linux/drivers/gpu/drm/mgag200/mgag200_cursor.c

276 lines
7.2 KiB
C
Raw Normal View History

drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
/*
* Copyright 2013 Matrox Graphics
*
* This file is subject to the terms and conditions of the GNU General
* Public License version 2. See the file COPYING in the main
* directory of this archive for more details.
*
* Author: Christopher Harvey <charvey@matrox.com>
*/
#include <drm/drmP.h>
#include "mgag200_drv.h"
static bool warn_transparent = true;
static bool warn_palette = true;
/*
Hide the cursor off screen. We can't disable the cursor hardware because it
takes too long to re-activate and causes momentary corruption
*/
static void mga_hide_cursor(struct mga_device *mdev)
{
WREG8(MGA_CURPOSXL, 0);
WREG8(MGA_CURPOSXH, 0);
if (mdev->cursor.pixels_1->pin_count)
mgag200_bo_unpin(mdev->cursor.pixels_1);
if (mdev->cursor.pixels_2->pin_count)
mgag200_bo_unpin(mdev->cursor.pixels_2);
drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
}
int mga_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width,
uint32_t height)
{
struct drm_device *dev = crtc->dev;
drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
struct mga_device *mdev = (struct mga_device *)dev->dev_private;
struct mgag200_bo *pixels_1 = mdev->cursor.pixels_1;
struct mgag200_bo *pixels_2 = mdev->cursor.pixels_2;
struct mgag200_bo *pixels_current = mdev->cursor.pixels_current;
struct mgag200_bo *pixels_prev = mdev->cursor.pixels_prev;
struct drm_gem_object *obj;
struct mgag200_bo *bo = NULL;
int ret = 0;
unsigned int i, row, col;
uint32_t colour_set[16];
uint32_t *next_space = &colour_set[0];
uint32_t *palette_iter;
uint32_t this_colour;
bool found = false;
int colour_count = 0;
u64 gpu_addr;
u8 reg_index;
u8 this_row[48];
if (!pixels_1 || !pixels_2) {
WREG8(MGA_CURPOSXL, 0);
WREG8(MGA_CURPOSXH, 0);
return -ENOTSUPP; /* Didn't allocate space for cursors */
}
if ((width != 64 || height != 64) && handle) {
WREG8(MGA_CURPOSXL, 0);
WREG8(MGA_CURPOSXH, 0);
return -EINVAL;
}
BUG_ON(pixels_1 != pixels_current && pixels_1 != pixels_prev);
BUG_ON(pixels_2 != pixels_current && pixels_2 != pixels_prev);
BUG_ON(pixels_current == pixels_prev);
obj = drm_gem_object_lookup(dev, file_priv, handle);
if (!obj)
return -ENOENT;
drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
ret = mgag200_bo_reserve(pixels_1, true);
if (ret) {
WREG8(MGA_CURPOSXL, 0);
WREG8(MGA_CURPOSXH, 0);
goto out_unref;
drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
}
ret = mgag200_bo_reserve(pixels_2, true);
if (ret) {
WREG8(MGA_CURPOSXL, 0);
WREG8(MGA_CURPOSXH, 0);
mgag200_bo_unreserve(pixels_1);
goto out_unreserve1;
drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
}
if (!handle) {
mga_hide_cursor(mdev);
ret = 0;
goto out1;
}
/* Move cursor buffers into VRAM if they aren't already */
if (!pixels_1->pin_count) {
ret = mgag200_bo_pin(pixels_1, TTM_PL_FLAG_VRAM,
&mdev->cursor.pixels_1_gpu_addr);
if (ret)
goto out1;
}
if (!pixels_2->pin_count) {
ret = mgag200_bo_pin(pixels_2, TTM_PL_FLAG_VRAM,
&mdev->cursor.pixels_2_gpu_addr);
if (ret) {
mgag200_bo_unpin(pixels_1);
goto out1;
}
}
bo = gem_to_mga_bo(obj);
ret = mgag200_bo_reserve(bo, true);
if (ret) {
dev_err(&dev->pdev->dev, "failed to reserve user bo\n");
goto out1;
}
if (!bo->kmap.virtual) {
ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
if (ret) {
dev_err(&dev->pdev->dev, "failed to kmap user buffer updates\n");
goto out2;
}
}
memset(&colour_set[0], 0, sizeof(uint32_t)*16);
/* width*height*4 = 16384 */
for (i = 0; i < 16384; i += 4) {
this_colour = ioread32(bo->kmap.virtual + i);
/* No transparency */
if (this_colour>>24 != 0xff &&
this_colour>>24 != 0x0) {
if (warn_transparent) {
