2012-09-27 12:11:01 +08:00
|
|
|
/* NG4memcpy.S: Niagara-4 optimized memcpy.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2012 David S. Miller (davem@davemloft.net)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <asm/visasm.h>
|
|
|
|
#include <asm/asi.h>
|
|
|
|
#define GLOBAL_SPARE %g7
|
|
|
|
#else
|
|
|
|
#define ASI_BLK_INIT_QUAD_LDD_P 0xe2
|
|
|
|
#define FPRS_FEF 0x04
|
|
|
|
|
|
|
|
/* On T4 it is very expensive to access ASRs like %fprs and
|
|
|
|
* %asi, avoiding a read or a write can save ~50 cycles.
|
|
|
|
*/
|
|
|
|
#define FPU_ENTER \
|
|
|
|
rd %fprs, %o5; \
|
|
|
|
andcc %o5, FPRS_FEF, %g0; \
|
|
|
|
be,a,pn %icc, 999f; \
|
|
|
|
wr %g0, FPRS_FEF, %fprs; \
|
|
|
|
999:
|
|
|
|
|
|
|
|
#ifdef MEMCPY_DEBUG
|
|
|
|
#define VISEntryHalf FPU_ENTER; \
|
|
|
|
clr %g1; clr %g2; clr %g3; clr %g5; subcc %g0, %g0, %g0;
|
|
|
|
#define VISExitHalf and %o5, FPRS_FEF, %o5; wr %o5, 0x0, %fprs
|
|
|
|
#else
|
|
|
|
#define VISEntryHalf FPU_ENTER
|
|
|
|
#define VISExitHalf and %o5, FPRS_FEF, %o5; wr %o5, 0x0, %fprs
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define GLOBAL_SPARE %g5
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef STORE_ASI
|
|
|
|
#ifndef SIMULATE_NIAGARA_ON_NON_NIAGARA
|
|
|
|
#define STORE_ASI ASI_BLK_INIT_QUAD_LDD_P
|
|
|
|
#else
|
|
|
|
#define STORE_ASI 0x80 /* ASI_P */
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
sparc64: Fix FPU register corruption with AES crypto offload.
The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the
key material is preloaded into the FPU registers, and then we loop
over and over doing the crypt operation, reusing those pre-cooked key
registers.
There are intervening blkcipher*() calls between the crypt operation
calls. And those might perform memcpy() and thus also try to use the
FPU.
The sparc64 kernel FPU usage mechanism is designed to allow such
recursive uses, but with a catch.
There has to be a trap between the two FPU using threads of control.
The mechanism works by, when the FPU is already in use by the kernel,
allocating a slot for FPU saving at trap time. Then if, within the
trap handler, we try to use the FPU registers, the pre-trap FPU
register state is saved into the slot. Then at trap return time we
notice this and restore the pre-trap FPU state.
Over the long term there are various more involved ways we can make
this work, but for a quick fix let's take advantage of the fact that
the situation where this happens is very limited.
All sparc64 chips that support the crypto instructiosn also are using
the Niagara4 memcpy routine, and that routine only uses the FPU for
large copies where we can't get the source aligned properly to a
multiple of 8 bytes.
We look to see if the FPU is already in use in this context, and if so
we use the non-large copy path which only uses integer registers.
Furthermore, we also limit this special logic to when we are doing
kernel copy, rather than a user copy.
