linux/arch/mips/kernel/cps-vec.S

450 lines
8.3 KiB
ArmAsm
Raw Normal View History

/*
* Copyright (C) 2013 Imagination Technologies
* Author: Paul Burton <paul.burton@imgtec.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <asm/addrspace.h>
#include <asm/asm.h>
#include <asm/asm-offsets.h>
#include <asm/asmmacro.h>
#include <asm/cacheops.h>
#include <asm/mipsregs.h>
MIPS: smp-cps: rework core/VPE initialisation When hotplug and/or a powered down idle state are supported cases will arise where a non-zero VPE must be brought online without VPE 0, and it where multiple VPEs must be onlined simultaneously. This patch prepares for that by: - Splitting struct boot_config into core & VPE boot config structures, allocated one per core or VPE respectively. This allows for multiple VPEs to be onlined simultaneously without clobbering each others configuration. - Indicating which VPEs should be online within a core at any given time using a bitmap. This allows multiple VPEs to be brought online simultaneously and also indicates to VPE 0 whether it should halt after starting any non-zero VPEs that should be online within the core. For example if all VPEs within a core are offlined via hotplug and the user onlines the second VPE within that core: 1) The core will be powered up. 2) VPE 0 will run from the BEV (ie. mips_cps_core_entry) to initialise the core. 3) VPE 0 will start VPE 1 because its bit is set in the cores bitmap. 4) VPE 0 will halt itself because its bit is clear in the cores bitmap. - Moving the core & VPE initialisation to assembly code which does not make any use of the stack. This is because if a non-zero VPE is to be brought online in a powered down core then when VPE 0 of that core runs it may not have a valid stack, and even if it did then it's messy to run through parts of generic kernel code on VPE 0 before starting the correct VPE. Signed-off-by: Paul Burton <paul.burton@imgtec.com>
2014-04-14 19:04:27 +08:00
#include <asm/mipsmtregs.h>
MIPS: smp-cps: rework core/VPE initialisation When hotplug and/or a powered down idle state are supported cases will arise where a non-zero VPE must be brought online without VPE 0, and it where multiple VPEs must be onlined simultaneously. This patch prepares for that by: - Splitting struct boot_config into core & VPE boot config structures, allocated one per core or VPE respectively. This allows for multiple VPEs to be onlined simultaneously without clobbering each others configuration. - Indicating which VPEs should be online within a core at any given time using a bitmap. This allows multiple VPEs to be brought online simultaneously and also indicates to VPE 0 whether it should halt after starting any non-zero VPEs that should be online within the core. For example if all VPEs within a core are offlined via hotplug and the user onlines the second VPE within that core: 1) The core will be powered up. 2) VPE 0 will run from the BEV (ie. mips_cps_core_entry) to initialise the core. 3) VPE 0 will start VPE 1 because its bit is set in the cores bitmap. 4) VPE 0 will halt itself because its bit is clear in the cores bitmap. - Moving the core & VPE initialisation to assembly code which does not make any use of the stack. This is because if a non-zero VPE is to be brought online in a powered down core then when VPE 0 of that core runs it may not have a valid stack, and even if it did then it's messy to run through parts of generic kernel code on VPE 0 before starting the correct VPE. Signed-off-by: Paul Burton <paul.burton@imgtec.com>
2014-04-14 19:04:27 +08:00
#define GCR_CL_COHERENCE_OFS 0x2008
#define GCR_CL_ID_OFS 0x2028
.extern mips_cm_base
.set noreorder
/*
* Set dest to non-zero if the core supports the MT ASE, else zero. If
* MT is not supported then branch to nomt.
*/
.macro has_mt dest, nomt
mfc0 \dest, CP0_CONFIG
bgez \dest, \nomt
mfc0 \dest, CP0_CONFIG, 1
bgez \dest, \nomt
mfc0 \dest, CP0_CONFIG, 2
bgez \dest, \nomt
mfc0 \dest, CP0_CONFIG, 3
andi \dest, \dest, MIPS_CONF3_MT
beqz \dest, \nomt
.endm
.section .text.cps-vec
.balign 0x1000
LEAF(mips_cps_core_entry)
/*
* These first 8 bytes will be patched by cps_smp_setup to load the
* base address of the CM GCRs into register v1.
