linux/drivers/media/dvb-frontends/af9033.c

999 lines
21 KiB
C
Raw Normal View History

/*
* Afatech AF9033 demodulator driver
*
* Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
* Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "af9033_priv.h"
struct af9033_state {
struct i2c_adapter *i2c;
struct dvb_frontend fe;
struct af9033_config cfg;
u32 bandwidth_hz;
bool ts_mode_parallel;
bool ts_mode_serial;
u32 ber;
u32 ucb;
unsigned long last_stat_check;
};
/* write multiple registers */
static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
int len)
{
int ret;
u8 buf[3 + len];
struct i2c_msg msg[1] = {
{
.addr = state->cfg.i2c_addr,
.flags = 0,
.len = sizeof(buf),
.buf = buf,
}
};
buf[0] = (reg >> 16) & 0xff;
buf[1] = (reg >> 8) & 0xff;
buf[2] = (reg >> 0) & 0xff;
memcpy(&buf[3], val, len);
ret = i2c_transfer(state->i2c, msg, 1);
if (ret == 1) {
ret = 0;
} else {
dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
"len=%d\n", KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* read multiple registers */
static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
{
int ret;
u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
(reg >> 0) & 0xff };
struct i2c_msg msg[2] = {
{
.addr = state->cfg.i2c_addr,
.flags = 0,
.len = sizeof(buf),
.buf = buf
}, {
.addr = state->cfg.i2c_addr,
.flags = I2C_M_RD,
.len = len,
.buf = val
}
};
ret = i2c_transfer(state->i2c, msg, 2);
if (ret == 2) {
ret = 0;
} else {
dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
"len=%d\n", KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* write single register */
static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
{
return af9033_wr_regs(state, reg, &val, 1);
}
/* read single register */
static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
{
return af9033_rd_regs(state, reg, val, 1);
}
/* write single register with mask */
static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
u8 mask)
{
int ret;
u8 tmp;
/* no need for read if whole reg is written */
if (mask != 0xff) {
ret = af9033_rd_regs(state, reg, &tmp, 1);
if (ret)
return ret;
val &= mask;
tmp &= ~mask;
val |= tmp;
}
return af9033_wr_regs(state, reg, &val, 1);
}
/* read single register with mask */
static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
u8 mask)
{
int ret, i;
u8 tmp;
ret = af9033_rd_regs(state, reg, &tmp, 1);
if (ret)
return ret;
tmp &= mask;
/* find position of the first bit */
for (i = 0; i < 8; i++) {
if ((mask >> i) & 0x01)
break;
}
*val = tmp >> i;
return 0;
}
static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
{
u32 r = 0, c = 0, i;
dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
if (a > b) {
c = a / b;
a = a - c * b;
}
for (i = 0; i < x; i++) {
if (a >= b) {
r += 1;
a -= b;
}
a <<= 1;
r <<= 1;
}
r = (c << (u32)x) + r;
dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
__func__, a, b, x, r, r);
return r;
}
static void af9033_release(struct dvb_frontend *fe)
{
struct af9033_state *state = fe->demodulator_priv;
kfree(state);
}
static int af9033_init(struct dvb_frontend *fe)
{
struct af9033_state *state = fe->demodulator_priv;
int ret, i, len;
const struct reg_val *init;
u8 buf[4];
u32 adc_cw, clock_cw;
struct reg_val_mask tab[] = {
{ 0x80fb24, 0x00, 0x08 },
{ 0x80004c, 0x00, 0xff },
{ 0x00f641, state->cfg.tuner, 0xff },
{ 0x80f5ca, 0x01, 0x01 },
{ 0x80f715, 0x01, 0x01 },
{ 0x00f41f, 0x04, 0x04 },
{ 0x00f41a, 0x01, 0x01 },
{ 0x80f731, 0x00, 0x01 },
{ 0x00d91e, 0x00, 0x01 },
{ 0x00d919, 0x00, 0x01 },
{ 0x80f732, 0x00, 0x01 },
{ 0x00d91f, 0x00, 0x01 },
