr |= 1; /* type 1 access */
return addr;
}
/* This routine checks the status of the last configuration cycle. If an error
* was detected it returns >0, else it returns a 0. The errors being checked
* are parity, master abort, target abort (master and target). These types of
* errors occur during a config cycle where there is no device, like during
* the discovery stage.
*/
static int iop13xx_atux_pci_status(int clear)
{
unsigned int status;
int err = 0;
/*
* Check the status registers.
*/
status = __raw_readw(IOP13XX_ATUX_ATUSR);
if (status & IOP_PCI_STATUS_ERROR)
{
PRINTK("\t\t\tPCI error: ATUSR %#08x", status);
if(clear)
__raw_writew(status & IOP_PCI_STATUS_ERROR,
IOP13XX_ATUX_ATUSR);
err = 1;
}
status = __raw_readl(IOP13XX_ATUX_ATUISR);
if (status & IOP13XX_ATUX_ATUISR_ERROR)
{
PRINTK("\t\t\tPCI error interrupt: ATUISR %#08x", status);
if(clear)
__raw_writel(status & IOP13XX_ATUX_ATUISR_ERROR,
IOP13XX_ATUX_ATUISR);
err = 1;
}
return err;
}
/* Simply write the address register and read the configuration
* data. Note that the data dependency on %0 encourages an abort
* to be detected before we return.
*/
static u32 iop13xx_atux_read(unsigned long addr)
{
u32 val;
__asm__ __volatile__(
"str %1, [%2]\n\t"
"ldr %0, [%3]\n\t"
"mov %0, %0\n\t"
: "=r" (val)
: "r" (addr), "r" (IOP13XX_ATUX_OCCAR), "r" (IOP13XX_ATUX_OCCDR));
return val;
}
/* The read routines must check the error status of the last configuration
* cycle. If there was an error, the routine returns all hex f's.
*/
static int
iop13xx_atux_read_config(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *value)
{
unsigned long addr = iop13xx_atux_cfg_address(bus, devfn, where);
u32 val = iop13xx_atux_read(addr) >> ((where & 3) * 8);
if (iop13xx_atux_pci_status(1) || is_atux_occdr_error()) {
__raw_writel(__raw_readl(IOP13XX_XBG_BECSR) & 3,
IOP13XX_XBG_BECSR);
val = 0xffffffff;
}
*value = val;
return PCIBIOS_SUCCESSFUL;
}
static int
iop13xx_atux_write_config(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 value)
{
unsigned long addr = iop13xx_atux_cfg_address(bus, devfn, where);
u32 val;
if (size != 4) {
val = iop13xx_atux_read(addr);
if (!iop13xx_atux_pci_status(1) == 0)
return PCIBIOS_SUCCESSFUL;
where = (where & 3) * 8;
if (size == 1)
val &= ~(0xff << where);
else
val &= ~(0xffff << where);
__raw_writel(val | value << where, IOP13XX_ATUX_OCCDR);
} else {
__raw_writel(addr, IOP13XX_ATUX_OCCAR);
__raw_writel(value, IOP13XX_ATUX_OCCDR);
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops iop13xx_atux_ops = {
.read = iop13xx_atux_read_config,
.write = iop13xx_atux_write_config,
};
/* This routine checks the status of the last configuration cycle. If an error
* was detected it returns >0, else it returns a 0. The errors being checked
* are parity, master abort, target abort (master and target). These types of
* errors occur during a config cycle where there is no device, like during
* the discovery stage.
*/
static int iop13xx_atue_pci_status(int clear)
{
unsigned int status;
int err = 0;
/*
* Check the status registers.