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-15 10:37:58 +08:00
|
|
|
#if !defined(EX_LD) && !defined(EX_ST)
|
|
|
|
#define NON_USER_COPY
|
|
|
|
#endif
|
|
|
|
|
2012-09-27 12:11:01 +08:00
|
|
|
#ifndef EX_LD
|
|
|
|
#define EX_LD(x) x
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef EX_ST
|
|
|
|
#define EX_ST(x) x
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef EX_RETVAL
|
|
|
|
#define EX_RETVAL(x) x
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef LOAD
|
|
|
|
#define LOAD(type,addr,dest) type [addr], dest
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef STORE
|
|
|
|
#ifndef MEMCPY_DEBUG
|
|
|
|
#define STORE(type,src,addr) type src, [addr]
|
|
|
|
#else
|
|
|
|
#define STORE(type,src,addr) type##a src, [addr] %asi
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef STORE_INIT
|
|
|
|
#define STORE_INIT(src,addr) stxa src, [addr] STORE_ASI
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef FUNC_NAME
|
|
|
|
#define FUNC_NAME NG4memcpy
|
|
|
|
#endif
|
|
|
|
#ifndef PREAMBLE
|
|
|
|
#define PREAMBLE
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef XCC
|
|
|
|
#define XCC xcc
|
|
|
|
#endif
|
|
|
|
|
|
|
|
.register %g2,#scratch
|
|
|
|
.register %g3,#scratch
|
|
|
|
|
|
|
|
.text
|
|
|
|
.align 64
|
|
|
|
|
|
|
|
.globl FUNC_NAME
|
|
|
|
.type FUNC_NAME,#function
|
|
|
|
FUNC_NAME: /* %o0=dst, %o1=src, %o2=len */
|
|
|
|
#ifdef MEMCPY_DEBUG
|
|
|
|
wr %g0, 0x80, %asi
|
|
|
|
#endif
|
|
|
|
srlx %o2, 31, %g2
|
|
|
|
cmp %g2, 0
|
|
|
|
tne %XCC, 5
|
|
|
|
PREAMBLE
|
|
|
|
mov %o0, %o3
|
|
|
|
brz,pn %o2, .Lexit
|
|
|
|
cmp %o2, 3
|
|
|
|
ble,pn %icc, .Ltiny
|
|
|
|
cmp %o2, 19
|
|
|
|
ble,pn %icc, .Lsmall
|
|
|
|
or %o0, %o1, %g2
|
|
|
|
cmp %o2, 128
|
|
|
|
bl,pn %icc, .Lmedium
|
|
|
|
nop
|
|
|
|
|
|
|
|
.Llarge:/* len >= 0x80 */
|
|
|
|
/* First get dest 8 byte aligned. */
|
|
|
|
sub %g0, %o0, %g1
|
|
|
|
and %g1, 0x7, %g1
|
|
|
|
brz,pt %g1, 51f
|
|
|
|
sub %o2, %g1, %o2
|
2012-09-29 04:08:22 +08:00
|
|
|
|
2012-09-27 12:11:01 +08:00
|
|
|
1: EX_LD(LOAD(ldub, %o1 + 0x00, %g2))
|
|
|
|
add %o1, 1, %o1
|
|
|
|
subcc %g1, 1, %g1
|
|
|
|
add %o0, 1, %o0
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
EX_ST(STORE(stb, %g2, %o0 - 0x01))
|
|
|
|
|
|
|
|
51: LOAD(prefetch, %o1 + 0x040, #n_reads_strong)
|
|
|
|
LOAD(prefetch, %o1 + 0x080, #n_reads_strong)
|
|
|
|
LOAD(prefetch, %o1 + 0x0c0, #n_reads_strong)
|
|
|
|
LOAD(prefetch, %o1 + 0x100, #n_reads_strong)
|
|
|
|
LOAD(prefetch, %o1 + 0x140, #n_reads_strong)
|
|
|
|
LOAD(prefetch, %o1 + 0x180, #n_reads_strong)
|
|
|
|
LOAD(prefetch, %o1 + 0x1c0, #n_reads_strong)
|
|
|
|
LOAD(prefetch, %o1 + 0x200, #n_reads_strong)
|
|
|
|
|
|
|
|
/* Check if we can use the straight fully aligned
|
|
|
|
* loop, or we require the alignaddr/faligndata variant.
|
|
|
|
*/
|
|
|
|
andcc %o1, 0x7, %o5
|
|
|
|
bne,pn %icc, .Llarge_src_unaligned
|
|
|
|
sub %g0, %o0, %g1
|
|
|
|
|
|
|
|
/* Legitimize the use of initializing stores by getting dest
|
|
|
|
* to be 64-byte aligned.
