2019-05-27 14:55:01 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
2005-11-11 18:15:21 +08:00
|
|
|
/*
|
|
|
|
* Userland implementation of gettimeofday() for 32 bits processes in a
|
|
|
|
* ppc64 kernel for use in the vDSO
|
|
|
|
*
|
|
|
|
* Copyright (C) 2004 Benjamin Herrenschmuidt (benh@kernel.crashing.org,
|
|
|
|
* IBM Corp.
|
|
|
|
*/
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/ppc_asm.h>
|
|
|
|
#include <asm/vdso.h>
|
2019-12-02 15:57:30 +08:00
|
|
|
#include <asm/vdso_datapage.h>
|
2005-11-11 18:15:21 +08:00
|
|
|
#include <asm/asm-offsets.h>
|
|
|
|
#include <asm/unistd.h>
|
|
|
|
|
2008-10-28 07:56:03 +08:00
|
|
|
/* Offset for the low 32-bit part of a field of long type */
|
|
|
|
#ifdef CONFIG_PPC64
|
|
|
|
#define LOPART 4
|
|
|
|
#else
|
|
|
|
#define LOPART 0
|
|
|
|
#endif
|
|
|
|
|
2005-11-11 18:15:21 +08:00
|
|
|
.text
|
|
|
|
/*
|
|
|
|
* Exact prototype of gettimeofday
|
|
|
|
*
|
|
|
|
* int __kernel_gettimeofday(struct timeval *tv, struct timezone *tz);
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
V_FUNCTION_BEGIN(__kernel_gettimeofday)
|
|
|
|
.cfi_startproc
|
|
|
|
mflr r12
|
|
|
|
.cfi_register lr,r12
|
|
|
|
|
|
|
|
mr r10,r3 /* r10 saves tv */
|
|
|
|
mr r11,r4 /* r11 saves tz */
|
2019-12-02 15:57:30 +08:00
|
|
|
get_datapage r9, r0
|
2007-06-26 07:50:32 +08:00
|
|
|
cmplwi r10,0 /* check if tv is NULL */
|
|
|
|
beq 3f
|
2019-12-02 15:57:32 +08:00
|
|
|
LOAD_REG_IMMEDIATE(r7, 1000000) /* load up USEC_PER_SEC */
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
bl __do_get_tspec@local /* get sec/usec from tb & kernel */
|
|
|
|
stw r3,TVAL32_TV_SEC(r10)
|
|
|
|
stw r4,TVAL32_TV_USEC(r10)
|
2005-11-11 18:15:21 +08:00
|
|
|
|
2007-06-26 07:50:32 +08:00
|
|
|
3: cmplwi r11,0 /* check if tz is NULL */
|
2005-11-11 18:15:21 +08:00
|
|
|
beq 1f
|
|
|
|
lwz r4,CFG_TZ_MINUTEWEST(r9)/* fill tz */
|
|
|
|
lwz r5,CFG_TZ_DSTTIME(r9)
|
|
|
|
stw r4,TZONE_TZ_MINWEST(r11)
|
|
|
|
stw r5,TZONE_TZ_DSTTIME(r11)
|
|
|
|
|
|
|
|
1: mtlr r12
|
2005-11-16 10:54:32 +08:00
|
|
|
crclr cr0*4+so
|
2005-11-11 18:15:21 +08:00
|
|
|
li r3,0
|
|
|
|
blr
|
|
|
|
.cfi_endproc
|
|
|
|
V_FUNCTION_END(__kernel_gettimeofday)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Exact prototype of clock_gettime()
|
|
|
|
*
|
|
|
|
* int __kernel_clock_gettime(clockid_t clock_id, struct timespec *tp);
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
V_FUNCTION_BEGIN(__kernel_clock_gettime)