*/
/* standard pci status register */
status = __raw_readw(IOP13XX_ATUE_ATUSR);
if (status & IOP_PCI_STATUS_ERROR) {
PRINTK("\t\t\tPCI error: ATUSR %#08x", status);
if(clear)
__raw_writew(status & IOP_PCI_STATUS_ERROR,
IOP13XX_ATUE_ATUSR);
err++;
}
/* check the normal status bits in the ATUISR */
status = __raw_readl(IOP13XX_ATUE_ATUISR);
if (status & IOP13XX_ATUE_ATUISR_ERROR) {
PRINTK("\t\t\tPCI error: ATUISR %#08x", status);
if (clear)
__raw_writew(status & IOP13XX_ATUE_ATUISR_ERROR,
IOP13XX_ATUE_ATUISR);
err++;
/* check the PCI-E status if the ATUISR reports an interface error */
if (status & IOP13XX_ATUE_STAT_PCI_IFACE_ERR) {
/* get the unmasked errors */
status = __raw_readl(IOP13XX_ATUE_PIE_STS) &
~(__raw_readl(IOP13XX_ATUE_PIE_MSK));
if (status) {
PRINTK("\t\t\tPCI-E error: ATUE_PIE_STS %#08x",
__raw_readl(IOP13XX_ATUE_PIE_STS));
err++;
} else {
PRINTK("\t\t\tPCI-E error: ATUE_PIE_STS %#08x",
__raw_readl(IOP13XX_ATUE_PIE_STS));
PRINTK("\t\t\tPCI-E error: ATUE_PIE_MSK %#08x",
__raw_readl(IOP13XX_ATUE_PIE_MSK));
BUG();
}
if(clear)
__raw_writel(status, IOP13XX_ATUE_PIE_STS);
}
}
return err;
}
static int
iop13xx_pcie_map_irq(struct pci_dev *dev, u8 idsel, u8 pin)
{
WARN_ON(idsel != 0);
switch (pin) {
case 1: return ATUE_INTA;
case 2: return ATUE_INTB;
case 3: return ATUE_INTC;
case 4: return ATUE_INTD;
default: return -1;
}
}
static u32 iop13xx_atue_read(unsigned long addr)
{
u32 val;
__raw_writel(addr, IOP13XX_ATUE_OCCAR);
val = __raw_readl(IOP13XX_ATUE_OCCDR);
rmb();
return val;
}
/* The read routines must check the error status of the last configuration
* cycle. If there was an error, the routine returns all hex f's.
*/
static int
iop13xx_atue_read_config(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *value)
{
u32 val;
unsigned long addr = iop13xx_atue_cfg_address(bus, devfn, where);
/* Hide device numbers > 0 on the local PCI-E bus (Type 0 access) */
if (!PCI_SLOT(devfn) || (addr & 1)) {
val = iop13xx_atue_read(addr) >> ((where & 3) * 8);
if( iop13xx_atue_pci_status(1) || is_atue_occdr_error() ) {
__raw_writel(__raw_readl(IOP13XX_XBG_BECSR) & 3,
IOP13XX_XBG_BECSR);
val = 0xffffffff;
}
PRINTK("addr=%#0lx, val=%#010x", addr, val);
} else
val = 0xffffffff;
*value = val;
return PCIBIOS_SUCCESSFUL;
}
static int
iop13xx_atue_write_config(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 value)
{
unsigned long addr = iop13xx_atue_cfg_address(bus, devfn, where);
u32 val;
if (size != 4) {
val = iop13xx_atue_read(addr);
if (!iop13xx_atue_pci_status(1) == 0)
return PCIBIOS_SUCCESSFUL;
where = (where & 3) * 8;
if (size == 1)
val &= ~(0xff << where);
else
val &= ~(0xffff << where);
__raw_writel(val | value << where, IOP13XX_ATUE_OCCDR);
} else {
__raw_writel(addr, IOP13XX_ATUE_OCCAR);
__raw_writel(value, IOP13XX_ATUE_OCCDR);
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops iop13xx_atue_ops = {
.read = iop13xx_atue_read_config,
.write = iop13xx_atue_write_config,
};
/* When a PCI device does not exist during config cycles, the XScale gets a
* bus error instead of returning 0xffffffff. We can't rely on the ATU status
* bits to tell us that it was indeed a configuration cycle that caused this
* error especially in the case when the ATUE link is down. Instead we rely
* on data from the south XSI bridge to validate the abort
*/
int
iop13xx_pci_abort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
PRINTK("Data abort: address = 0x%08lx "
"fsr = 0x%03x PC = 0x%08lx LR = 0x%08lx",
addr, fsr, regs->ARM_pc, regs->ARM_lr);
PRINTK("IOP13XX_XBG_BECSR: %#10x", __raw_readl(IOP13XX_XBG_BECSR));
PRINTK("IOP13XX_XBG_BERAR: %#10x", __raw_readl(IOP13XX_XBG_BERAR));
PRINTK("IOP13XX_XBG_BERUAR: %#10x", __raw_readl(IOP13XX_XBG_BERUAR));
/* If it was an imprecise abort, then we need to correct the
* return address to be _after_ the instruction.
*/
if (fsr & (1 << 10))
regs->ARM_pc += 4;
if (is_atue_occdr_error() || is_atux_occdr_error())
return 0;
else
return 1;
}
/* Scan an IOP13XX PCI bus. nr selects which ATU we use.