*/
.quad 0
/* Check whether we're here due to an NMI */
mfc0 k0, CP0_STATUS
and k0, k0, ST0_NMI
beqz k0, not_nmi
nop
/* This is an NMI */
la k0, nmi_handler
jr k0
nop
not_nmi:
/* Setup Cause */
li t0, CAUSEF_IV
mtc0 t0, CP0_CAUSE
/* Setup Status */
li t0, ST0_CU1 | ST0_CU0
mtc0 t0, CP0_STATUS
/*
* Clear the bits used to index the caches. Note that the architecture
* dictates that writing to any of TagLo or TagHi selects 0 or 2 should
* be valid for all MIPS32 CPUs, even those for which said writes are
* unnecessary.
*/
mtc0 zero, CP0_TAGLO, 0
mtc0 zero, CP0_TAGHI, 0
mtc0 zero, CP0_TAGLO, 2
mtc0 zero, CP0_TAGHI, 2
ehb
/* Primary cache configuration is indicated by Config1 */
mfc0 v0, CP0_CONFIG, 1
/* Detect I-cache line size */
_EXT t0, v0, MIPS_CONF1_IL_SHF, MIPS_CONF1_IL_SZ
beqz t0, icache_done
li t1, 2
sllv t0, t1, t0
/* Detect I-cache size */
_EXT t1, v0, MIPS_CONF1_IS_SHF, MIPS_CONF1_IS_SZ
xori t2, t1, 0x7
beqz t2, 1f
li t3, 32
addi t1, t1, 1
sllv t1, t3, t1
1: /* At this point t1 == I-cache sets per way */
_EXT t2, v0, MIPS_CONF1_IA_SHF, MIPS_CONF1_IA_SZ
addi t2, t2, 1
mul t1, t1, t0
mul t1, t1, t2
li a0, KSEG0
add a1, a0, t1
1: cache Index_Store_Tag_I, 0(a0)
add a0, a0, t0
bne a0, a1, 1b
nop
icache_done:
/* Detect D-cache line size */
_EXT t0, v0, MIPS_CONF1_DL_SHF, MIPS_CONF1_DL_SZ
beqz t0, dcache_done
li t1, 2
sllv t0, t1, t0
/* Detect D-cache size */
_EXT t1, v0, MIPS_CONF1_DS_SHF, MIPS_CONF1_DS_SZ
xori t2, t1, 0x7
beqz t2, 1f
li t3, 32
addi t1, t1, 1
sllv t1, t3, t1
1: /* At this point t1 == D-cache sets per way */
_EXT t2, v0, MIPS_CONF1_DA_SHF, MIPS_CONF1_DA_SZ
addi t2, t2, 1
mul t1, t1, t0
mul t1, t1, t2
li a0, KSEG0
addu a1, a0, t1
subu a1, a1, t0
1: cache Index_Store_Tag_D, 0(a0)
bne a0, a1, 1b
add a0, a0, t0
dcache_done:
/* Set Kseg0 cacheable, coherent, write-back, write-allocate */
mfc0 t0, CP0_CONFIG
ori t0, 0x7
xori t0, 0x2
mtc0 t0, CP0_CONFIG
ehb
/* Enter the coherent domain */
li t0, 0xff
sw t0, GCR_CL_COHERENCE_OFS(v1)
ehb
/* Jump to kseg0 */
la t0, 1f
jr t0
nop
MIPS: smp-cps: rework core/VPE initialisation When hotplug and/or a powered down idle state are supported cases will arise where a non-zero VPE must be brought online without VPE 0, and it where multiple VPEs must be onlined simultaneously. This patch prepares for that by: - Splitting struct boot_config into core & VPE boot config structures, allocated one per core or VPE respectively. This allows for multiple VPEs to be onlined simultaneously without clobbering each others configuration. - Indicating which VPEs should be online within a core at any given time using a bitmap. This allows multiple VPEs to be brought online simultaneously and also indicates to VPE 0 whether it should halt after starting any non-zero VPEs that should be online within the core. For example if all VPEs within a core are offlined via hotplug and the user onlines the second VPE within that core: 1) The core will be powered up. 2) VPE 0 will run from the BEV (ie. mips_cps_core_entry) to initialise the core. 3) VPE 0 will start VPE 1 because its bit is set in the cores bitmap. 4) VPE 0 will halt itself because its bit is clear in the cores bitmap. - Moving the core & VPE initialisation to assembly code which does not make any use of the stack. This is because if a non-zero VPE is to be brought online in a powered down core then when VPE 0 of that core runs it may not have a valid stack, and even if it did then it's messy to run through parts of generic kernel code on VPE 0 before starting the correct VPE. Signed-off-by: Paul Burton <paul.burton@imgtec.com>
2014-04-14 19:04:27 +08:00
/*
* We're up, cached & coherent. Perform any further required core-level
* initialisation.
