linux/drivers/misc/cxl/native.c

705 lines
18 KiB
C
Raw Normal View History

/*
* Copyright 2014 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <asm/synch.h>
#include <misc/cxl.h>
#include "cxl.h"
#include "trace.h"
static int afu_control(struct cxl_afu *afu, u64 command,
u64 result, u64 mask, bool enabled)
{
u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
int rc = 0;
spin_lock(&afu->afu_cntl_lock);
pr_devel("AFU command starting: %llx\n", command);
trace_cxl_afu_ctrl(afu, command);
cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl | command);
AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
while ((AFU_Cntl & mask) != result) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&afu->dev, "WARNING: AFU control timed out!\n");
rc = -EBUSY;
goto out;
}
pr_devel_ratelimited("AFU control... (0x%.16llx)\n",
AFU_Cntl | command);
cpu_relax();
AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
};
pr_devel("AFU command complete: %llx\n", command);
afu->enabled = enabled;
out:
trace_cxl_afu_ctrl_done(afu, command, rc);
spin_unlock(&afu->afu_cntl_lock);
return rc;
}
static int afu_enable(struct cxl_afu *afu)
{
pr_devel("AFU enable request\n");
return afu_control(afu, CXL_AFU_Cntl_An_E,
CXL_AFU_Cntl_An_ES_Enabled,
CXL_AFU_Cntl_An_ES_MASK, true);
}
int cxl_afu_disable(struct cxl_afu *afu)
{
pr_devel("AFU disable request\n");
return afu_control(afu, 0, CXL_AFU_Cntl_An_ES_Disabled,
CXL_AFU_Cntl_An_ES_MASK, false);
}
/* This will disable as well as reset */
int cxl_afu_reset(struct cxl_afu *afu)
{
pr_devel("AFU reset request\n");
return afu_control(afu, CXL_AFU_Cntl_An_RA,
CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled,
CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK,
false);
}
static int afu_check_and_enable(struct cxl_afu *afu)
{
if (afu->enabled)
return 0;
return afu_enable(afu);
}
int cxl_psl_purge(struct cxl_afu *afu)
{
u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
u64 dsisr, dar;
u64 start, end;
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
int rc = 0;
trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc);
pr_devel("PSL purge request\n");
if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) {
WARN(1, "psl_purge request while AFU not disabled!\n");
cxl_afu_disable(afu);
}
cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
PSL_CNTL | CXL_PSL_SCNTL_An_Pc);
start = local_clock();
PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
while ((PSL_CNTL & CXL_PSL_SCNTL_An_Ps_MASK)
== CXL_PSL_SCNTL_An_Ps_Pending) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n");
rc = -EBUSY;
goto out;
}
dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%.16llx PSL_DSISR: 0x%.16llx\n", PSL_CNTL, dsisr);
if (dsisr & CXL_PSL_DSISR_TRANS) {
dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%.16llx, DAR: 0x%.16llx\n", dsisr, dar);
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
} else if (dsisr) {
dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%.16llx\n", dsisr);
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
} else {
cpu_relax();
}
PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
};
end = local_clock();
pr_devel("PSL purged in %lld ns\n", end - start);
cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc);
out:
trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc);
return rc;
}
static int spa_max_procs(int spa_size)
{
/*
* From the CAIA:
* end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255
* Most of that junk is really just an overly-complicated way of saying
* the last 256 bytes are __aligned(128), so it's really:
* end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255
* and
* end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1
* so
* sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256
* Ignore the alignment (which is safe in this case as long as we are
* careful with our rounding) and solve for n:
*/
return ((spa_size / 8) - 96) / 17;
}
static int alloc_spa(struct cxl_afu *afu)
{
u64 spap;
/* Work out how many pages to allocate */
afu->spa_order = 0;
do {
afu->spa_order++;
afu->spa_size = (1 << afu->spa_order) * PAGE_SIZE;
afu->spa_max_procs = spa_max_procs(afu->spa_size);
} while (afu->spa_max_procs < afu->num_procs);