*/
struct pci_bus *iop13xx_scan_bus(int nr, struct pci_sys_data *sys)
{
int which_atu;
struct pci_bus *bus = NULL;
switch (init_atu) {
case IOP13XX_INIT_ATU_ATUX:
which_atu = nr ? 0 : IOP13XX_INIT_ATU_ATUX;
break;
case IOP13XX_INIT_ATU_ATUE:
which_atu = nr ? 0 : IOP13XX_INIT_ATU_ATUE;
break;
case (IOP13XX_INIT_ATU_ATUX | IOP13XX_INIT_ATU_ATUE):
which_atu = nr ? IOP13XX_INIT_ATU_ATUE : IOP13XX_INIT_ATU_ATUX;
break;
default:
which_atu = 0;
}
if (!which_atu) {
BUG();
return NULL;
}
switch (which_atu) {
case IOP13XX_INIT_ATU_ATUX:
if (time_after_eq(jiffies + msecs_to_jiffies(1000),
atux_trhfa_timeout)) /* ensure not wrap */
while(time_before(jiffies, atux_trhfa_timeout))
udelay(100);
bus = pci_bus_atux = pci_scan_bus(sys->busnr,
&iop13xx_atux_ops,
sys);
break;
case IOP13XX_INIT_ATU_ATUE:
bus = pci_bus_atue = pci_scan_bus(sys->busnr,
&iop13xx_atue_ops,
sys);
break;
}
return bus;
}
/* This function is called from iop13xx_pci_init() after assigning valid
* values to iop13xx_atue_pmmr_offset. This is the location for common
* setup of ATUE for all IOP13XX implementations.
*/
void __init iop13xx_atue_setup(void)
{
int func = iop13xx_atu_function(IOP13XX_INIT_ATU_ATUE);
u32 reg_val;
#ifdef CONFIG_PCI_MSI
/* BAR 0 (inbound msi window) */
__raw_writel(IOP13XX_MU_BASE_PHYS, IOP13XX_MU_MUBAR);
__raw_writel(~(IOP13XX_MU_WINDOW_SIZE - 1), IOP13XX_ATUE_IALR0);
__raw_writel(IOP13XX_MU_BASE_PHYS, IOP13XX_ATUE_IATVR0);
__raw_writel(IOP13XX_MU_BASE_PCI, IOP13XX_ATUE_IABAR0);
#endif
/* BAR 1 (1:1 mapping with Physical RAM) */
/* Set limit and enable */
__raw_writel(~(IOP13XX_MAX_RAM_SIZE - PHYS_OFFSET - 1) & ~0x1,
IOP13XX_ATUE_IALR1);
__raw_writel(0x0, IOP13XX_ATUE_IAUBAR1);
/* Set base at the top of the reserved address space */
__raw_writel(PHYS_OFFSET | PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, IOP13XX_ATUE_IABAR1);
/* 1:1 mapping with physical ram
* (leave big endian byte swap disabled)
*/
__raw_writel(0x0, IOP13XX_ATUE_IAUTVR1);
__raw_writel(PHYS_OFFSET, IOP13XX_ATUE_IATVR1);
/* Outbound window 1 (PCIX/PCIE memory window) */
/* 32 bit Address Space */
__raw_writel(0x0, IOP13XX_ATUE_OUMWTVR1);
/* PA[35:32] */
__raw_writel(IOP13XX_ATUE_OUMBAR_ENABLE |
(IOP13XX_PCIE_MEM_PHYS_OFFSET >> 32),
IOP13XX_ATUE_OUMBAR1);
/* Setup the I/O Bar
* A[35-16] in 31-12
*/
__raw_writel(((IOP13XX_PCIE_LOWER_IO_PA >> 0x4) & 0xfffff000),
IOP13XX_ATUE_OIOBAR);
__raw_writel(IOP13XX_PCIE_LOWER_IO_BA, IOP13XX_ATUE_OIOWTVR);
/* clear startup errors */
iop13xx_atue_pci_status(1);
/* OIOBAR function number
*/
reg_val = __raw_readl(IOP13XX_ATUE_OIOBAR);
reg_val &= ~0x7;
reg_val |= func;
__raw_writel(reg_val, IOP13XX_ATUE_OIOBAR);
/* OUMBAR function numbers
*/
reg_val = __raw_readl(IOP13XX_ATUE_OUMBAR0);
reg_val &= ~(IOP13XX_ATU_OUMBAR_FUNC_NUM_MASK <<
IOP13XX_ATU_OUMBAR_FUNC_NUM);
reg_val |= func << IOP13XX_ATU_OUMBAR_FUNC_NUM;
__raw_writel(reg_val, IOP13XX_ATUE_OUMBAR0);
reg_val = __raw_readl(IOP13XX_ATUE_OUMBAR1);
reg_val &= ~(IOP13XX_ATU_OUMBAR_FUNC_NUM_MASK <<