{ 0x00d91a, 0x00, 0x01 },
{ 0x80f730, 0x00, 0x01 },
{ 0x80f778, 0x00, 0xff },
{ 0x80f73c, 0x01, 0x01 },
{ 0x80f776, 0x00, 0x01 },
{ 0x00d8fd, 0x01, 0xff },
{ 0x00d830, 0x01, 0xff },
{ 0x00d831, 0x00, 0xff },
{ 0x00d832, 0x00, 0xff },
{ 0x80f985, state->ts_mode_serial, 0x01 },
{ 0x80f986, state->ts_mode_parallel, 0x01 },
{ 0x00d827, 0x00, 0xff },
{ 0x00d829, 0x00, 0xff },
};
/* program clock control */
clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
buf[0] = (clock_cw >> 0) & 0xff;
buf[1] = (clock_cw >> 8) & 0xff;
buf[2] = (clock_cw >> 16) & 0xff;
buf[3] = (clock_cw >> 24) & 0xff;
dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
__func__, state->cfg.clock, clock_cw);
ret = af9033_wr_regs(state, 0x800025, buf, 4);
if (ret < 0)
goto err;
/* program ADC control */
for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
if (clock_adc_lut[i].clock == state->cfg.clock)
break;
}
adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
buf[0] = (adc_cw >> 0) & 0xff;
buf[1] = (adc_cw >> 8) & 0xff;
buf[2] = (adc_cw >> 16) & 0xff;
dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
__func__, clock_adc_lut[i].adc, adc_cw);
ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
if (ret < 0)
goto err;
/* program register table */
for (i = 0; i < ARRAY_SIZE(tab); i++) {
ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
tab[i].mask);
if (ret < 0)
goto err;
}
/* settings for TS interface */
if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
if (ret < 0)
goto err;
ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
if (ret < 0)
goto err;
} else {
ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
if (ret < 0)
goto err;
ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
if (ret < 0)
goto err;
}
/* load OFSM settings */
dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
len = ARRAY_SIZE(ofsm_init);
init = ofsm_init;
for (i = 0; i < len; i++) {
ret = af9033_wr_reg(state, init[i].reg, init[i].val);
if (ret < 0)
goto err;
}
/* load tuner specific settings */
dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
__func__);
switch (state->cfg.tuner) {
case AF9033_TUNER_TUA9001:
len = ARRAY_SIZE(tuner_init_tua9001);
init = tuner_init_tua9001;
break;
case AF9033_TUNER_FC0011:
len = ARRAY_SIZE(tuner_init_fc0011);
init = tuner_init_fc0011;
break;
case AF9033_TUNER_MXL5007T:
len = ARRAY_SIZE(tuner_init_mxl5007t);
init = tuner_init_mxl5007t;
break;
case AF9033_TUNER_TDA18218:
len = ARRAY_SIZE(tuner_init_tda18218);
init = tuner_init_tda18218;
break;
case AF9033_TUNER_FC2580:
len = ARRAY_SIZE(tuner_init_fc2580);
init = tuner_init_fc2580;
break;
default:
dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
__func__, state->cfg.tuner);
ret = -ENODEV;
goto err;
}
for (i = 0; i < len; i++) {
ret = af9033_wr_reg(state, init[i].reg, init[i].val);
if (ret < 0)
goto err;
}
state->bandwidth_hz = 0; /* force to program all parameters */
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9033_sleep(struct dvb_frontend *fe)
{
struct af9033_state *state = fe->demodulator_priv;
int ret, i;
u8 tmp;
ret = af9033_wr_reg(state, 0x80004c, 1);
if (ret < 0)
goto err;
ret = af9033_wr_reg(state, 0x800000, 0);
if (ret < 0)
goto err;
for (i = 100, tmp = 1; i && tmp; i--) {
ret = af9033_rd_reg(state, 0x80004c, &tmp);
if (ret < 0)
goto err;
usleep_range(200, 10000);
}
dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
if (i == 0) {
ret = -ETIMEDOUT;
goto err;
}
ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
if (ret < 0)
goto err;
/* prevent current leak (?) */
if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