|
|
|
|
.cfi_startproc
|
|
|
|
/* Check for supported clock IDs */
|
|
|
|
cmpli cr0,r3,CLOCK_REALTIME
|
|
|
|
cmpli cr1,r3,CLOCK_MONOTONIC
|
2005-11-14 11:55:58 +08:00
|
|
|
cror cr0*4+eq,cr0*4+eq,cr1*4+eq
|
2019-12-02 15:57:28 +08:00
|
|
|
|
|
|
|
cmpli cr5,r3,CLOCK_REALTIME_COARSE
|
|
|
|
cmpli cr6,r3,CLOCK_MONOTONIC_COARSE
|
|
|
|
cror cr5*4+eq,cr5*4+eq,cr6*4+eq
|
|
|
|
|
|
|
|
cror cr0*4+eq,cr0*4+eq,cr5*4+eq
|
|
|
|
bne cr0, .Lgettime_fallback
|
2005-11-11 18:15:21 +08:00
|
|
|
|
|
|
|
mflr r12 /* r12 saves lr */
|
|
|
|
.cfi_register lr,r12
|
|
|
|
mr r11,r4 /* r11 saves tp */
|
2019-12-02 15:57:30 +08:00
|
|
|
get_datapage r9, r0
|
2019-12-02 15:57:32 +08:00
|
|
|
LOAD_REG_IMMEDIATE(r7, NSEC_PER_SEC) /* load up NSEC_PER_SEC */
|
2019-12-02 15:57:28 +08:00
|
|
|
beq cr5, .Lcoarse_clocks
|
|
|
|
.Lprecise_clocks:
|
|
|
|
bl __do_get_tspec@local /* get sec/nsec from tb & kernel */
|
|
|
|
bne cr1, .Lfinish /* not monotonic -> all done */
|
2005-11-11 18:15:21 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* CLOCK_MONOTONIC
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* now we must fixup using wall to monotonic. We need to snapshot
|
|
|
|
* that value and do the counter trick again. Fortunately, we still
|
|
|
|
* have the counter value in r8 that was returned by __do_get_xsec.
|
2008-10-28 07:56:03 +08:00
|
|
|
* At this point, r3,r4 contain our sec/nsec values, r5 and r6
|
|
|
|
* can be used, r7 contains NSEC_PER_SEC.
|
2005-11-11 18:15:21 +08:00
|
|
|
*/
|
|
|
|
|
2019-04-04 20:20:05 +08:00
|
|
|
lwz r5,(WTOM_CLOCK_SEC+LOPART)(r9)
|
2008-10-28 07:56:03 +08:00
|
|
|
lwz r6,WTOM_CLOCK_NSEC(r9)
|
2005-11-11 18:15:21 +08:00
|
|
|
|
2008-10-28 07:56:03 +08:00
|
|
|
/* We now have our offset in r5,r6. We create a fake dependency
|
|
|
|
* on that value and re-check the counter
|
2005-11-11 18:15:21 +08:00
|
|
|
*/
|
2008-10-28 07:56:03 +08:00
|
|
|
or r0,r6,r5
|
|
|
|
xor r0,r0,r0
|
2005-11-11 18:15:21 +08:00
|
|
|
add r9,r9,r0
|
2008-10-28 07:56:03 +08:00
|
|
|
lwz r0,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
|
2005-11-11 18:15:21 +08:00
|
|
|
cmpl cr0,r8,r0 /* check if updated */
|
2019-12-02 15:57:28 +08:00
|
|
|
bne- .Lprecise_clocks
|
|
|
|
b .Lfinish_monotonic
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For coarse clocks we get data directly from the vdso data page, so
|
|
|
|
* we don't need to call __do_get_tspec, but we still need to do the
|
|
|
|
* counter trick.
