2019-05-27 14:55:01 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2007-07-21 03:39:53 +08:00
|
|
|
/*
|
|
|
|
* Cell Broadband Engine OProfile Support
|
|
|
|
*
|
|
|
|
* (C) Copyright IBM Corporation 2006
|
|
|
|
*
|
|
|
|
* Authors: Maynard Johnson <maynardj@us.ibm.com>
|
|
|
|
* Carl Love <carll@us.ibm.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/hrtimer.h>
|
|
|
|
#include <linux/smp.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/cell-pmu.h>
|
2009-02-08 21:04:14 +08:00
|
|
|
#include <asm/time.h>
|
2007-07-21 03:39:53 +08:00
|
|
|
#include "pr_util.h"
|
|
|
|
|
|
|
|
#define SCALE_SHIFT 14
|
|
|
|
|
|
|
|
static u32 *samples;
|
|
|
|
|
2008-12-02 08:18:36 +08:00
|
|
|
/* spu_prof_running is a flag used to indicate if spu profiling is enabled
|
|
|
|
* or not. It is set by the routines start_spu_profiling_cycles() and
|
|
|
|
* start_spu_profiling_events(). The flag is cleared by the routines
|
|
|
|
* stop_spu_profiling_cycles() and stop_spu_profiling_events(). These
|
|
|
|
* routines are called via global_start() and global_stop() which are called in
|
|
|
|
* op_powerpc_start() and op_powerpc_stop(). These routines are called once
|
|
|
|
* per system as a result of the user starting/stopping oprofile. Hence, only
|
|
|
|
* one CPU per user at a time will be changing the value of spu_prof_running.
|
|
|
|
* In general, OProfile does not protect against multiple users trying to run
|
|
|
|
* OProfile at a time.
|
|
|
|
*/
|
2008-10-15 07:37:01 +08:00
|
|
|
int spu_prof_running;
|
2007-07-21 03:39:53 +08:00
|
|
|
static unsigned int profiling_interval;
|
|
|
|
|
|
|
|
#define NUM_SPU_BITS_TRBUF 16
|
|
|
|
#define SPUS_PER_TB_ENTRY 4
|
|
|
|
|
|
|
|
#define SPU_PC_MASK 0xFFFF
|
|
|
|
|
2008-12-02 08:18:36 +08:00
|
|
|
DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
|
2016-09-06 13:32:40 +08:00
|
|
|
static unsigned long oprof_spu_smpl_arry_lck_flags;
|
2007-07-21 03:39:53 +08:00
|
|
|
|
|
|
|
void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
|
|
|
|
{
|
|
|
|
unsigned long ns_per_cyc;
|
|
|
|
|
|
|
|
if (!freq_khz)
|
|
|
|
freq_khz = ppc_proc_freq/1000;
|
|
|
|
|
|
|
|
/* To calculate a timeout in nanoseconds, the basic
|
|
|
|
* formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
|
|
|
|
* To avoid floating point math, we use the scale math
|
|
|
|
* technique as described in linux/jiffies.h. We use
|
|
|
|
* a scale factor of SCALE_SHIFT, which provides 4 decimal places
|
|
|
|
* of precision. This is close enough for the purpose at hand.
|
|
|
|
*
|
|
|
|
* The value of the timeout should be small enough that the hw
|
2008-10-17 01:02:37 +08:00
|
|
|
* trace buffer will not get more than about 1/3 full for the
|
2007-07-21 03:39:53 +08:00
|
|
|
* maximum user specified (the LFSR value) hw sampling frequency.
|
|
|
|
* This is to ensure the trace buffer will never fill even if the
|
|
|
|
* kernel thread scheduling varies under a heavy system load.
