linux/arch/arm64/include/asm/futex.h

130 lines
2.8 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __ASM_FUTEX_H
#define __ASM_FUTEX_H
#include <linux/futex.h>
#include <linux/uaccess.h>
#include <asm/errno.h>
#define FUTEX_MAX_LOOPS 128 /* What's the largest number you can think of? */
#define __futex_atomic_op(insn, ret, oldval, uaddr, tmp, oparg) \
do { \
unsigned int loops = FUTEX_MAX_LOOPS; \
\
uaccess_enable(); \
asm volatile( \
" prfm pstl1strm, %2\n" \
arm64: atomics: fix use of acquire + release for full barrier semantics Linux requires a number of atomic operations to provide full barrier semantics, that is no memory accesses after the operation can be observed before any accesses up to and including the operation in program order. On arm64, these operations have been incorrectly implemented as follows: // A, B, C are independent memory locations <Access [A]> // atomic_op (B) 1: ldaxr x0, [B] // Exclusive load with acquire <op(B)> stlxr w1, x0, [B] // Exclusive store with release cbnz w1, 1b <Access [C]> The assumption here being that two half barriers are equivalent to a full barrier, so the only permitted ordering would be A -> B -> C (where B is the atomic operation involving both a load and a store). Unfortunately, this is not the case by the letter of the architecture and, in fact, the accesses to A and C are permitted to pass their nearest half barrier resulting in orderings such as Bl -> A -> C -> Bs or Bl -> C -> A -> Bs (where Bl is the load-acquire on B and Bs is the store-release on B). This is a clear violation of the full barrier requirement. The simple way to fix this is to implement the same algorithm as ARMv7 using explicit barriers: <Access [A]> // atomic_op (B) dmb ish // Full barrier 1: ldxr x0, [B] // Exclusive load <op(B)> stxr w1, x0, [B] // Exclusive store cbnz w1, 1b dmb ish // Full barrier <Access [C]> but this has the undesirable effect of introducing *two* full barrier instructions. A better approach is actually the following, non-intuitive sequence: <Access [A]> // atomic_op (B) 1: ldxr x0, [B] // Exclusive load <op(B)> stlxr w1, x0, [B] // Exclusive store with release cbnz w1, 1b dmb ish // Full barrier <Access [C]> The simple observations here are: - The dmb ensures that no subsequent accesses (e.g. the access to C) can enter or pass the atomic sequence. - The dmb also ensures that no prior accesses (e.g. the access to A) can pass the atomic sequence. - Therefore, no prior access can pass a subsequent access, or vice-versa (i.e. A is strictly ordered before C). - The stlxr ensures that no prior access can pass the store component of the atomic operation. The only tricky part remaining is the ordering between the ldxr and the access to A, since the absence of the first dmb means that we're now permitting re-ordering between the ldxr and any prior accesses. From an (arbitrary) observer's point of view, there are two scenarios: 1. We have observed the ldxr. This means that if we perform a store to [B], the ldxr will still return older data. If we can observe the ldxr, then we can potentially observe the permitted re-ordering with the access to A, which is clearly an issue when compared to the dmb variant of the code. Thankfully, the exclusive monitor will save us here since it will be cleared as a result of the store and the ldxr will retry. Notice that any use of a later memory observation to imply observation of the ldxr will also imply observation of the access to A, since the stlxr/dmb ensure strict ordering. 2. We have not observed the ldxr. This means we can perform a store and influence the later ldxr. However, that doesn't actually tell us anything about the access to [A], so we've not lost anything here either when compared to the dmb variant. This patch implements this solution for our barriered atomic operations, ensuring that we satisfy the full barrier requirements where they are needed. Cc: <stable@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-02-04 20:29:12 +08:00
"1: ldxr %w1, %2\n" \
insn "\n" \
"2: stlxr %w0, %w3, %2\n" \
" cbz %w0, 3f\n" \