|
|
|
|
*/
|
|
|
|
.Lcoarse_clocks:
|
|
|
|
lwz r8,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
|
|
|
|
andi. r0,r8,1 /* pending update ? loop */
|
|
|
|
bne- .Lcoarse_clocks
|
|
|
|
add r9,r9,r0 /* r0 is already 0 */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CLOCK_REALTIME_COARSE, below values are needed for MONOTONIC_COARSE
|
|
|
|
* too
|
|
|
|
*/
|
|
|
|
lwz r3,STAMP_XTIME_SEC+LOPART(r9)
|
|
|
|
lwz r4,STAMP_XTIME_NSEC+LOPART(r9)
|
|
|
|
bne cr6,1f
|
|
|
|
|
|
|
|
/* CLOCK_MONOTONIC_COARSE */
|
|
|
|
lwz r5,(WTOM_CLOCK_SEC+LOPART)(r9)
|
|
|
|
lwz r6,WTOM_CLOCK_NSEC(r9)
|
|
|
|
|
|
|
|
/* check if counter has updated */
|
|
|
|
or r0,r6,r5
|
|
|
|
1: or r0,r0,r3
|
|
|
|
or r0,r0,r4
|
|
|
|
xor r0,r0,r0
|
|
|
|
add r3,r3,r0
|
|
|
|
lwz r0,CFG_TB_UPDATE_COUNT+LOPART(r9)
|
|
|
|
cmpl cr0,r0,r8 /* check if updated */
|
|
|
|
bne- .Lcoarse_clocks
|
|
|
|
|
|
|
|
/* Counter has not updated, so continue calculating proper values for
|
|
|
|
* sec and nsec if monotonic coarse, or just return with the proper
|
|
|
|
* values for realtime.
|
|
|
|
*/
|
|
|
|
bne cr6, .Lfinish
|
2005-11-11 18:15:21 +08:00
|
|
|
|
2008-10-28 07:56:03 +08:00
|
|
|
/* Calculate and store result. Note that this mimics the C code,
|
2005-11-11 18:15:21 +08:00
|
|
|
* which may cause funny results if nsec goes negative... is that
|
|
|
|
* possible at all ?
|
|
|
|
*/
|
2019-12-02 15:57:28 +08:00
|
|
|
.Lfinish_monotonic:
|
2008-10-28 07:56:03 +08:00
|
|
|
add r3,r3,r5
|
|
|
|
add r4,r4,r6
|
|
|
|
cmpw cr0,r4,r7
|
|
|
|
cmpwi cr1,r4,0
|
2005-11-11 18:15:21 +08:00
|
|
|
blt 1f
|
2008-10-28 07:56:03 +08:00
|
|
|
subf r4,r7,r4
|
2005-11-11 18:15:21 +08:00
|
|
|
addi r3,r3,1
|
2019-12-02 15:57:28 +08:00
|
|
|
1: bge cr1, .Lfinish
|
2005-11-14 11:55:58 +08:00
|
|
|
addi r3,r3,-1
|
2008-10-28 07:56:03 +08:00
|
|
|
add r4,r4,r7
|
|
|
|
|
2019-12-02 15:57:28 +08:00
|
|
|
.Lfinish:
|
|
|
|
stw r3,TSPC32_TV_SEC(r11)
|
2005-11-11 18:15:21 +08:00
|
|
|
stw r4,TSPC32_TV_NSEC(r11)
|
|
|
|
|
|
|
|
mtlr r12
|
2005-11-16 10:54:32 +08:00
|
|
|
crclr cr0*4+so
|
2005-11-11 18:15:21 +08:00
|
|
|
li r3,0
|
|
|
|
blr
|
|
|
|
|
|
|
|
/*
|
|
|
|
* syscall fallback
|
|
|
|
*/
|
2019-12-02 15:57:28 +08:00
|
|
|
.Lgettime_fallback:
|
2005-11-11 18:15:21 +08:00
|
|
|
li r0,__NR_clock_gettime
|
2018-09-14 11:40:04 +08:00
|
|
|
.cfi_restore lr
|
2005-11-11 18:15:21 +08:00
|
|
|
sc
|
|
|
|
blr
|
|
|
|
.cfi_endproc
|
|
|
|
V_FUNCTION_END(__kernel_clock_gettime)
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Exact prototype of clock_getres()