WARN_ON(afu->spa_size > 0x100000); /* Max size supported by the hardware */
if (!(afu->spa = (struct cxl_process_element *)
__get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->spa_order))) {
pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n");
return -ENOMEM;
}
pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n",
1<<afu->spa_order, afu->spa_max_procs, afu->num_procs);
afu->sw_command_status = (__be64 *)((char *)afu->spa +
((afu->spa_max_procs + 3) * 128));
spap = virt_to_phys(afu->spa) & CXL_PSL_SPAP_Addr;
spap |= ((afu->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size;
spap |= CXL_PSL_SPAP_V;
pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n", afu->spa, afu->spa_max_procs, afu->sw_command_status, spap);
cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap);
return 0;
}
static void release_spa(struct cxl_afu *afu)
{
cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0);
free_pages((unsigned long) afu->spa, afu->spa_order);
}
int cxl_tlb_slb_invalidate(struct cxl *adapter)
{
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
pr_devel("CXL adapter wide TLBIA & SLBIA\n");
cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A);
cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL);
while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n");
return -EBUSY;
}
cpu_relax();
}
cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL);
while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n");
return -EBUSY;
}
cpu_relax();
}
return 0;
}
int cxl_afu_slbia(struct cxl_afu *afu)
{
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
pr_devel("cxl_afu_slbia issuing SLBIA command\n");
cxl_p2n_write(afu, CXL_SLBIA_An, CXL_TLB_SLB_IQ_ALL);
while (cxl_p2n_read(afu, CXL_SLBIA_An) & CXL_TLB_SLB_P) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&afu->dev, "WARNING: CXL AFU SLBIA timed out!\n");
return -EBUSY;
}
cpu_relax();
}
return 0;
}
static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1)
{
int rc;
/* 1. Disable SSTP by writing 0 to SSTP1[V] */
cxl_p2n_write(afu, CXL_SSTP1_An, 0);
/* 2. Invalidate all SLB entries */
if ((rc = cxl_afu_slbia(afu)))
return rc;
/* 3. Set SSTP0_An */
cxl_p2n_write(afu, CXL_SSTP0_An, sstp0);
/* 4. Set SSTP1_An */
cxl_p2n_write(afu, CXL_SSTP1_An, sstp1);
return 0;
}
/* Using per slice version may improve performance here. (ie. SLBIA_An) */
static void slb_invalid(struct cxl_context *ctx)
{
struct cxl *adapter = ctx->afu->adapter;
u64 slbia;
WARN_ON(!mutex_is_locked(&ctx->afu->spa_mutex));
cxl_p1_write(adapter, CXL_PSL_LBISEL,
((u64)be32_to_cpu(ctx->elem->common.pid) << 32) |
be32_to_cpu(ctx->elem->lpid));
cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID);
while (1) {
slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA);
if (!(slbia & CXL_TLB_SLB_P))
break;
cpu_relax();
}
}
static int do_process_element_cmd(struct cxl_context *ctx,
u64 cmd, u64 pe_state)
{
u64 state;
unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
int rc = 0;
trace_cxl_llcmd(ctx, cmd);
WARN_ON(!ctx->afu->enabled);
ctx->elem->software_state = cpu_to_be32(pe_state);
smp_wmb();
*(ctx->afu->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe);
smp_mb();
cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe);
while (1) {
if (time_after_eq(jiffies, timeout)) {
dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n");
rc = -EBUSY;
goto out;
}
state = be64_to_cpup(ctx->afu->sw_command_status);
if (state == ~0ULL) {
pr_err("cxl: Error adding process element to AFU\n");
rc = -1;
goto out;
}
if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK | CXL_SPA_SW_LINK_MASK)) ==
(cmd | (cmd >> 16) | ctx->pe))
break;
/*
* The command won't finish in the PSL if there are
* outstanding DSIs. Hence we need to yield here in
* case there are outstanding DSIs that we need to
* service. Tuning possiblity: we could wait for a
* while before sched
*/
schedule();
}
out:
trace_cxl_llcmd_done(ctx, cmd, rc);
return rc;
}
static int add_process_element(struct cxl_context *ctx)
{
int rc = 0;
mutex_lock(&ctx->afu->spa_mutex);
pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe);
if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V)))
ctx->pe_inserted = true;
pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe);