|
|
|
|
*/
|
|
|
|
and %g1, 0x3f, %g1
|
|
|
|
brz,pt %g1, .Llarge_aligned
|
|
|
|
sub %o2, %g1, %o2
|
2012-09-29 04:08:22 +08:00
|
|
|
|
2012-09-27 12:11:01 +08:00
|
|
|
1: EX_LD(LOAD(ldx, %o1 + 0x00, %g2))
|
|
|
|
add %o1, 8, %o1
|
|
|
|
subcc %g1, 8, %g1
|
|
|
|
add %o0, 8, %o0
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
EX_ST(STORE(stx, %g2, %o0 - 0x08))
|
|
|
|
|
|
|
|
.Llarge_aligned:
|
|
|
|
/* len >= 0x80 && src 8-byte aligned && dest 8-byte aligned */
|
|
|
|
andn %o2, 0x3f, %o4
|
|
|
|
sub %o2, %o4, %o2
|
|
|
|
|
|
|
|
1: EX_LD(LOAD(ldx, %o1 + 0x00, %g1))
|
|
|
|
add %o1, 0x40, %o1
|
|
|
|
EX_LD(LOAD(ldx, %o1 - 0x38, %g2))
|
|
|
|
subcc %o4, 0x40, %o4
|
|
|
|
EX_LD(LOAD(ldx, %o1 - 0x30, %g3))
|
|
|
|
EX_LD(LOAD(ldx, %o1 - 0x28, GLOBAL_SPARE))
|
|
|
|
EX_LD(LOAD(ldx, %o1 - 0x20, %o5))
|
|
|
|
EX_ST(STORE_INIT(%g1, %o0))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
EX_ST(STORE_INIT(%g2, %o0))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
EX_LD(LOAD(ldx, %o1 - 0x18, %g2))
|
|
|
|
EX_ST(STORE_INIT(%g3, %o0))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
EX_LD(LOAD(ldx, %o1 - 0x10, %g3))
|
|
|
|
EX_ST(STORE_INIT(GLOBAL_SPARE, %o0))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
EX_LD(LOAD(ldx, %o1 - 0x08, GLOBAL_SPARE))
|
|
|
|
EX_ST(STORE_INIT(%o5, %o0))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
EX_ST(STORE_INIT(%g2, %o0))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
EX_ST(STORE_INIT(%g3, %o0))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
EX_ST(STORE_INIT(GLOBAL_SPARE, %o0))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
LOAD(prefetch, %o1 + 0x200, #n_reads_strong)
|
|
|
|
|
|
|
|
membar #StoreLoad | #StoreStore
|
|
|
|
|
|
|
|
brz,pn %o2, .Lexit
|
|
|
|
cmp %o2, 19
|
|
|
|
ble,pn %icc, .Lsmall_unaligned
|
|
|
|
nop
|
|
|
|
ba,a,pt %icc, .Lmedium_noprefetch
|
|
|
|
|
|
|
|
.Lexit: retl
|
|
|
|
mov EX_RETVAL(%o3), %o0
|
|
|
|
|
|
|
|
.Llarge_src_unaligned:
|
sparc64: Fix FPU register corruption with AES crypto offload.
The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the
key material is preloaded into the FPU registers, and then we loop
over and over doing the crypt operation, reusing those pre-cooked key
registers.
There are intervening blkcipher*() calls between the crypt operation
calls. And those might perform memcpy() and thus also try to use the
FPU.
The sparc64 kernel FPU usage mechanism is designed to allow such
recursive uses, but with a catch.
There has to be a trap between the two FPU using threads of control.
The mechanism works by, when the FPU is already in use by the kernel,
allocating a slot for FPU saving at trap time. Then if, within the
trap handler, we try to use the FPU registers, the pre-trap FPU
register state is saved into the slot. Then at trap return time we
notice this and restore the pre-trap FPU state.
Over the long term there are various more involved ways we can make
this work, but for a quick fix let's take advantage of the fact that
the situation where this happens is very limited.
All sparc64 chips that support the crypto instructiosn also are using
the Niagara4 memcpy routine, and that routine only uses the FPU for
large copies where we can't get the source aligned properly to a
multiple of 8 bytes.