*/
1: jal mips_cps_core_init
nop
/*
MIPS: smp-cps: rework core/VPE initialisation When hotplug and/or a powered down idle state are supported cases will arise where a non-zero VPE must be brought online without VPE 0, and it where multiple VPEs must be onlined simultaneously. This patch prepares for that by: - Splitting struct boot_config into core & VPE boot config structures, allocated one per core or VPE respectively. This allows for multiple VPEs to be onlined simultaneously without clobbering each others configuration. - Indicating which VPEs should be online within a core at any given time using a bitmap. This allows multiple VPEs to be brought online simultaneously and also indicates to VPE 0 whether it should halt after starting any non-zero VPEs that should be online within the core. For example if all VPEs within a core are offlined via hotplug and the user onlines the second VPE within that core: 1) The core will be powered up. 2) VPE 0 will run from the BEV (ie. mips_cps_core_entry) to initialise the core. 3) VPE 0 will start VPE 1 because its bit is set in the cores bitmap. 4) VPE 0 will halt itself because its bit is clear in the cores bitmap. - Moving the core & VPE initialisation to assembly code which does not make any use of the stack. This is because if a non-zero VPE is to be brought online in a powered down core then when VPE 0 of that core runs it may not have a valid stack, and even if it did then it's messy to run through parts of generic kernel code on VPE 0 before starting the correct VPE. Signed-off-by: Paul Burton <paul.burton@imgtec.com>
2014-04-14 19:04:27 +08:00
* Boot any other VPEs within this core that should be online, and
* deactivate this VPE if it should be offline.
*/
MIPS: smp-cps: rework core/VPE initialisation When hotplug and/or a powered down idle state are supported cases will arise where a non-zero VPE must be brought online without VPE 0, and it where multiple VPEs must be onlined simultaneously. This patch prepares for that by: - Splitting struct boot_config into core & VPE boot config structures, allocated one per core or VPE respectively. This allows for multiple VPEs to be onlined simultaneously without clobbering each others configuration. - Indicating which VPEs should be online within a core at any given time using a bitmap. This allows multiple VPEs to be brought online simultaneously and also indicates to VPE 0 whether it should halt after starting any non-zero VPEs that should be online within the core. For example if all VPEs within a core are offlined via hotplug and the user onlines the second VPE within that core: 1) The core will be powered up. 2) VPE 0 will run from the BEV (ie. mips_cps_core_entry) to initialise the core. 3) VPE 0 will start VPE 1 because its bit is set in the cores bitmap. 4) VPE 0 will halt itself because its bit is clear in the cores bitmap. - Moving the core & VPE initialisation to assembly code which does not make any use of the stack. This is because if a non-zero VPE is to be brought online in a powered down core then when VPE 0 of that core runs it may not have a valid stack, and even if it did then it's messy to run through parts of generic kernel code on VPE 0 before starting the correct VPE. Signed-off-by: Paul Burton <paul.burton@imgtec.com>
2014-04-14 19:04:27 +08:00
jal mips_cps_boot_vpes
nop
/* Off we go! */
MIPS: smp-cps: rework core/VPE initialisation When hotplug and/or a powered down idle state are supported cases will arise where a non-zero VPE must be brought online without VPE 0, and it where multiple VPEs must be onlined simultaneously. This patch prepares for that by: - Splitting struct boot_config into core & VPE boot config structures, allocated one per core or VPE respectively. This allows for multiple VPEs to be onlined simultaneously without clobbering each others configuration. - Indicating which VPEs should be online within a core at any given time using a bitmap. This allows multiple VPEs to be brought online simultaneously and also indicates to VPE 0 whether it should halt after starting any non-zero VPEs that should be online within the core. For example if all VPEs within a core are offlined via hotplug and the user onlines the second VPE within that core: 1) The core will be powered up. 2) VPE 0 will run from the BEV (ie. mips_cps_core_entry) to initialise the core. 3) VPE 0 will start VPE 1 because its bit is set in the cores bitmap. 4) VPE 0 will halt itself because its bit is clear in the cores bitmap. - Moving the core & VPE initialisation to assembly code which does not make any use of the stack. This is because if a non-zero VPE is to be brought online in a powered down core then when VPE 0 of that core runs it may not have a valid stack, and even if it did then it's messy to run through parts of generic kernel code on VPE 0 before starting the correct VPE. Signed-off-by: Paul Burton <paul.burton@imgtec.com>
2014-04-14 19:04:27 +08:00
lw t1, VPEBOOTCFG_PC(v0)
lw gp, VPEBOOTCFG_GP(v0)
lw sp, VPEBOOTCFG_SP(v0)
jr t1
nop
END(mips_cps_core_entry)
.org 0x200
LEAF(excep_tlbfill)
b .