/* enable parallel TS */
ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
if (ret < 0)
goto err;
ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
if (ret < 0)
goto err;
}
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9033_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *fesettings)
{
fesettings->min_delay_ms = 800;
fesettings->step_size = 0;
fesettings->max_drift = 0;
return 0;
}
static int af9033_set_frontend(struct dvb_frontend *fe)
{
struct af9033_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret, i, spec_inv, sampling_freq;
u8 tmp, buf[3], bandwidth_reg_val;
u32 if_frequency, freq_cw, adc_freq;
dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
__func__, c->frequency, c->bandwidth_hz);
/* check bandwidth */
switch (c->bandwidth_hz) {
case 6000000:
bandwidth_reg_val = 0x00;
break;
case 7000000:
bandwidth_reg_val = 0x01;
break;
case 8000000:
bandwidth_reg_val = 0x02;
break;
default:
dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
__func__);
ret = -EINVAL;
goto err;
}
/* program tuner */
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
/* program CFOE coefficients */
if (c->bandwidth_hz != state->bandwidth_hz) {
for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
if (coeff_lut[i].clock == state->cfg.clock &&
coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
break;
}
}
ret = af9033_wr_regs(state, 0x800001,
coeff_lut[i].val, sizeof(coeff_lut[i].val));
}
/* program frequency control */
if (c->bandwidth_hz != state->bandwidth_hz) {
spec_inv = state->cfg.spec_inv ? -1 : 1;
for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
if (clock_adc_lut[i].clock == state->cfg.clock)
break;
}
adc_freq = clock_adc_lut[i].adc;
/* get used IF frequency */
if (fe->ops.tuner_ops.get_if_frequency)
fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
else
if_frequency = 0;
sampling_freq = if_frequency;
while (sampling_freq > (adc_freq / 2))
sampling_freq -= adc_freq;
if (sampling_freq >= 0)
spec_inv *= -1;
else
sampling_freq *= -1;
freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
if (spec_inv == -1)
freq_cw = 0x800000 - freq_cw;
/* get adc multiplies */
ret = af9033_rd_reg(state, 0x800045, &tmp);
if (ret < 0)
goto err;
if (tmp == 1)
freq_cw /= 2;
buf[0] = (freq_cw >> 0) & 0xff;
buf[1] = (freq_cw >> 8) & 0xff;
buf[2] = (freq_cw >> 16) & 0x7f;
ret = af9033_wr_regs(state, 0x800029, buf, 3);
if (ret < 0)
goto err;
state->bandwidth_hz = c->bandwidth_hz;
}
ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
if (ret < 0)
goto err;
ret = af9033_wr_reg(state, 0x800040, 0x00);
if (ret < 0)
goto err;
ret = af9033_wr_reg(state, 0x800047, 0x00);
if (ret < 0)
goto err;
ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
if (ret < 0)
goto err;
if (c->frequency <= 230000000)
tmp = 0x00; /* VHF */
else
tmp = 0x01; /* UHF */
ret = af9033_wr_reg(state, 0x80004b, tmp);
if (ret < 0)
goto err;
ret = af9033_wr_reg(state, 0x800000, 0x00);
if (ret < 0)
goto err;
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9033_get_frontend(struct dvb_frontend *fe)
{
struct af9033_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret;
u8 buf[8];
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
/* read all needed registers */
ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
if (ret < 0)
goto err;
switch ((buf[0] >> 0) & 3) {
case 0:
c->transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
c->transmission_mode = TRANSMISSION_MODE_8K;
break;
}
switch ((buf[1] >> 0) & 3) {
case 0:
c->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