mutex_unlock(&ctx->afu->spa_mutex);
return rc;
}
static int terminate_process_element(struct cxl_context *ctx)
{
int rc = 0;
/* fast path terminate if it's already invalid */
if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V)))
return rc;
mutex_lock(&ctx->afu->spa_mutex);
pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe);
rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE,
CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T);
ctx->elem->software_state = 0; /* Remove Valid bit */
pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe);
mutex_unlock(&ctx->afu->spa_mutex);
return rc;
}
static int remove_process_element(struct cxl_context *ctx)
{
int rc = 0;
mutex_lock(&ctx->afu->spa_mutex);
pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe);
if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0)))
ctx->pe_inserted = false;
slb_invalid(ctx);
pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe);
mutex_unlock(&ctx->afu->spa_mutex);
return rc;
}
static void assign_psn_space(struct cxl_context *ctx)
{
if (!ctx->afu->pp_size || ctx->master) {
ctx->psn_phys = ctx->afu->psn_phys;
ctx->psn_size = ctx->afu->adapter->ps_size;
} else {
ctx->psn_phys = ctx->afu->psn_phys +
(ctx->afu->pp_offset + ctx->afu->pp_size * ctx->pe);
ctx->psn_size = ctx->afu->pp_size;
}
}
static int activate_afu_directed(struct cxl_afu *afu)
{
int rc;
dev_info(&afu->dev, "Activating AFU directed mode\n");
if (alloc_spa(afu))
return -ENOMEM;
cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU);
cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
afu->current_mode = CXL_MODE_DIRECTED;
afu->num_procs = afu->max_procs_virtualised;
if ((rc = cxl_chardev_m_afu_add(afu)))
return rc;
if ((rc = cxl_sysfs_afu_m_add(afu)))
goto err;
if ((rc = cxl_chardev_s_afu_add(afu)))
goto err1;
return 0;
err1:
cxl_sysfs_afu_m_remove(afu);
err:
cxl_chardev_afu_remove(afu);
return rc;
}
#ifdef CONFIG_CPU_LITTLE_ENDIAN
#define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE)
#else
#define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE))
#endif
static int attach_afu_directed(struct cxl_context *ctx, u64 wed, u64 amr)
{
u64 sr;
int r, result;
assign_psn_space(ctx);
ctx->elem->ctxtime = 0; /* disable */
ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
ctx->elem->haurp = 0; /* disable */
ctx->elem->sdr = cpu_to_be64(mfspr(SPRN_SDR1));
sr = 0;
if (ctx->master)
sr |= CXL_PSL_SR_An_MP;
if (mfspr(SPRN_LPCR) & LPCR_TC)
sr |= CXL_PSL_SR_An_TC;
/* HV=0, PR=1, R=1 for userspace
* For kernel contexts: this would need to change
*/
sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R;
set_endian(sr);
sr &= ~(CXL_PSL_SR_An_HV);
if (!test_tsk_thread_flag(current, TIF_32BIT))
sr |= CXL_PSL_SR_An_SF;
ctx->elem->common.pid = cpu_to_be32(current->pid);
ctx->elem->common.tid = 0;
ctx->elem->sr = cpu_to_be64(sr);
ctx->elem->common.csrp = 0; /* disable */
ctx->elem->common.aurp0 = 0; /* disable */
ctx->elem->common.aurp1 = 0; /* disable */
cxl_prefault(ctx, wed);
ctx->elem->common.sstp0 = cpu_to_be64(ctx->sstp0);
ctx->elem->common.sstp1 = cpu_to_be64(ctx->sstp1);
for (r = 0; r < CXL_IRQ_RANGES; r++) {
ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
}
ctx->elem->common.amr = cpu_to_be64(amr);
ctx->elem->common.wed = cpu_to_be64(wed);
/* first guy needs to enable */
if ((result = afu_check_and_enable(ctx->afu)))
return result;
add_process_element(ctx);
return 0;
}
static int deactivate_afu_directed(struct cxl_afu *afu)
{
dev_info(&afu->dev, "Deactivating AFU directed mode\n");
afu->current_mode = 0;
afu->num_procs = 0;
cxl_sysfs_afu_m_remove(afu);
cxl_chardev_afu_remove(afu);
cxl_afu_reset(afu);
cxl_afu_disable(afu);
cxl_psl_purge(afu);
release_spa(afu);
return 0;
}
static int activate_dedicated_process(struct cxl_afu *afu)
{
dev_info(&afu->dev, "Activating dedicated process mode\n");
cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */
cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); /* disable */
cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID));
cxl_p1n_write(afu, CXL_HAURP_An, 0); /* disable */
cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1));
cxl_p2n_write(afu, CXL_CSRP_An, 0); /* disable */