|
|
|
|
*/
|
|
|
|
|
|
|
|
ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
|
|
|
|
profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extract SPU PC from trace buffer entry
|
|
|
|
*/
|
|
|
|
static void spu_pc_extract(int cpu, int entry)
|
|
|
|
{
|
|
|
|
/* the trace buffer is 128 bits */
|
|
|
|
u64 trace_buffer[2];
|
|
|
|
u64 spu_mask;
|
|
|
|
int spu;
|
|
|
|
|
|
|
|
spu_mask = SPU_PC_MASK;
|
|
|
|
|
|
|
|
/* Each SPU PC is 16 bits; hence, four spus in each of
|
|
|
|
* the two 64-bit buffer entries that make up the
|
|
|
|
* 128-bit trace_buffer entry. Process two 64-bit values
|
|
|
|
* simultaneously.
|
|
|
|
* trace[0] SPU PC contents are: 0 1 2 3
|
|
|
|
* trace[1] SPU PC contents are: 4 5 6 7
|
|
|
|
*/
|
|
|
|
|
|
|
|
cbe_read_trace_buffer(cpu, trace_buffer);
|
|
|
|
|
|
|
|
for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
|
|
|
|
/* spu PC trace entry is upper 16 bits of the
|
|
|
|
* 18 bit SPU program counter
|
|
|
|
*/
|
|
|
|
samples[spu * TRACE_ARRAY_SIZE + entry]
|
|
|
|
= (spu_mask & trace_buffer[0]) << 2;
|
|
|
|
samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
|
|
|
|
= (spu_mask & trace_buffer[1]) << 2;
|
|
|
|
|
|
|
|
trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
|
|
|
|
trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int cell_spu_pc_collection(int cpu)
|
|
|
|
{
|
|
|
|
u32 trace_addr;
|
|
|
|
int entry;
|
|
|
|
|
|
|
|
/* process the collected SPU PC for the node */
|
|
|
|
|
|
|
|
entry = 0;
|
|
|
|
|
|
|
|
trace_addr = cbe_read_pm(cpu, trace_address);
|
|
|
|
while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
|
|
|
|
/* there is data in the trace buffer to process */
|
|
|
|
spu_pc_extract(cpu, entry);
|
|
|
|
|
|
|
|
entry++;
|
|
|
|
|
|
|
|
if (entry >= TRACE_ARRAY_SIZE)
|
|
|
|
/* spu_samples is full */
|
|
|
|
break;
|
|
|
|
|
|
|
|
trace_addr = cbe_read_pm(cpu, trace_address);
|
|
|
|
}
|
|
|
|
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static enum hrtimer_restart profile_spus(struct hrtimer *timer)
|
|
|
|
{
|
|
|
|
ktime_t kt;
|
|
|
|
int cpu, node, k, num_samples, spu_num;
|
|
|
|
|
|
|
|
if (!spu_prof_running)
|
|
|
|
goto stop;
|
|
|
|
|
|
|
|
for_each_online_cpu(cpu) {
|
|
|
|
if (cbe_get_hw_thread_id(cpu))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
node = cbe_cpu_to_node(cpu);
|
|
|
|
|
|
|
|
/* There should only be one kernel thread at a time processing
|
|
|
|
* the samples. In the very unlikely case that the processing
|
|
|
|
* is taking a very long time and multiple kernel threads are
|
|
|
|
* started to process the samples. Make sure only one kernel
|
|
|
|
* thread is working on the samples array at a time. The
|
|
|
|
* sample array must be loaded and then processed for a given
|
|
|
|
* cpu. The sample array is not per cpu.