c->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
c->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
c->guard_interval = GUARD_INTERVAL_1_4;
break;
}
switch ((buf[2] >> 0) & 7) {
case 0:
c->hierarchy = HIERARCHY_NONE;
break;
case 1:
c->hierarchy = HIERARCHY_1;
break;
case 2:
c->hierarchy = HIERARCHY_2;
break;
case 3:
c->hierarchy = HIERARCHY_4;
break;
}
switch ((buf[3] >> 0) & 3) {
case 0:
c->modulation = QPSK;
break;
case 1:
c->modulation = QAM_16;
break;
case 2:
c->modulation = QAM_64;
break;
}
switch ((buf[4] >> 0) & 3) {
case 0:
c->bandwidth_hz = 6000000;
break;
case 1:
c->bandwidth_hz = 7000000;
break;
case 2:
c->bandwidth_hz = 8000000;
break;
}
switch ((buf[6] >> 0) & 7) {
case 0:
c->code_rate_HP = FEC_1_2;
break;
case 1:
c->code_rate_HP = FEC_2_3;
break;
case 2:
c->code_rate_HP = FEC_3_4;
break;
case 3:
c->code_rate_HP = FEC_5_6;
break;
case 4:
c->code_rate_HP = FEC_7_8;
break;
case 5:
c->code_rate_HP = FEC_NONE;
break;
}
switch ((buf[7] >> 0) & 7) {
case 0:
c->code_rate_LP = FEC_1_2;
break;
case 1:
c->code_rate_LP = FEC_2_3;
break;
case 2:
c->code_rate_LP = FEC_3_4;
break;
case 3:
c->code_rate_LP = FEC_5_6;
break;
case 4:
c->code_rate_LP = FEC_7_8;
break;
case 5:
c->code_rate_LP = FEC_NONE;
break;
}
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct af9033_state *state = fe->demodulator_priv;
int ret;
u8 tmp;
*status = 0;
/* radio channel status, 0=no result, 1=has signal, 2=no signal */
ret = af9033_rd_reg(state, 0x800047, &tmp);
if (ret < 0)
goto err;
/* has signal */
if (tmp == 0x01)
*status |= FE_HAS_SIGNAL;
if (tmp != 0x02) {
/* TPS lock */
ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
if (ret < 0)
goto err;
if (tmp)
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
FE_HAS_VITERBI;
/* full lock */
ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
if (ret < 0)
goto err;
if (tmp)
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
FE_HAS_VITERBI | FE_HAS_SYNC |
FE_HAS_LOCK;
}
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct af9033_state *state = fe->demodulator_priv;
int ret, i, len;
u8 buf[3], tmp;
u32 snr_val;
const struct val_snr *uninitialized_var(snr_lut);
/* read value */
ret = af9033_rd_regs(state, 0x80002c, buf, 3);
if (ret < 0)
goto err;
snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
/* read current modulation */
ret = af9033_rd_reg(state, 0x80f903, &tmp);
if (ret < 0)
goto err;
switch ((tmp >> 0) & 3) {
case 0:
len = ARRAY_SIZE(qpsk_snr_lut);
snr_lut = qpsk_snr_lut;
break;
case 1:
len = ARRAY_SIZE(qam16_snr_lut);
snr_lut = qam16_snr_lut;
break;
case 2:
len = ARRAY_SIZE(qam64_snr_lut);
snr_lut = qam64_snr_lut;
break;
default:
goto err;
}
for (i = 0; i < len; i++) {
tmp = snr_lut[i].snr;
if (snr_val < snr_lut[i].val)
break;
}
*snr = tmp * 10; /* dB/10 */
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct af9033_state *state = fe->demodulator_priv;
int ret;
u8 strength2;
/* read signal strength of 0-100 scale */
ret = af9033_rd_reg(state, 0x800048, &strength2);
if (ret < 0)
goto err;
/* scale value to 0x0000-0xffff */
*strength = strength2 * 0xffff / 100;
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9033_update_ch_stat(struct af9033_state *state)
{
int ret = 0;
u32 err_cnt, bit_cnt;
u16 abort_cnt;
u8 buf[7];
/* only update data every half second */
if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
if (ret < 0)
goto err;
/* in 8 byte packets? */
abort_cnt = (buf[1] << 8) + buf[0];
/* in bits */
err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