|
|
|
|
*
|
|
|
|
* int __kernel_clock_getres(clockid_t clock_id, struct timespec *res);
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
V_FUNCTION_BEGIN(__kernel_clock_getres)
|
|
|
|
.cfi_startproc
|
|
|
|
/* Check for supported clock IDs */
|
2019-12-02 15:57:33 +08:00
|
|
|
cmplwi cr0, r3, CLOCK_MAX
|
|
|
|
cmpwi cr1, r3, CLOCK_REALTIME_COARSE
|
|
|
|
cmpwi cr7, r3, CLOCK_MONOTONIC_COARSE
|
|
|
|
bgt cr0, 99f
|
|
|
|
LOAD_REG_IMMEDIATE(r5, KTIME_LOW_RES)
|
|
|
|
beq cr1, 1f
|
|
|
|
beq cr7, 1f
|
2005-11-11 18:15:21 +08:00
|
|
|
|
2019-12-02 15:57:29 +08:00
|
|
|
mflr r12
|
|
|
|
.cfi_register lr,r12
|
2019-12-02 15:57:30 +08:00
|
|
|
get_datapage r3, r0
|
2019-12-02 15:57:29 +08:00
|
|
|
lwz r5, CLOCK_HRTIMER_RES(r3)
|
|
|
|
mtlr r12
|
2019-12-02 15:57:33 +08:00
|
|
|
1: li r3,0
|
2005-11-11 18:15:21 +08:00
|
|
|
cmpli cr0,r4,0
|
2005-11-16 10:54:32 +08:00
|
|
|
crclr cr0*4+so
|
2005-11-11 18:15:21 +08:00
|
|
|
beqlr
|
|
|
|
stw r3,TSPC32_TV_SEC(r4)
|
|
|
|
stw r5,TSPC32_TV_NSEC(r4)
|
|
|
|
blr
|
|
|
|
|
|
|
|
/*
|
2019-12-02 15:57:33 +08:00
|
|
|
* invalid clock
|
2005-11-11 18:15:21 +08:00
|
|
|
*/
|
|
|
|
99:
|
2019-12-02 15:57:33 +08:00
|
|
|
li r3, EINVAL
|
|
|
|
crset so
|
2005-11-11 18:15:21 +08:00
|
|
|
blr
|
|
|
|
.cfi_endproc
|
|
|
|
V_FUNCTION_END(__kernel_clock_getres)
|
|
|
|
|
|
|
|
|
2013-04-22 17:29:33 +08:00
|
|
|
/*
|
|
|
|
* Exact prototype of time()
|
|
|
|
*
|
|
|
|
* time_t time(time *t);
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
V_FUNCTION_BEGIN(__kernel_time)
|
|
|
|
.cfi_startproc
|
|
|
|
mflr r12
|
|
|
|
.cfi_register lr,r12
|
|
|
|
|
|
|
|
mr r11,r3 /* r11 holds t */
|
2019-12-02 15:57:30 +08:00
|
|
|
get_datapage r9, r0
|
2013-04-22 17:29:33 +08:00
|
|
|
|
2019-11-21 22:19:49 +08:00
|
|
|
lwz r3,STAMP_XTIME_SEC+LOPART(r9)
|
2013-04-22 17:29:33 +08:00
|
|
|
|
|
|
|
cmplwi r11,0 /* check if t is NULL */
|
|
|
|
beq 2f
|
|
|
|
stw r3,0(r11) /* store result at *t */
|
|
|
|
2: mtlr r12
|
|
|
|
crclr cr0*4+so
|
|
|
|
blr
|
|
|
|
.cfi_endproc
|
|
|
|
V_FUNCTION_END(__kernel_time)
|
|
|
|
|
2005-11-11 18:15:21 +08:00
|
|
|
/*
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
* This is the core of clock_gettime() and gettimeofday(),
|
|
|
|
* it returns the current time in r3 (seconds) and r4.
|
|
|
|
* On entry, r7 gives the resolution of r4, either USEC_PER_SEC
|
|
|
|
* or NSEC_PER_SEC, giving r4 in microseconds or nanoseconds.
|
2008-10-28 07:56:03 +08:00
|
|
|
* It expects the datapage ptr in r9 and doesn't clobber it.