We look to see if the FPU is already in use in this context, and if so
we use the non-large copy path which only uses integer registers.
Furthermore, we also limit this special logic to when we are doing
kernel copy, rather than a user copy.
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-15 10:37:58 +08:00
|
|
|
#ifdef NON_USER_COPY
|
|
|
|
VISEntryHalfFast(.Lmedium_vis_entry_fail)
|
|
|
|
#else
|
|
|
|
VISEntryHalf
|
|
|
|
#endif
|
2012-09-27 12:11:01 +08:00
|
|
|
andn %o2, 0x3f, %o4
|
|
|
|
sub %o2, %o4, %o2
|
|
|
|
alignaddr %o1, %g0, %g1
|
|
|
|
add %o1, %o4, %o1
|
|
|
|
EX_LD(LOAD(ldd, %g1 + 0x00, %f0))
|
|
|
|
1: EX_LD(LOAD(ldd, %g1 + 0x08, %f2))
|
|
|
|
subcc %o4, 0x40, %o4
|
|
|
|
EX_LD(LOAD(ldd, %g1 + 0x10, %f4))
|
|
|
|
EX_LD(LOAD(ldd, %g1 + 0x18, %f6))
|
|
|
|
EX_LD(LOAD(ldd, %g1 + 0x20, %f8))
|
|
|
|
EX_LD(LOAD(ldd, %g1 + 0x28, %f10))
|
|
|
|
EX_LD(LOAD(ldd, %g1 + 0x30, %f12))
|
|
|
|
EX_LD(LOAD(ldd, %g1 + 0x38, %f14))
|
|
|
|
faligndata %f0, %f2, %f16
|
|
|
|
EX_LD(LOAD(ldd, %g1 + 0x40, %f0))
|
|
|
|
faligndata %f2, %f4, %f18
|
|
|
|
add %g1, 0x40, %g1
|
|
|
|
faligndata %f4, %f6, %f20
|
|
|
|
faligndata %f6, %f8, %f22
|
|
|
|
faligndata %f8, %f10, %f24
|
|
|
|
faligndata %f10, %f12, %f26
|
|
|
|
faligndata %f12, %f14, %f28
|
|
|
|
faligndata %f14, %f0, %f30
|
|
|
|
EX_ST(STORE(std, %f16, %o0 + 0x00))
|
|
|
|
EX_ST(STORE(std, %f18, %o0 + 0x08))
|
|
|
|
EX_ST(STORE(std, %f20, %o0 + 0x10))
|
|
|
|
EX_ST(STORE(std, %f22, %o0 + 0x18))
|
|
|
|
EX_ST(STORE(std, %f24, %o0 + 0x20))
|
|
|
|
EX_ST(STORE(std, %f26, %o0 + 0x28))
|
|
|
|
EX_ST(STORE(std, %f28, %o0 + 0x30))
|
|
|
|
EX_ST(STORE(std, %f30, %o0 + 0x38))
|
|
|
|
add %o0, 0x40, %o0
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
LOAD(prefetch, %g1 + 0x200, #n_reads_strong)
|
|
|
|
VISExitHalf
|
|
|
|
|
|
|
|
brz,pn %o2, .Lexit
|
|
|
|
cmp %o2, 19
|
|
|
|
ble,pn %icc, .Lsmall_unaligned
|
|
|
|
nop
|
|
|
|
ba,a,pt %icc, .Lmedium_unaligned
|
|
|
|
|
sparc64: Fix FPU register corruption with AES crypto offload.
The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the
key material is preloaded into the FPU registers, and then we loop
over and over doing the crypt operation, reusing those pre-cooked key
registers.
There are intervening blkcipher*() calls between the crypt operation
calls. And those might perform memcpy() and thus also try to use the
FPU.
The sparc64 kernel FPU usage mechanism is designed to allow such
recursive uses, but with a catch.
There has to be a trap between the two FPU using threads of control.
The mechanism works by, when the FPU is already in use by the kernel,
allocating a slot for FPU saving at trap time. Then if, within the
trap handler, we try to use the FPU registers, the pre-trap FPU
register state is saved into the slot. Then at trap return time we
notice this and restore the pre-trap FPU state.