IOP13XX_ATU_OUMBAR_FUNC_NUM);
reg_val |= func << IOP13XX_ATU_OUMBAR_FUNC_NUM;
__raw_writel(reg_val, IOP13XX_ATUE_OUMBAR1);
reg_val = __raw_readl(IOP13XX_ATUE_OUMBAR2);
reg_val &= ~(IOP13XX_ATU_OUMBAR_FUNC_NUM_MASK <<
IOP13XX_ATU_OUMBAR_FUNC_NUM);
reg_val |= func << IOP13XX_ATU_OUMBAR_FUNC_NUM;
__raw_writel(reg_val, IOP13XX_ATUE_OUMBAR2);
reg_val = __raw_readl(IOP13XX_ATUE_OUMBAR3);
reg_val &= ~(IOP13XX_ATU_OUMBAR_FUNC_NUM_MASK <<
IOP13XX_ATU_OUMBAR_FUNC_NUM);
reg_val |= func << IOP13XX_ATU_OUMBAR_FUNC_NUM;
__raw_writel(reg_val, IOP13XX_ATUE_OUMBAR3);
/* Enable inbound and outbound cycles
*/
reg_val = __raw_readw(IOP13XX_ATUE_ATUCMD);
reg_val |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
__raw_writew(reg_val, IOP13XX_ATUE_ATUCMD);
reg_val = __raw_readl(IOP13XX_ATUE_ATUCR);
reg_val |= IOP13XX_ATUE_ATUCR_OUT_EN |
IOP13XX_ATUE_ATUCR_IVM;
__raw_writel(reg_val, IOP13XX_ATUE_ATUCR);
}
void __init iop13xx_atue_disable(void)
{
u32 reg_val;
__raw_writew(0x0, IOP13XX_ATUE_ATUCMD);
__raw_writel(IOP13XX_ATUE_ATUCR_IVM, IOP13XX_ATUE_ATUCR);
/* wait for cycles to quiesce */
while (__raw_readl(IOP13XX_ATUE_PCSR) & (IOP13XX_ATUE_PCSR_OUT_Q_BUSY |
IOP13XX_ATUE_PCSR_IN_Q_BUSY |
IOP13XX_ATUE_PCSR_LLRB_BUSY))
cpu_relax();
/* BAR 0 ( Disabled ) */
__raw_writel(0x0, IOP13XX_ATUE_IAUBAR0);
__raw_writel(0x0, IOP13XX_ATUE_IABAR0);
__raw_writel(0x0, IOP13XX_ATUE_IAUTVR0);
__raw_writel(0x0, IOP13XX_ATUE_IATVR0);
__raw_writel(0x0, IOP13XX_ATUE_IALR0);
reg_val = __raw_readl(IOP13XX_ATUE_OUMBAR0);
reg_val &= ~IOP13XX_ATUE_OUMBAR_ENABLE;
__raw_writel(reg_val, IOP13XX_ATUE_OUMBAR0);
/* BAR 1 ( Disabled ) */
__raw_writel(0x0, IOP13XX_ATUE_IAUBAR1);
__raw_writel(0x0, IOP13XX_ATUE_IABAR1);
__raw_writel(0x0, IOP13XX_ATUE_IAUTVR1);
__raw_writel(0x0, IOP13XX_ATUE_IATVR1);
__raw_writel(0x0, IOP13XX_ATUE_IALR1);
reg_val = __raw_readl(IOP13XX_ATUE_OUMBAR1);
reg_val &= ~IOP13XX_ATUE_OUMBAR_ENABLE;
__raw_writel(reg_val, IOP13XX_ATUE_OUMBAR1);
/* BAR 2 ( Disabled ) */
__raw_writel(0x0, IOP13XX_ATUE_IAUBAR2);
__raw_writel(0x0, IOP13XX_ATUE_IABAR2);
__raw_writel(0x0, IOP13XX_ATUE_IAUTVR2);
__raw_writel(0x0, IOP13XX_ATUE_IATVR2);
__raw_writel(0x0, IOP13XX_ATUE_IALR2);
reg_val = __raw_readl(IOP13XX_ATUE_OUMBAR2);
reg_val &= ~IOP13XX_ATUE_OUMBAR_ENABLE;
__raw_writel(reg_val, IOP13XX_ATUE_OUMBAR2);
/* BAR 3 ( Disabled ) */
reg_val = __raw_readl(IOP13XX_ATUE_OUMBAR3);
reg_val &= ~IOP13XX_ATUE_OUMBAR_ENABLE;
__raw_writel(reg_val, IOP13XX_ATUE_OUMBAR3);
/* Setup the I/O Bar
* A[35-16] in 31-12
*/
__raw_writel((IOP13XX_PCIE_LOWER_IO_PA >> 0x4) & 0xfffff000,
IOP13XX_ATUE_OIOBAR);
__raw_writel(IOP13XX_PCIE_LOWER_IO_BA, IOP13XX_ATUE_OIOWTVR);
}
/* This function is called from iop13xx_pci_init() after assigning valid
* values to iop13xx_atux_pmmr_offset. This is the location for common
* setup of ATUX for all IOP13XX implementations.
*/
void __init iop13xx_atux_setup(void)
{
u32 reg_val;
int func = iop13xx_atu_function(IOP13XX_INIT_ATU_ATUX);
/* Take PCI-X bus out of reset if bootloader hasn't already.