" sub %w4, %w4, %w0\n" \
" cbnz %w4, 1b\n" \
" mov %w0, %w7\n" \
"3:\n" \
" dmb ish\n" \
" .pushsection .fixup,\"ax\"\n" \
" .align 2\n" \
"4: mov %w0, %w6\n" \
" b 3b\n" \
" .popsection\n" \
_ASM_EXTABLE(1b, 4b) \
_ASM_EXTABLE(2b, 4b) \
: "=&r" (ret), "=&r" (oldval), "+Q" (*uaddr), "=&r" (tmp), \
"+r" (loops) \
: "r" (oparg), "Ir" (-EFAULT), "Ir" (-EAGAIN) \
: "memory"); \
uaccess_disable(); \
} while (0)
static inline int
arch_futex_atomic_op_inuser(int op, int oparg, int *oval, u32 __user *_uaddr)
{
int oldval = 0, ret, tmp;
u32 __user *uaddr = __uaccess_mask_ptr(_uaddr);
if (!access_ok(_uaddr, sizeof(u32)))
return -EFAULT;
switch (op) {
case FUTEX_OP_SET:
__futex_atomic_op("mov %w3, %w5",
ret, oldval, uaddr, tmp, oparg);
break;
case FUTEX_OP_ADD:
__futex_atomic_op("add %w3, %w1, %w5",
ret, oldval, uaddr, tmp, oparg);
break;
case FUTEX_OP_OR:
__futex_atomic_op("orr %w3, %w1, %w5",
ret, oldval, uaddr, tmp, oparg);
break;
case FUTEX_OP_ANDN:
__futex_atomic_op("and %w3, %w1, %w5",
ret, oldval, uaddr, tmp, ~oparg);
break;
case FUTEX_OP_XOR:
__futex_atomic_op("eor %w3, %w1, %w5",
ret, oldval, uaddr, tmp, oparg);
break;
default:
ret = -ENOSYS;
}
futex: Remove duplicated code and fix undefined behaviour There is code duplicated over all architecture's headers for futex_atomic_op_inuser. Namely op decoding, access_ok check for uaddr, and comparison of the result. Remove this duplication and leave up to the arches only the needed assembly which is now in arch_futex_atomic_op_inuser. This effectively distributes the Will Deacon's arm64 fix for undefined behaviour reported by UBSAN to all architectures. The fix was done in commit 5f16a046f8e1 (arm64: futex: Fix undefined behaviour with FUTEX_OP_OPARG_SHIFT usage). Look there for an example dump. And as suggested by Thomas, check for negative oparg too, because it was also reported to cause undefined behaviour report. Note that s390 removed access_ok check in d12a29703 ("s390/uaccess: remove pointless access_ok() checks") as access_ok there returns true. We introduce it back to the helper for the sake of simplicity (it gets optimized away anyway). Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390] Acked-by: Chris Metcalf <cmetcalf@mellanox.com> [for tile] Reviewed-by: Darren Hart (VMware) <dvhart@infradead.org> Reviewed-by: Will Deacon <will.deacon@arm.com> [core/arm64] Cc: linux-mips@linux-mips.org Cc: Rich Felker <dalias@libc.org> Cc: linux-ia64@vger.kernel.org Cc: linux-sh@vger.kernel.org Cc: peterz@infradead.org Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: sparclinux@vger.kernel.org Cc: Jonas Bonn <jonas@southpole.se> Cc: linux-s390@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: linux-hexagon@vger.kernel.org Cc: Helge Deller <deller@gmx.de> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: linux-snps-arc@lists.infradead.org Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: linux-xtensa@linux-xtensa.org Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: openrisc@lists.librecores.org Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Stafford Horne <shorne@gmail.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Richard Henderson <rth@twiddle.net> Cc: Chris Zankel <chris@zankel.net> Cc: Michal Simek <monstr@monstr.eu> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-parisc@vger.kernel.org Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: linux-alpha@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Cc: "David S. Miller" <davem@davemloft.net> Link: http://lkml.kernel.org/r/20170824073105.3901-1-jslaby@suse.cz
2017-08-24 15:31:05 +08:00
if (!ret)
*oval = oldval;
return ret;
}
static inline int
futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *_uaddr,
u32 oldval, u32 newval)
{
int ret = 0;
unsigned int loops = FUTEX_MAX_LOOPS;
u32 val, tmp;
u32 __user *uaddr;
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 10:57:57 +08:00
if (!access_ok(_uaddr, sizeof(u32)))
return -EFAULT;
uaddr = __uaccess_mask_ptr(_uaddr);
uaccess_enable();
asm volatile("// futex_atomic_cmpxchg_inatomic\n"
" prfm pstl1strm, %2\n"