Over the long term there are various more involved ways we can make
this work, but for a quick fix let's take advantage of the fact that
the situation where this happens is very limited.
All sparc64 chips that support the crypto instructiosn also are using
the Niagara4 memcpy routine, and that routine only uses the FPU for
large copies where we can't get the source aligned properly to a
multiple of 8 bytes.
We look to see if the FPU is already in use in this context, and if so
we use the non-large copy path which only uses integer registers.
Furthermore, we also limit this special logic to when we are doing
kernel copy, rather than a user copy.
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-15 10:37:58 +08:00
|
|
|
#ifdef NON_USER_COPY
|
|
|
|
.Lmedium_vis_entry_fail:
|
|
|
|
or %o0, %o1, %g2
|
|
|
|
#endif
|
2012-09-27 12:11:01 +08:00
|
|
|
.Lmedium:
|
|
|
|
LOAD(prefetch, %o1 + 0x40, #n_reads_strong)
|
|
|
|
andcc %g2, 0x7, %g0
|
|
|
|
bne,pn %icc, .Lmedium_unaligned
|
|
|
|
nop
|
|
|
|
.Lmedium_noprefetch:
|
|
|
|
andncc %o2, 0x20 - 1, %o5
|
|
|
|
be,pn %icc, 2f
|
|
|
|
sub %o2, %o5, %o2
|
|
|
|
1: EX_LD(LOAD(ldx, %o1 + 0x00, %g1))
|
|
|
|
EX_LD(LOAD(ldx, %o1 + 0x08, %g2))
|
|
|
|
EX_LD(LOAD(ldx, %o1 + 0x10, GLOBAL_SPARE))
|
|
|
|
EX_LD(LOAD(ldx, %o1 + 0x18, %o4))
|
|
|
|
add %o1, 0x20, %o1
|
|
|
|
subcc %o5, 0x20, %o5
|
|
|
|
EX_ST(STORE(stx, %g1, %o0 + 0x00))
|
|
|
|
EX_ST(STORE(stx, %g2, %o0 + 0x08))
|
|
|
|
EX_ST(STORE(stx, GLOBAL_SPARE, %o0 + 0x10))
|
|
|
|
EX_ST(STORE(stx, %o4, %o0 + 0x18))
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
add %o0, 0x20, %o0
|
|
|
|
2: andcc %o2, 0x18, %o5
|
|
|
|
be,pt %icc, 3f
|
|
|
|
sub %o2, %o5, %o2
|
|
|
|
1: EX_LD(LOAD(ldx, %o1 + 0x00, %g1))
|
|
|
|
add %o1, 0x08, %o1
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
subcc %o5, 0x08, %o5
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
EX_ST(STORE(stx, %g1, %o0 - 0x08))
|
|
|
|
3: brz,pt %o2, .Lexit
|
|
|
|
cmp %o2, 0x04
|
|
|
|
bl,pn %icc, .Ltiny
|
|
|
|
nop
|
|
|
|
EX_LD(LOAD(lduw, %o1 + 0x00, %g1))
|
|
|
|
add %o1, 0x04, %o1
|
|
|
|
add %o0, 0x04, %o0
|
|
|
|
subcc %o2, 0x04, %o2
|
|
|
|
bne,pn %icc, .Ltiny
|
|
|
|
EX_ST(STORE(stw, %g1, %o0 - 0x04))
|
|
|
|
ba,a,pt %icc, .Lexit
|
|
|
|
.Lmedium_unaligned:
|
|
|
|
/* First get dest 8 byte aligned. */