* According to spec, we should wait for 2^25 PCI clocks to meet
* the PCI timing parameter Trhfa (RST# high to first access).
* This is rarely necessary and often ignored.
*/
reg_val = __raw_readl(IOP13XX_ATUX_PCSR);
if (reg_val & IOP13XX_ATUX_PCSR_P_RSTOUT) {
int msec = (reg_val >> IOP13XX_ATUX_PCSR_FREQ_OFFSET) & 0x7;
msec = 1000 / (8-msec); /* bits 100=133MHz, 111=>33MHz */
__raw_writel(reg_val & ~IOP13XX_ATUX_PCSR_P_RSTOUT,
IOP13XX_ATUX_PCSR);
atux_trhfa_timeout = jiffies + msecs_to_jiffies(msec);
}
else
atux_trhfa_timeout = jiffies;
#ifdef CONFIG_PCI_MSI
/* BAR 0 (inbound msi window) */
__raw_writel(IOP13XX_MU_BASE_PHYS, IOP13XX_MU_MUBAR);
__raw_writel(~(IOP13XX_MU_WINDOW_SIZE - 1), IOP13XX_ATUX_IALR0);
__raw_writel(IOP13XX_MU_BASE_PHYS, IOP13XX_ATUX_IATVR0);
__raw_writel(IOP13XX_MU_BASE_PCI, IOP13XX_ATUX_IABAR0);
#endif
/* BAR 1 (1:1 mapping with Physical RAM) */
/* Set limit and enable */
__raw_writel(~(IOP13XX_MAX_RAM_SIZE - PHYS_OFFSET - 1) & ~0x1,
IOP13XX_ATUX_IALR1);
__raw_writel(0x0, IOP13XX_ATUX_IAUBAR1);
/* Set base at the top of the reserved address space */
__raw_writel(PHYS_OFFSET | PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, IOP13XX_ATUX_IABAR1);
/* 1:1 mapping with physical ram
* (leave big endian byte swap disabled)
*/
__raw_writel(0x0, IOP13XX_ATUX_IAUTVR1);
__raw_writel(PHYS_OFFSET, IOP13XX_ATUX_IATVR1);
/* Outbound window 1 (PCIX/PCIE memory window) */
/* 32 bit Address Space */
__raw_writel(0x0, IOP13XX_ATUX_OUMWTVR1);
/* PA[35:32] */
__raw_writel(IOP13XX_ATUX_OUMBAR_ENABLE |
IOP13XX_PCIX_MEM_PHYS_OFFSET >> 32,
IOP13XX_ATUX_OUMBAR1);
/* Setup the I/O Bar
* A[35-16] in 31-12
*/
__raw_writel((IOP13XX_PCIX_LOWER_IO_PA >> 0x4) & 0xfffff000,
IOP13XX_ATUX_OIOBAR);
__raw_writel(IOP13XX_PCIX_LOWER_IO_BA, IOP13XX_ATUX_OIOWTVR);
/* clear startup errors */
iop13xx_atux_pci_status(1);
/* OIOBAR function number
*/
reg_val = __raw_readl(IOP13XX_ATUX_OIOBAR);
reg_val &= ~0x7;
reg_val |= func;
__raw_writel(reg_val, IOP13XX_ATUX_OIOBAR);
/* OUMBAR function numbers
*/
reg_val = __raw_readl(IOP13XX_ATUX_OUMBAR0);
reg_val &= ~(IOP13XX_ATU_OUMBAR_FUNC_NUM_MASK <<
IOP13XX_ATU_OUMBAR_FUNC_NUM);
reg_val |= func << IOP13XX_ATU_OUMBAR_FUNC_NUM;
__raw_writel(reg_val, IOP13XX_ATUX_OUMBAR0);
reg_val = __raw_readl(IOP13XX_ATUX_OUMBAR1);
reg_val &= ~(IOP13XX_ATU_OUMBAR_FUNC_NUM_MASK <<
IOP13XX_ATU_OUMBAR_FUNC_NUM);
reg_val |= func << IOP13XX_ATU_OUMBAR_FUNC_NUM;
__raw_writel(reg_val, IOP13XX_ATUX_OUMBAR1);
reg_val = __raw_readl(IOP13XX_ATUX_OUMBAR2);
reg_val &= ~(IOP13XX_ATU_OUMBAR_FUNC_NUM_MASK <<
IOP13XX_ATU_OUMBAR_FUNC_NUM);
reg_val |= func << IOP13XX_ATU_OUMBAR_FUNC_NUM;
__raw_writel(reg_val, IOP13XX_ATUX_OUMBAR2);
reg_val = __raw_readl(IOP13XX_ATUX_OUMBAR3);
reg_val &= ~(IOP13XX_ATU_OUMBAR_FUNC_NUM_MASK <<
IOP13XX_ATU_OUMBAR_FUNC_NUM);
reg_val |= func << IOP13XX_ATU_OUMBAR_FUNC_NUM;