cxl_p2n_write(afu, CXL_AURP0_An, 0); /* disable */
cxl_p2n_write(afu, CXL_AURP1_An, 0); /* disable */
afu->current_mode = CXL_MODE_DEDICATED;
afu->num_procs = 1;
return cxl_chardev_d_afu_add(afu);
}
static int attach_dedicated(struct cxl_context *ctx, u64 wed, u64 amr)
{
struct cxl_afu *afu = ctx->afu;
u64 sr;
int rc;
sr = 0;
set_endian(sr);
if (ctx->master)
sr |= CXL_PSL_SR_An_MP;
if (mfspr(SPRN_LPCR) & LPCR_TC)
sr |= CXL_PSL_SR_An_TC;
sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R;
if (!test_tsk_thread_flag(current, TIF_32BIT))
sr |= CXL_PSL_SR_An_SF;
cxl_p2n_write(afu, CXL_PSL_PID_TID_An, (u64)current->pid << 32);
cxl_p1n_write(afu, CXL_PSL_SR_An, sr);
if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1)))
return rc;
cxl_prefault(ctx, wed);
cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An,
(((u64)ctx->irqs.offset[0] & 0xffff) << 48) |
(((u64)ctx->irqs.offset[1] & 0xffff) << 32) |
(((u64)ctx->irqs.offset[2] & 0xffff) << 16) |
((u64)ctx->irqs.offset[3] & 0xffff));
cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64)
(((u64)ctx->irqs.range[0] & 0xffff) << 48) |
(((u64)ctx->irqs.range[1] & 0xffff) << 32) |
(((u64)ctx->irqs.range[2] & 0xffff) << 16) |
((u64)ctx->irqs.range[3] & 0xffff));
cxl_p2n_write(afu, CXL_PSL_AMR_An, amr);
/* master only context for dedicated */
assign_psn_space(ctx);
if ((rc = cxl_afu_reset(afu)))
return rc;
cxl_p2n_write(afu, CXL_PSL_WED_An, wed);
return afu_enable(afu);
}
static int deactivate_dedicated_process(struct cxl_afu *afu)
{
dev_info(&afu->dev, "Deactivating dedicated process mode\n");
afu->current_mode = 0;
afu->num_procs = 0;
cxl_chardev_afu_remove(afu);
return 0;
}
int _cxl_afu_deactivate_mode(struct cxl_afu *afu, int mode)
{
if (mode == CXL_MODE_DIRECTED)
return deactivate_afu_directed(afu);
if (mode == CXL_MODE_DEDICATED)
return deactivate_dedicated_process(afu);
return 0;
}
int cxl_afu_deactivate_mode(struct cxl_afu *afu)
{
return _cxl_afu_deactivate_mode(afu, afu->current_mode);
}
int cxl_afu_activate_mode(struct cxl_afu *afu, int mode)
{
if (!mode)
return 0;
if (!(mode & afu->modes_supported))
return -EINVAL;
if (mode == CXL_MODE_DIRECTED)
return activate_afu_directed(afu);
if (mode == CXL_MODE_DEDICATED)
return activate_dedicated_process(afu);
return -EINVAL;
}
int cxl_attach_process(struct cxl_context *ctx, bool kernel, u64 wed, u64 amr)
{
ctx->kernel = kernel;
if (ctx->afu->current_mode == CXL_MODE_DIRECTED)
return attach_afu_directed(ctx, wed, amr);
if (ctx->afu->current_mode == CXL_MODE_DEDICATED)
return attach_dedicated(ctx, wed, amr);
return -EINVAL;
}
static inline int detach_process_native_dedicated(struct cxl_context *ctx)
{
cxl_afu_reset(ctx->afu);
cxl_afu_disable(ctx->afu);
cxl_psl_purge(ctx->afu);
return 0;
}
static inline int detach_process_native_afu_directed(struct cxl_context *ctx)
{
if (!ctx->pe_inserted)
return 0;
if (terminate_process_element(ctx))
return -1;
if (remove_process_element(ctx))
return -1;
return 0;
}
int cxl_detach_process(struct cxl_context *ctx)
{
trace_cxl_detach(ctx);
if (ctx->afu->current_mode == CXL_MODE_DEDICATED)
return detach_process_native_dedicated(ctx);
return detach_process_native_afu_directed(ctx);
}
int cxl_get_irq(struct cxl_afu *afu, struct cxl_irq_info *info)
{
u64 pidtid;
info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An);
pidtid = cxl_p2n_read(afu, CXL_PSL_PID_TID_An);
info->pid = pidtid >> 32;
info->tid = pidtid & 0xffffffff;
info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An);
info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
return 0;
}
static void recover_psl_err(struct cxl_afu *afu, u64 errstat)
{
u64 dsisr;
pr_devel("RECOVERING FROM PSL ERROR... (0x%.16llx)\n", errstat);
/* Clear PSL_DSISR[PE] */
dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE);
/* Write 1s to clear error status bits */
cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat);
}
int cxl_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask)
{
trace_cxl_psl_irq_ack(ctx, tfc);
if (tfc)
cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc);
if (psl_reset_mask)
recover_psl_err(ctx->afu, psl_reset_mask);
return 0;
}
int cxl_check_error(struct cxl_afu *afu)
{
return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL);
}