nop
END(excep_tlbfill)
.org 0x280
LEAF(excep_xtlbfill)
b .
nop
END(excep_xtlbfill)
.org 0x300
LEAF(excep_cache)
b .
nop
END(excep_cache)
.org 0x380
LEAF(excep_genex)
b .
nop
END(excep_genex)
.org 0x400
LEAF(excep_intex)
b .
nop
END(excep_intex)
.org 0x480
LEAF(excep_ejtag)
la k0, ejtag_debug_handler
jr k0
nop
END(excep_ejtag)
MIPS: smp-cps: rework core/VPE initialisation When hotplug and/or a powered down idle state are supported cases will arise where a non-zero VPE must be brought online without VPE 0, and it where multiple VPEs must be onlined simultaneously. This patch prepares for that by: - Splitting struct boot_config into core & VPE boot config structures, allocated one per core or VPE respectively. This allows for multiple VPEs to be onlined simultaneously without clobbering each others configuration. - Indicating which VPEs should be online within a core at any given time using a bitmap. This allows multiple VPEs to be brought online simultaneously and also indicates to VPE 0 whether it should halt after starting any non-zero VPEs that should be online within the core. For example if all VPEs within a core are offlined via hotplug and the user onlines the second VPE within that core: 1) The core will be powered up. 2) VPE 0 will run from the BEV (ie. mips_cps_core_entry) to initialise the core. 3) VPE 0 will start VPE 1 because its bit is set in the cores bitmap. 4) VPE 0 will halt itself because its bit is clear in the cores bitmap. - Moving the core & VPE initialisation to assembly code which does not make any use of the stack. This is because if a non-zero VPE is to be brought online in a powered down core then when VPE 0 of that core runs it may not have a valid stack, and even if it did then it's messy to run through parts of generic kernel code on VPE 0 before starting the correct VPE. Signed-off-by: Paul Burton <paul.burton@imgtec.com>
2014-04-14 19:04:27 +08:00
LEAF(mips_cps_core_init)
#ifdef CONFIG_MIPS_MT
/* Check that the core implements the MT ASE */
has_mt t0, 3f
nop
.set push
.set mt
/* Only allow 1 TC per VPE to execute... */
dmt
/* ...and for the moment only 1 VPE */
dvpe
la t1, 1f
jr.hb t1
nop
/* Enter VPE configuration state */
1: mfc0 t0, CP0_MVPCONTROL
ori t0, t0, MVPCONTROL_VPC
mtc0 t0, CP0_MVPCONTROL
/* Retrieve the number of VPEs within the core */
mfc0 t0, CP0_MVPCONF0
srl t0, t0, MVPCONF0_PVPE_SHIFT
andi t0, t0, (MVPCONF0_PVPE >> MVPCONF0_PVPE_SHIFT)
addi t7, t0, 1
/* If there's only 1, we're done */
beqz t0, 2f
nop
/* Loop through each VPE within this core */
li t5, 1
1: /* Operate on the appropriate TC */
mtc0 t5, CP0_VPECONTROL
ehb
/* Bind TC to VPE (1:1 TC:VPE mapping) */
mttc0 t5, CP0_TCBIND
/* Set exclusive TC, non-active, master */
li t0, VPECONF0_MVP
sll t1, t5, VPECONF0_XTC_SHIFT
or t0, t0, t1
mttc0 t0, CP0_VPECONF0
/* Set TC non-active, non-allocatable */
mttc0 zero, CP0_TCSTATUS
/* Set TC halted */
li t0, TCHALT_H
mttc0 t0, CP0_TCHALT
/* Next VPE */
addi t5, t5, 1
slt t0, t5, t7
bnez t0, 1b
nop