__raw_writel(reg_val, IOP13XX_ATUX_OUMBAR3);
/* Enable inbound and outbound cycles
*/
reg_val = __raw_readw(IOP13XX_ATUX_ATUCMD);
reg_val |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
__raw_writew(reg_val, IOP13XX_ATUX_ATUCMD);
reg_val = __raw_readl(IOP13XX_ATUX_ATUCR);
reg_val |= IOP13XX_ATUX_ATUCR_OUT_EN;
__raw_writel(reg_val, IOP13XX_ATUX_ATUCR);
}
void __init iop13xx_atux_disable(void)
{
u32 reg_val;
__raw_writew(0x0, IOP13XX_ATUX_ATUCMD);
__raw_writel(0x0, IOP13XX_ATUX_ATUCR);
/* wait for cycles to quiesce */
while (__raw_readl(IOP13XX_ATUX_PCSR) & (IOP13XX_ATUX_PCSR_OUT_Q_BUSY |
IOP13XX_ATUX_PCSR_IN_Q_BUSY))
cpu_relax();
/* BAR 0 ( Disabled ) */
__raw_writel(0x0, IOP13XX_ATUX_IAUBAR0);
__raw_writel(0x0, IOP13XX_ATUX_IABAR0);
__raw_writel(0x0, IOP13XX_ATUX_IAUTVR0);
__raw_writel(0x0, IOP13XX_ATUX_IATVR0);
__raw_writel(0x0, IOP13XX_ATUX_IALR0);
reg_val = __raw_readl(IOP13XX_ATUX_OUMBAR0);
reg_val &= ~IOP13XX_ATUX_OUMBAR_ENABLE;
__raw_writel(reg_val, IOP13XX_ATUX_OUMBAR0);
/* BAR 1 ( Disabled ) */
__raw_writel(0x0, IOP13XX_ATUX_IAUBAR1);
__raw_writel(0x0, IOP13XX_ATUX_IABAR1);
__raw_writel(0x0, IOP13XX_ATUX_IAUTVR1);
__raw_writel(0x0, IOP13XX_ATUX_IATVR1);
__raw_writel(0x0, IOP13XX_ATUX_IALR1);
reg_val = __raw_readl(IOP13XX_ATUX_OUMBAR1);
reg_val &= ~IOP13XX_ATUX_OUMBAR_ENABLE;
__raw_writel(reg_val, IOP13XX_ATUX_OUMBAR1);
/* BAR 2 ( Disabled ) */
__raw_writel(0x0, IOP13XX_ATUX_IAUBAR2);
__raw_writel(0x0, IOP13XX_ATUX_IABAR2);
__raw_writel(0x0, IOP13XX_ATUX_IAUTVR2);
__raw_writel(0x0, IOP13XX_ATUX_IATVR2);
__raw_writel(0x0, IOP13XX_ATUX_IALR2);
reg_val = __raw_readl(IOP13XX_ATUX_OUMBAR2);
reg_val &= ~IOP13XX_ATUX_OUMBAR_ENABLE;
__raw_writel(reg_val, IOP13XX_ATUX_OUMBAR2);
/* BAR 3 ( Disabled ) */
__raw_writel(0x0, IOP13XX_ATUX_IAUBAR3);
__raw_writel(0x0, IOP13XX_ATUX_IABAR3);
__raw_writel(0x0, IOP13XX_ATUX_IAUTVR3);
__raw_writel(0x0, IOP13XX_ATUX_IATVR3);
__raw_writel(0x0, IOP13XX_ATUX_IALR3);
reg_val = __raw_readl(IOP13XX_ATUX_OUMBAR3);
reg_val &= ~IOP13XX_ATUX_OUMBAR_ENABLE;
__raw_writel(reg_val, IOP13XX_ATUX_OUMBAR3);
/* Setup the I/O Bar
* A[35-16] in 31-12
*/
__raw_writel((IOP13XX_PCIX_LOWER_IO_PA >> 0x4) & 0xfffff000,
IOP13XX_ATUX_OIOBAR);
__raw_writel(IOP13XX_PCIX_LOWER_IO_BA, IOP13XX_ATUX_OIOWTVR);
}
void __init iop13xx_set_atu_mmr_bases(void)
{
/* Based on ESSR0, determine the ATU X/E offsets */
switch(__raw_readl(IOP13XX_ESSR0) &
(IOP13XX_CONTROLLER_ONLY | IOP13XX_INTERFACE_SEL_PCIX)) {
/* both asserted */
case 0:
iop13xx_atux_pmmr_offset = IOP13XX_ATU1_PMMR_OFFSET;
iop13xx_atue_pmmr_offset = IOP13XX_ATU2_PMMR_OFFSET;
break;
/* IOP13XX_CONTROLLER_ONLY = deasserted
* IOP13XX_INTERFACE_SEL_PCIX = asserted
*/
case IOP13XX_CONTROLLER_ONLY:
iop13xx_atux_pmmr_offset = IOP13XX_ATU0_PMMR_OFFSET;
iop13xx_atue_pmmr_offset = IOP13XX_ATU2_PMMR_OFFSET;