arm64: atomics: fix use of acquire + release for full barrier semantics Linux requires a number of atomic operations to provide full barrier semantics, that is no memory accesses after the operation can be observed before any accesses up to and including the operation in program order. On arm64, these operations have been incorrectly implemented as follows: // A, B, C are independent memory locations <Access [A]> // atomic_op (B) 1: ldaxr x0, [B] // Exclusive load with acquire <op(B)> stlxr w1, x0, [B] // Exclusive store with release cbnz w1, 1b <Access [C]> The assumption here being that two half barriers are equivalent to a full barrier, so the only permitted ordering would be A -> B -> C (where B is the atomic operation involving both a load and a store). Unfortunately, this is not the case by the letter of the architecture and, in fact, the accesses to A and C are permitted to pass their nearest half barrier resulting in orderings such as Bl -> A -> C -> Bs or Bl -> C -> A -> Bs (where Bl is the load-acquire on B and Bs is the store-release on B). This is a clear violation of the full barrier requirement. The simple way to fix this is to implement the same algorithm as ARMv7 using explicit barriers: <Access [A]> // atomic_op (B) dmb ish // Full barrier 1: ldxr x0, [B] // Exclusive load <op(B)> stxr w1, x0, [B] // Exclusive store cbnz w1, 1b dmb ish // Full barrier <Access [C]> but this has the undesirable effect of introducing *two* full barrier instructions. A better approach is actually the following, non-intuitive sequence: <Access [A]> // atomic_op (B) 1: ldxr x0, [B] // Exclusive load <op(B)> stlxr w1, x0, [B] // Exclusive store with release cbnz w1, 1b dmb ish // Full barrier <Access [C]> The simple observations here are: - The dmb ensures that no subsequent accesses (e.g. the access to C) can enter or pass the atomic sequence. - The dmb also ensures that no prior accesses (e.g. the access to A) can pass the atomic sequence. - Therefore, no prior access can pass a subsequent access, or vice-versa (i.e. A is strictly ordered before C). - The stlxr ensures that no prior access can pass the store component of the atomic operation. The only tricky part remaining is the ordering between the ldxr and the access to A, since the absence of the first dmb means that we're now permitting re-ordering between the ldxr and any prior accesses. From an (arbitrary) observer's point of view, there are two scenarios: 1. We have observed the ldxr. This means that if we perform a store to [B], the ldxr will still return older data. If we can observe the ldxr, then we can potentially observe the permitted re-ordering with the access to A, which is clearly an issue when compared to the dmb variant of the code. Thankfully, the exclusive monitor will save us here since it will be cleared as a result of the store and the ldxr will retry. Notice that any use of a later memory observation to imply observation of the ldxr will also imply observation of the access to A, since the stlxr/dmb ensure strict ordering. 2. We have not observed the ldxr. This means we can perform a store and influence the later ldxr. However, that doesn't actually tell us anything about the access to [A], so we've not lost anything here either when compared to the dmb variant. This patch implements this solution for our barriered atomic operations, ensuring that we satisfy the full barrier requirements where they are needed. Cc: <stable@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-02-04 20:29:12 +08:00
"1: ldxr %w1, %2\n"
" sub %w3, %w1, %w5\n"
" cbnz %w3, 4f\n"
"2: stlxr %w3, %w6, %2\n"
" cbz %w3, 3f\n"
" sub %w4, %w4, %w3\n"
" cbnz %w4, 1b\n"
" mov %w0, %w8\n"
"3:\n"
" dmb ish\n"
"4:\n"
" .pushsection .fixup,\"ax\"\n"
"5: mov %w0, %w7\n"
" b 4b\n"
" .popsection\n"
_ASM_EXTABLE(1b, 5b)
_ASM_EXTABLE(2b, 5b)
: "+r" (ret), "=&r" (val), "+Q" (*uaddr), "=&r" (tmp), "+r" (loops)
: "r" (oldval), "r" (newval), "Ir" (-EFAULT), "Ir" (-EAGAIN)
: "memory");
uaccess_disable();
if (!ret)
*uval = val;
return ret;
}
#endif /* __ASM_FUTEX_H */