/* Leave VPE configuration state */
2: mfc0 t0, CP0_MVPCONTROL
xori t0, t0, MVPCONTROL_VPC
mtc0 t0, CP0_MVPCONTROL
3: .set pop
#endif
jr ra
nop
END(mips_cps_core_init)
LEAF(mips_cps_boot_vpes)
/* Retrieve CM base address */
la t0, mips_cm_base
lw t0, 0(t0)
/* Calculate a pointer to this cores struct core_boot_config */
lw t0, GCR_CL_ID_OFS(t0)
li t1, COREBOOTCFG_SIZE
mul t0, t0, t1
la t1, mips_cps_core_bootcfg
lw t1, 0(t1)
addu t0, t0, t1
/* Calculate this VPEs ID. If the core doesn't support MT use 0 */
has_mt t6, 1f
li t9, 0
/* Find the number of VPEs present in the core */
mfc0 t1, CP0_MVPCONF0
srl t1, t1, MVPCONF0_PVPE_SHIFT
andi t1, t1, MVPCONF0_PVPE >> MVPCONF0_PVPE_SHIFT
addi t1, t1, 1
/* Calculate a mask for the VPE ID from EBase.CPUNum */
clz t1, t1
li t2, 31
subu t1, t2, t1
li t2, 1
sll t1, t2, t1
addiu t1, t1, -1
/* Retrieve the VPE ID from EBase.CPUNum */
mfc0 t9, $15, 1
and t9, t9, t1
1: /* Calculate a pointer to this VPEs struct vpe_boot_config */
li t1, VPEBOOTCFG_SIZE
mul v0, t9, t1
lw t7, COREBOOTCFG_VPECONFIG(t0)
addu v0, v0, t7
#ifdef CONFIG_MIPS_MT
/* If the core doesn't support MT then return */
bnez t6, 1f
nop
jr ra
nop
.set push
.set mt
1: /* Enter VPE configuration state */
dvpe
la t1, 1f
jr.hb t1
nop
1: mfc0 t1, CP0_MVPCONTROL
ori t1, t1, MVPCONTROL_VPC
mtc0 t1, CP0_MVPCONTROL
ehb
/* Loop through each VPE */
lw t6, COREBOOTCFG_VPEMASK(t0)
move t8, t6
li t5, 0
/* Check whether the VPE should be running. If not, skip it */
1: andi t0, t6, 1
beqz t0, 2f
nop
/* Operate on the appropriate TC */
mfc0 t0, CP0_VPECONTROL
ori t0, t0, VPECONTROL_TARGTC
xori t0, t0, VPECONTROL_TARGTC
or t0, t0, t5
mtc0 t0, CP0_VPECONTROL
ehb
/* Skip the VPE if its TC is not halted */
mftc0 t0, CP0_TCHALT
beqz t0, 2f
nop
/* Calculate a pointer to the VPEs struct vpe_boot_config */
li t0, VPEBOOTCFG_SIZE
mul t0, t0, t5
addu t0, t0, t7
/* Set the TC restart PC */
lw t1, VPEBOOTCFG_PC(t0)
mttc0 t1, CP0_TCRESTART
/* Set the TC stack pointer */
lw t1, VPEBOOTCFG_SP(t0)
mttgpr t1, sp
/* Set the TC global pointer */
lw t1, VPEBOOTCFG_GP(t0)
mttgpr t1, gp
/* Copy config from this VPE */
mfc0 t0, CP0_CONFIG
mttc0 t0, CP0_CONFIG
/* Ensure no software interrupts are pending */
mttc0 zero, CP0_CAUSE
mttc0 zero, CP0_STATUS
/* Set TC active, not interrupt exempt */
mftc0 t0, CP0_TCSTATUS
li t1, ~TCSTATUS_IXMT
and t0, t0, t1
ori t0, t0, TCSTATUS_A
mttc0 t0, CP0_TCSTATUS
/* Clear the TC halt bit */
mttc0 zero, CP0_TCHALT
/* Set VPE active */
mftc0 t0, CP0_VPECONF0
ori t0, t0, VPECONF0_VPA
mttc0 t0, CP0_VPECONF0
/* Next VPE */
2: srl t6, t6, 1
addi t5, t5, 1
bnez t6, 1b
nop
/* Leave VPE configuration state */
mfc0 t1, CP0_MVPCONTROL
xori t1, t1, MVPCONTROL_VPC
mtc0 t1, CP0_MVPCONTROL
ehb
evpe
/* Check whether this VPE is meant to be running */
li t0, 1
sll t0, t0, t9
and t0, t0, t8
bnez t0, 2f
nop
/* This VPE should be offline, halt the TC */
li t0, TCHALT_H
mtc0 t0, CP0_TCHALT
la t0, 1f
1: jr.hb t0
nop
2: .set pop
#endif /* CONFIG_MIPS_MT */
/* Return */
jr ra
nop
END(mips_cps_boot_vpes)