break;
/* IOP13XX_CONTROLLER_ONLY = asserted
* IOP13XX_INTERFACE_SEL_PCIX = deasserted
*/
case IOP13XX_INTERFACE_SEL_PCIX:
iop13xx_atux_pmmr_offset = IOP13XX_ATU1_PMMR_OFFSET;
iop13xx_atue_pmmr_offset = IOP13XX_ATU2_PMMR_OFFSET;
break;
/* both deasserted */
case IOP13XX_CONTROLLER_ONLY | IOP13XX_INTERFACE_SEL_PCIX:
iop13xx_atux_pmmr_offset = IOP13XX_ATU2_PMMR_OFFSET;
iop13xx_atue_pmmr_offset = IOP13XX_ATU0_PMMR_OFFSET;
break;
default:
BUG();
}
}
void __init iop13xx_atu_select(struct hw_pci *plat_pci)
{
int i;
/* set system defaults
* note: if "iop13xx_init_atu=" is specified this autodetect
* sequence will be bypassed
*/
if (init_atu == IOP13XX_INIT_ATU_DEFAULT) {
/* check for single/dual interface */
if (__raw_readl(IOP13XX_ESSR0) & IOP13XX_INTERFACE_SEL_PCIX) {
/* ATUE must be present check the device id
* to see if ATUX is present.
*/
init_atu |= IOP13XX_INIT_ATU_ATUE;
switch (__raw_readw(IOP13XX_ATUE_DID) & 0xf0) {
case 0x70:
case 0x80:
case 0xc0:
init_atu |= IOP13XX_INIT_ATU_ATUX;
break;
}
} else {
/* ATUX must be present check the device id
* to see if ATUE is present.
*/
init_atu |= IOP13XX_INIT_ATU_ATUX;
switch (__raw_readw(IOP13XX_ATUX_DID) & 0xf0) {
case 0x70:
case 0x80:
case 0xc0:
init_atu |= IOP13XX_INIT_ATU_ATUE;
break;
}
}
/* check central resource and root complex capability */
if (init_atu & IOP13XX_INIT_ATU_ATUX)
if (!(__raw_readl(IOP13XX_ATUX_PCSR) &
IOP13XX_ATUX_PCSR_CENTRAL_RES))
init_atu &= ~IOP13XX_INIT_ATU_ATUX;
if (init_atu & IOP13XX_INIT_ATU_ATUE)
if (__raw_readl(IOP13XX_ATUE_PCSR) &
IOP13XX_ATUE_PCSR_END_POINT)
init_atu &= ~IOP13XX_INIT_ATU_ATUE;
}
for (i = 0; i < 2; i++) {
if((init_atu & (1 << i)) == (1 << i))
plat_pci->nr_controllers++;
}
}
void __init iop13xx_pci_init(void)
{
/* clear pre-existing south bridge errors */
__raw_writel(__raw_readl(IOP13XX_XBG_BECSR) & 3, IOP13XX_XBG_BECSR);
/* Setup the Min Address for PCI memory... */
iop13xx_pcibios_min_mem = IOP13XX_PCIX_LOWER_MEM_BA;
/* if Linux is given control of an ATU
* clear out its prior configuration,
* otherwise do not touch the registers
*/
if (init_atu & IOP13XX_INIT_ATU_ATUE) {
iop13xx_atue_disable();
iop13xx_atue_setup();
}
if (init_atu & IOP13XX_INIT_ATU_ATUX) {
iop13xx_atux_disable();
iop13xx_atux_setup();
}
hook_fault_code(16+6, iop13xx_pci_abort, SIGBUS, 0,
"imprecise external abort");
}
/* initialize the pci memory space. handle any combination of
* atue and atux enabled/disabled
*/
int iop13xx_pci_setup(int nr, struct pci_sys_data *sys)
{
struct resource *res;
int which_atu;
u32 pcixsr, pcsr;
if (nr > 1)
return 0;
2007-07-19 16:49:03 +08:00
res = kcalloc(2, sizeof(struct resource), GFP_KERNEL);
if (!res)
panic("PCI: unable to alloc resources");
/* 'nr' assumptions:
* ATUX is always 0
* ATUE is 1 when ATUX is also enabled
* ATUE is 0 when ATUX is disabled
*/