/* in 8 byte packets? always(?) 0x2710 = 10000 */
bit_cnt = (buf[6] << 8) + buf[5];
if (bit_cnt < abort_cnt) {
abort_cnt = 1000;
state->ber = 0xffffffff;
} else {
/* 8 byte packets, that have not been rejected already */
bit_cnt -= (u32)abort_cnt;
if (bit_cnt == 0) {
state->ber = 0xffffffff;
} else {
err_cnt -= (u32)abort_cnt * 8 * 8;
bit_cnt *= 8 * 8;
state->ber = err_cnt * (0xffffffff / bit_cnt);
}
}
state->ucb += abort_cnt;
state->last_stat_check = jiffies;
}
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct af9033_state *state = fe->demodulator_priv;
int ret;
ret = af9033_update_ch_stat(state);
if (ret < 0)
return ret;
*ber = state->ber;
return 0;
}
static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct af9033_state *state = fe->demodulator_priv;
int ret;
ret = af9033_update_ch_stat(state);
if (ret < 0)
return ret;
*ucblocks = state->ucb;
return 0;
}
static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct af9033_state *state = fe->demodulator_priv;
int ret;
dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
if (ret < 0)
goto err;
return 0;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static struct dvb_frontend_ops af9033_ops;
struct dvb_frontend *af9033_attach(const struct af9033_config *config,
struct i2c_adapter *i2c)
{
int ret;
struct af9033_state *state;
u8 buf[8];
dev_dbg(&i2c->dev, "%s:\n", __func__);
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
if (state == NULL)
goto err;
/* setup the state */
state->i2c = i2c;
memcpy(&state->cfg, config, sizeof(struct af9033_config));
if (state->cfg.clock != 12000000) {
dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
"only 12000000 Hz is supported currently\n",
KBUILD_MODNAME, state->cfg.clock);
goto err;
}
/* firmware version */
ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
if (ret < 0)
goto err;
ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
if (ret < 0)
goto err;
dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
"OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
/* sleep */
ret = af9033_wr_reg(state, 0x80004c, 1);
if (ret < 0)
goto err;
ret = af9033_wr_reg(state, 0x800000, 0);
if (ret < 0)
goto err;
/* configure internal TS mode */
switch (state->cfg.ts_mode) {
case AF9033_TS_MODE_PARALLEL:
state->ts_mode_parallel = true;
break;
case AF9033_TS_MODE_SERIAL:
state->ts_mode_serial = true;
break;
case AF9033_TS_MODE_USB:
/* usb mode for AF9035 */
default:
break;
}
/* create dvb_frontend */
memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
state->fe.demodulator_priv = state;
return &state->fe;
err:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(af9033_attach);
static struct dvb_frontend_ops af9033_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "Afatech AF9033 (DVB-T)",
.frequency_min = 174000000,
.frequency_max = 862000000,
.frequency_stepsize = 250000,
.frequency_tolerance = 0,
.caps = FE_CAN_FEC_1_2 |
FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_QAM_16 |
FE_CAN_QAM_64 |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO |
FE_CAN_RECOVER |
FE_CAN_MUTE_TS
},
.release = af9033_release,
.init = af9033_init,
.sleep = af9033_sleep,
.get_tune_settings = af9033_get_tune_settings,
.set_frontend = af9033_set_frontend,
.get_frontend = af9033_get_frontend,
.read_status = af9033_read_status,
.read_snr = af9033_read_snr,
.read_signal_strength = af9033_read_signal_strength,
.read_ber = af9033_read_ber,
.read_ucblocks = af9033_read_ucblocks,
.i2c_gate_ctrl = af9033_i2c_gate_ctrl,
};
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
MODULE_LICENSE("GPL");