|
|
|
|
*/
|
2008-12-02 08:18:34 +08:00
|
|
|
spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
|
|
|
|
oprof_spu_smpl_arry_lck_flags);
|
2007-07-21 03:39:53 +08:00
|
|
|
num_samples = cell_spu_pc_collection(cpu);
|
|
|
|
|
|
|
|
if (num_samples == 0) {
|
2008-12-02 08:18:34 +08:00
|
|
|
spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
|
|
|
|
oprof_spu_smpl_arry_lck_flags);
|
2007-07-21 03:39:53 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (k = 0; k < SPUS_PER_NODE; k++) {
|
|
|
|
spu_num = k + (node * SPUS_PER_NODE);
|
|
|
|
spu_sync_buffer(spu_num,
|
|
|
|
samples + (k * TRACE_ARRAY_SIZE),
|
|
|
|
num_samples);
|
|
|
|
}
|
|
|
|
|
2008-12-02 08:18:34 +08:00
|
|
|
spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
|
|
|
|
oprof_spu_smpl_arry_lck_flags);
|
2007-07-21 03:39:53 +08:00
|
|
|
|
|
|
|
}
|
|
|
|
smp_wmb(); /* insure spu event buffer updates are written */
|
|
|
|
/* don't want events intermingled... */
|
|
|
|
|
2016-12-25 19:30:41 +08:00
|
|
|
kt = profiling_interval;
|
2007-07-21 03:39:53 +08:00
|
|
|
if (!spu_prof_running)
|
|
|
|
goto stop;
|
|
|
|
hrtimer_forward(timer, timer->base->get_time(), kt);
|
|
|
|
return HRTIMER_RESTART;
|
|
|
|
|
|
|
|
stop:
|
|
|
|
printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
|
|
|
|
return HRTIMER_NORESTART;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct hrtimer timer;
|
|
|
|
/*
|
2008-12-02 08:18:34 +08:00
|
|
|
* Entry point for SPU cycle profiling.
|
2007-07-21 03:39:53 +08:00
|
|
|
* NOTE: SPU profiling is done system-wide, not per-CPU.
|
|
|
|
*
|
|
|
|
* cycles_reset is the count value specified by the user when
|
|
|
|
* setting up OProfile to count SPU_CYCLES.
|
|
|
|
*/
|
2008-12-02 08:18:34 +08:00
|
|
|
int start_spu_profiling_cycles(unsigned int cycles_reset)
|
2007-07-21 03:39:53 +08:00
|
|
|
{
|
|
|
|
ktime_t kt;
|
|
|
|
|
|
|
|
pr_debug("timer resolution: %lu\n", TICK_NSEC);
|
2016-12-25 19:30:41 +08:00
|
|
|
kt = profiling_interval;
|
2007-07-21 03:39:53 +08:00
|
|
|
hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
2008-09-02 06:18:10 +08:00
|
|
|
hrtimer_set_expires(&timer, kt);
|
2007-07-21 03:39:53 +08:00
|
|
|
timer.function = profile_spus;
|
|
|
|
|
|
|
|
/* Allocate arrays for collecting SPU PC samples */
|
treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
|
|
|
samples = kcalloc(SPUS_PER_NODE * TRACE_ARRAY_SIZE, sizeof(u32),
|
|
|
|
GFP_KERNEL);
|
2007-07-21 03:39:53 +08:00
|
|
|
|
|
|
|
if (!samples)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
spu_prof_running = 1;
|
|
|
|
hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
|
2008-10-15 07:37:01 +08:00
|
|
|
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
|
2007-07-21 03:39:53 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-12-02 08:18:36 +08:00
|
|
|
/*
|
|
|
|
* Entry point for SPU event profiling.
|
|
|
|
* NOTE: SPU profiling is done system-wide, not per-CPU.
|
|
|
|
*
|
|
|
|
* cycles_reset is the count value specified by the user when
|
|
|
|
* setting up OProfile to count SPU_CYCLES.
|
|
|
|
*/
|
|
|
|
void start_spu_profiling_events(void)
|
|
|
|
{
|
|
|
|
spu_prof_running = 1;
|
|
|
|
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2008-12-02 08:18:34 +08:00
|
|
|
void stop_spu_profiling_cycles(void)
|
2007-07-21 03:39:53 +08:00
|
|
|
{
|
|
|
|
spu_prof_running = 0;
|
|
|
|
hrtimer_cancel(&timer);
|
|
|
|
kfree(samples);
|
2008-12-02 08:18:34 +08:00
|
|
|
pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
|
2007-07-21 03:39:53 +08:00
|
|
|
}
|
2008-12-02 08:18:36 +08:00
|
|
|
|
|
|
|
void stop_spu_profiling_events(void)
|
|
|
|
{
|
|
|
|
spu_prof_running = 0;
|
2007-07-21 03:39:53 +08:00
|
|
|
}
|