switch(init_atu) {
case IOP13XX_INIT_ATU_ATUX:
which_atu = nr ? 0 : IOP13XX_INIT_ATU_ATUX;
break;
case IOP13XX_INIT_ATU_ATUE:
which_atu = nr ? 0 : IOP13XX_INIT_ATU_ATUE;
break;
case (IOP13XX_INIT_ATU_ATUX | IOP13XX_INIT_ATU_ATUE):
which_atu = nr ? IOP13XX_INIT_ATU_ATUE : IOP13XX_INIT_ATU_ATUX;
break;
default:
which_atu = 0;
}
if (!which_atu) {
kfree(res);
return 0;
}
switch(which_atu) {
case IOP13XX_INIT_ATU_ATUX:
pcixsr = __raw_readl(IOP13XX_ATUX_PCIXSR);
pcixsr &= ~0xffff;
pcixsr |= sys->busnr << IOP13XX_ATUX_PCIXSR_BUS_NUM |
0 << IOP13XX_ATUX_PCIXSR_DEV_NUM |
iop13xx_atu_function(IOP13XX_INIT_ATU_ATUX)
<< IOP13XX_ATUX_PCIXSR_FUNC_NUM;
__raw_writel(pcixsr, IOP13XX_ATUX_PCIXSR);
res[0].start = IOP13XX_PCIX_LOWER_IO_PA + IOP13XX_PCIX_IO_BUS_OFFSET;
res[0].end = IOP13XX_PCIX_UPPER_IO_PA;
res[0].name = "IQ81340 ATUX PCI I/O Space";
res[0].flags = IORESOURCE_IO;
res[1].start = IOP13XX_PCIX_LOWER_MEM_RA;
res[1].end = IOP13XX_PCIX_UPPER_MEM_RA;
res[1].name = "IQ81340 ATUX PCI Memory Space";
res[1].flags = IORESOURCE_MEM;
sys->mem_offset = IOP13XX_PCIX_MEM_OFFSET;
sys->io_offset = IOP13XX_PCIX_LOWER_IO_PA;
break;
case IOP13XX_INIT_ATU_ATUE:
/* Note: the function number field in the PCSR is ro */
pcsr = __raw_readl(IOP13XX_ATUE_PCSR);
pcsr &= ~(0xfff8 << 16);
pcsr |= sys->busnr << IOP13XX_ATUE_PCSR_BUS_NUM |
0 << IOP13XX_ATUE_PCSR_DEV_NUM;
__raw_writel(pcsr, IOP13XX_ATUE_PCSR);
res[0].start = IOP13XX_PCIE_LOWER_IO_PA + IOP13XX_PCIE_IO_BUS_OFFSET;
res[0].end = IOP13XX_PCIE_UPPER_IO_PA;
res[0].name = "IQ81340 ATUE PCI I/O Space";
res[0].flags = IORESOURCE_IO;
res[1].start = IOP13XX_PCIE_LOWER_MEM_RA;
res[1].end = IOP13XX_PCIE_UPPER_MEM_RA;
res[1].name = "IQ81340 ATUE PCI Memory Space";
res[1].flags = IORESOURCE_MEM;
sys->mem_offset = IOP13XX_PCIE_MEM_OFFSET;
sys->io_offset = IOP13XX_PCIE_LOWER_IO_PA;
sys->map_irq = iop13xx_pcie_map_irq;
break;
default:
kfree(res);
return 0;
}
request_resource(&ioport_resource, &res[0]);
request_resource(&iomem_resource, &res[1]);
sys->resource[0] = &res[0];
sys->resource[1] = &res[1];
sys->resource[2] = NULL;
return 1;
}
u16 iop13xx_dev_id(void)
{
if (__raw_readl(IOP13XX_ESSR0) & IOP13XX_INTERFACE_SEL_PCIX)
return __raw_readw(IOP13XX_ATUE_DID);
else
return __raw_readw(IOP13XX_ATUX_DID);
}
static int __init iop13xx_init_atu_setup(char *str)
{
init_atu = IOP13XX_INIT_ATU_NONE;
if (str) {
while (*str != '\0') {
switch (*str) {
case 'x':
case 'X':
init_atu |= IOP13XX_INIT_ATU_ATUX;
init_atu &= ~IOP13XX_INIT_ATU_NONE;
break;
case 'e':
case 'E':
init_atu |= IOP13XX_INIT_ATU_ATUE;
init_atu &= ~IOP13XX_INIT_ATU_NONE;
break;
case ',':
case '=':
break;
default:
PRINTK("\"iop13xx_init_atu\" malformed at "
"character: \'%c\'", *str);
*(str + 1) = '\0';
init_atu = IOP13XX_INIT_ATU_DEFAULT;
}
str++;
}
}
return 1;
}
__setup("iop13xx_init_atu", iop13xx_init_atu_setup);