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
* It clobbers r0, r5 and r6.
|
2008-10-28 07:56:03 +08:00
|
|
|
* On return, r8 contains the counter value that can be reused.
|
|
|
|
* This clobbers cr0 but not any other cr field.
|
|
|
|
*/
|
|
|
|
__do_get_tspec:
|
|
|
|
.cfi_startproc
|
|
|
|
/* Check for update count & load values. We use the low
|
|
|
|
* order 32 bits of the update count
|
|
|
|
*/
|
|
|
|
1: lwz r8,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
|
|
|
|
andi. r0,r8,1 /* pending update ? loop */
|
|
|
|
bne- 1b
|
|
|
|
xor r0,r8,r8 /* create dependency */
|
|
|
|
add r9,r9,r0
|
|
|
|
|
|
|
|
/* Load orig stamp (offset to TB) */
|
|
|
|
lwz r5,CFG_TB_ORIG_STAMP(r9)
|
|
|
|
lwz r6,(CFG_TB_ORIG_STAMP+4)(r9)
|
|
|
|
|
|
|
|
/* Get a stable TB value */
|
2017-08-08 19:58:50 +08:00
|
|
|
2: MFTBU(r3)
|
|
|
|
MFTBL(r4)
|
|
|
|
MFTBU(r0)
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
cmplw cr0,r3,r0
|
2008-10-28 07:56:03 +08:00
|
|
|
bne- 2b
|
|
|
|
|
|
|
|
/* Subtract tb orig stamp and shift left 12 bits.
|
|
|
|
*/
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
subfc r4,r6,r4
|
2008-10-28 07:56:03 +08:00
|
|
|
subfe r0,r5,r3
|
|
|
|
slwi r0,r0,12
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
rlwimi. r0,r4,12,20,31
|
|
|
|
slwi r4,r4,12
|
2008-10-28 07:56:03 +08:00
|
|
|
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
/*
|
|
|
|
* Load scale factor & do multiplication.
|
|
|
|
* We only use the high 32 bits of the tb_to_xs value.
|
|
|
|
* Even with a 1GHz timebase clock, the high 32 bits of
|
|
|
|
* tb_to_xs will be at least 4 million, so the error from
|
|
|
|
* ignoring the low 32 bits will be no more than 0.25ppm.
|
|
|
|
* The error will just make the clock run very very slightly
|
|
|
|
* slow until the next time the kernel updates the VDSO data,
|
|
|
|
* at which point the clock will catch up to the kernel's value,
|
|
|
|
* so there is no long-term error accumulation.
|
|
|
|
*/
|
2008-10-28 07:56:03 +08:00
|
|
|
lwz r5,CFG_TB_TO_XS(r9) /* load values */
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
mulhwu r4,r4,r5
|
2008-10-28 07:56:03 +08:00
|
|
|
li r3,0
|
|
|
|
|
|
|
|
beq+ 4f /* skip high part computation if 0 */
|
|
|
|
mulhwu r3,r0,r5
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
mullw r5,r0,r5
|
2008-10-28 07:56:03 +08:00
|
|
|
addc r4,r4,r5
|
|
|
|
addze r3,r3
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
4:
|
|
|
|
/* At this point, we have seconds since the xtime stamp
|
|
|
|
* as a 32.32 fixed-point number in r3 and r4.
|
|
|
|
* Load & add the xtime stamp.
|
2008-10-28 07:56:03 +08:00
|
|
|
*/
|
2019-11-21 22:19:49 +08:00
|
|
|
lwz r5,STAMP_XTIME_SEC+LOPART(r9)
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
lwz r6,STAMP_SEC_FRAC(r9)
|
|
|
|
addc r4,r4,r6
|
2008-10-28 07:56:03 +08:00
|
|
|
adde r3,r3,r5
|
|
|
|
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
/* We create a fake dependency on the result in r3/r4
|
|
|
|
* and re-check the counter
|
2008-10-28 07:56:03 +08:00
|
|
|
*/
|
|
|
|
or r6,r4,r3
|
|
|
|
xor r0,r6,r6
|
|
|
|
add r9,r9,r0
|
|
|
|
lwz r0,(CFG_TB_UPDATE_COUNT+LOPART)(r9)
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
cmplw cr0,r8,r0 /* check if updated */
|
2008-10-28 07:56:03 +08:00
|
|
|
bne- 1b
|
|
|
|
|
powerpc: Rework VDSO gettimeofday to prevent time going backwards
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-21 03:03:08 +08:00
|
|
|
mulhwu r4,r4,r7 /* convert to micro or nanoseconds */
|
2008-10-28 07:56:03 +08:00
|
|
|
|
|
|
|
blr
|
|
|
|
.cfi_endproc
|