dev_info(&dev->pdev->dev, "Video card doesn't support cursors with partial transparency.\n");
dev_info(&dev->pdev->dev, "Not enabling hardware cursor.\n");
warn_transparent = false; /* Only tell the user once. */
}
ret = -EINVAL;
goto out3;
}
/* Don't need to store transparent pixels as colours */
if (this_colour>>24 == 0x0)
continue;
found = false;
for (palette_iter = &colour_set[0]; palette_iter != next_space; palette_iter++) {
if (*palette_iter == this_colour) {
found = true;
break;
}
}
if (found)
continue;
/* We only support 4bit paletted cursors */
if (colour_count >= 16) {
if (warn_palette) {
dev_info(&dev->pdev->dev, "Video card only supports cursors with up to 16 colours.\n");
dev_info(&dev->pdev->dev, "Not enabling hardware cursor.\n");
warn_palette = false; /* Only tell the user once. */
}
ret = -EINVAL;
goto out3;
}
*next_space = this_colour;
next_space++;
colour_count++;
}
/* Program colours from cursor icon into palette */
for (i = 0; i < colour_count; i++) {
if (i <= 2)
reg_index = 0x8 + i*0x4;
else
reg_index = 0x60 + i*0x3;
WREG_DAC(reg_index, colour_set[i] & 0xff);
WREG_DAC(reg_index+1, colour_set[i]>>8 & 0xff);
WREG_DAC(reg_index+2, colour_set[i]>>16 & 0xff);
BUG_ON((colour_set[i]>>24 & 0xff) != 0xff);
}
/* Map up-coming buffer to write colour indices */
if (!pixels_prev->kmap.virtual) {
ret = ttm_bo_kmap(&pixels_prev->bo, 0,
pixels_prev->bo.num_pages,
&pixels_prev->kmap);
if (ret) {
dev_err(&dev->pdev->dev, "failed to kmap cursor updates\n");
goto out3;
}
}
/* now write colour indices into hardware cursor buffer */
for (row = 0; row < 64; row++) {
memset(&this_row[0], 0, 48);
for (col = 0; col < 64; col++) {
this_colour = ioread32(bo->kmap.virtual + 4*(col + 64*row));
/* write transparent pixels */
if (this_colour>>24 == 0x0) {
this_row[47 - col/8] |= 0x80>>(col%8);
continue;
}
/* write colour index here */
for (i = 0; i < colour_count; i++) {
if (colour_set[i] == this_colour) {
if (col % 2)
this_row[col/2] |= i<<4;
else
this_row[col/2] |= i;
break;
}
}
}
memcpy_toio(pixels_prev->kmap.virtual + row*48, &this_row[0], 48);
}
/* Program gpu address of cursor buffer */
if (pixels_prev == pixels_1)
gpu_addr = mdev->cursor.pixels_1_gpu_addr;
else
gpu_addr = mdev->cursor.pixels_2_gpu_addr;
WREG_DAC(MGA1064_CURSOR_BASE_ADR_LOW, (u8)((gpu_addr>>10) & 0xff));
WREG_DAC(MGA1064_CURSOR_BASE_ADR_HI, (u8)((gpu_addr>>18) & 0x3f));
/* Adjust cursor control register to turn on the cursor */
WREG_DAC(MGA1064_CURSOR_CTL, 4); /* 16-colour palletized cursor mode */
/* Now swap internal buffer pointers */
if (mdev->cursor.pixels_1 == mdev->cursor.pixels_prev) {
mdev->cursor.pixels_prev = mdev->cursor.pixels_2;
mdev->cursor.pixels_current = mdev->cursor.pixels_1;
} else if (mdev->cursor.pixels_1 == mdev->cursor.pixels_current) {
mdev->cursor.pixels_prev = mdev->cursor.pixels_1;
mdev->cursor.pixels_current = mdev->cursor.pixels_2;
} else {
BUG();
}
ret = 0;
ttm_bo_kunmap(&pixels_prev->kmap);
out3:
ttm_bo_kunmap(&bo->kmap);
out2:
mgag200_bo_unreserve(bo);
out1:
if (ret)
mga_hide_cursor(mdev);
mgag200_bo_unreserve(pixels_1);
out_unreserve1:
drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
mgag200_bo_unreserve(pixels_2);
out_unref:
drm_gem_object_unreference_unlocked(obj);
drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
return ret;
}
int mga_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct mga_device *mdev = (struct mga_device *)crtc->dev->dev_private;
/* Our origin is at (64,64) */
x += 64;
y += 64;
BUG_ON(x <= 0);
BUG_ON(y <= 0);
BUG_ON(x & ~0xffff);
BUG_ON(y & ~0xffff);
WREG8(MGA_CURPOSXL, x & 0xff);
WREG8(MGA_CURPOSXH, (x>>8) & 0xff);
WREG8(MGA_CURPOSYL, y & 0xff);
WREG8(MGA_CURPOSYH, (y>>8) & 0xff);
return 0;
}