|
|
|
|
sub %g0, %o0, %g1
|
|
|
|
and %g1, 0x7, %g1
|
|
|
|
brz,pt %g1, 2f
|
|
|
|
sub %o2, %g1, %o2
|
2012-09-29 04:08:22 +08:00
|
|
|
|
2012-09-27 12:11:01 +08:00
|
|
|
1: EX_LD(LOAD(ldub, %o1 + 0x00, %g2))
|
|
|
|
add %o1, 1, %o1
|
|
|
|
subcc %g1, 1, %g1
|
|
|
|
add %o0, 1, %o0
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
EX_ST(STORE(stb, %g2, %o0 - 0x01))
|
|
|
|
2:
|
|
|
|
and %o1, 0x7, %g1
|
|
|
|
brz,pn %g1, .Lmedium_noprefetch
|
|
|
|
sll %g1, 3, %g1
|
|
|
|
mov 64, %g2
|
|
|
|
sub %g2, %g1, %g2
|
|
|
|
andn %o1, 0x7, %o1
|
|
|
|
EX_LD(LOAD(ldx, %o1 + 0x00, %o4))
|
|
|
|
sllx %o4, %g1, %o4
|
|
|
|
andn %o2, 0x08 - 1, %o5
|
|
|
|
sub %o2, %o5, %o2
|
|
|
|
1: EX_LD(LOAD(ldx, %o1 + 0x08, %g3))
|
|
|
|
add %o1, 0x08, %o1
|
|
|
|
subcc %o5, 0x08, %o5
|
|
|
|
srlx %g3, %g2, GLOBAL_SPARE
|
|
|
|
or GLOBAL_SPARE, %o4, GLOBAL_SPARE
|
|
|
|
EX_ST(STORE(stx, GLOBAL_SPARE, %o0 + 0x00))
|
|
|
|
add %o0, 0x08, %o0
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
sllx %g3, %g1, %o4
|
|
|
|
srl %g1, 3, %g1
|
|
|
|
add %o1, %g1, %o1
|
|
|
|
brz,pn %o2, .Lexit
|
|
|
|
nop
|
|
|
|
ba,pt %icc, .Lsmall_unaligned
|
|
|
|
|
|
|
|
.Ltiny:
|
|
|
|
EX_LD(LOAD(ldub, %o1 + 0x00, %g1))
|
|
|
|
subcc %o2, 1, %o2
|
|
|
|
be,pn %icc, .Lexit
|
|
|
|
EX_ST(STORE(stb, %g1, %o0 + 0x00))
|
|
|
|
EX_LD(LOAD(ldub, %o1 + 0x01, %g1))
|
|
|
|
subcc %o2, 1, %o2
|
|
|
|
be,pn %icc, .Lexit
|
|
|
|
EX_ST(STORE(stb, %g1, %o0 + 0x01))
|
|
|
|
EX_LD(LOAD(ldub, %o1 + 0x02, %g1))
|
|
|
|
ba,pt %icc, .Lexit
|
|
|
|
EX_ST(STORE(stb, %g1, %o0 + 0x02))
|
|
|
|
|
|
|
|
.Lsmall:
|
|
|
|
andcc %g2, 0x3, %g0
|
|
|
|
bne,pn %icc, .Lsmall_unaligned
|
|
|
|
andn %o2, 0x4 - 1, %o5
|
|
|
|
sub %o2, %o5, %o2
|
|
|
|
1:
|
|
|
|
EX_LD(LOAD(lduw, %o1 + 0x00, %g1))
|
|
|
|
add %o1, 0x04, %o1
|
|
|
|
subcc %o5, 0x04, %o5
|
|
|
|
add %o0, 0x04, %o0
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
EX_ST(STORE(stw, %g1, %o0 - 0x04))
|
|
|
|
brz,pt %o2, .Lexit
|
|
|
|
nop
|
|
|
|
ba,a,pt %icc, .Ltiny
|
|
|
|
|
|
|
|
.Lsmall_unaligned:
|
|
|
|
1: EX_LD(LOAD(ldub, %o1 + 0x00, %g1))
|
|
|
|
add %o1, 1, %o1
|
|
|
|
add %o0, 1, %o0
|
|
|
|
subcc %o2, 1, %o2
|
|
|
|
bne,pt %icc, 1b
|
|
|
|
EX_ST(STORE(stb, %g1, %o0 - 0x01))
|
|
|
|
ba,a,pt %icc, .Lexit
|
|
|
|
.size FUNC_NAME, .-FUNC_NAME
|