linux/drivers/platform/x86/eeepc-laptop.c

1319 lines
30 KiB
C
Raw Normal View History

/*
* eepc-laptop.c - Asus Eee PC extras
*
* Based on asus_acpi.c as patched for the Eee PC by Asus:
* ftp://ftp.asus.com/pub/ASUS/EeePC/701/ASUS_ACPI_071126.rar
* Based on eee.c from eeepc-linux
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/backlight.h>
#include <linux/fb.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <acpi/acpi_drivers.h>
#include <acpi/acpi_bus.h>
#include <linux/uaccess.h>
#include <linux/input.h>
#include <linux/rfkill.h>
#include <linux/pci.h>
#include <linux/pci_hotplug.h>
#define EEEPC_LAPTOP_VERSION "0.1"
#define EEEPC_HOTK_NAME "Eee PC Hotkey Driver"
#define EEEPC_HOTK_FILE "eeepc"
#define EEEPC_HOTK_CLASS "hotkey"
#define EEEPC_HOTK_DEVICE_NAME "Hotkey"
#define EEEPC_HOTK_HID "ASUS010"
/*
* Definitions for Asus EeePC
*/
#define NOTIFY_WLAN_ON 0x10
#define NOTIFY_BRN_MIN 0x20
#define NOTIFY_BRN_MAX 0x2f
enum {
DISABLE_ASL_WLAN = 0x0001,
DISABLE_ASL_BLUETOOTH = 0x0002,
DISABLE_ASL_IRDA = 0x0004,
DISABLE_ASL_CAMERA = 0x0008,
DISABLE_ASL_TV = 0x0010,
DISABLE_ASL_GPS = 0x0020,
DISABLE_ASL_DISPLAYSWITCH = 0x0040,
DISABLE_ASL_MODEM = 0x0080,
DISABLE_ASL_CARDREADER = 0x0100,
DISABLE_ASL_3G = 0x0200,
DISABLE_ASL_WIMAX = 0x0400,
DISABLE_ASL_HWCF = 0x0800
};
enum {
CM_ASL_WLAN = 0,
CM_ASL_BLUETOOTH,
CM_ASL_IRDA,
CM_ASL_1394,
CM_ASL_CAMERA,
CM_ASL_TV,
CM_ASL_GPS,
CM_ASL_DVDROM,
CM_ASL_DISPLAYSWITCH,
CM_ASL_PANELBRIGHT,
CM_ASL_BIOSFLASH,
CM_ASL_ACPIFLASH,
CM_ASL_CPUFV,
CM_ASL_CPUTEMPERATURE,
CM_ASL_FANCPU,
CM_ASL_FANCHASSIS,
CM_ASL_USBPORT1,
CM_ASL_USBPORT2,
CM_ASL_USBPORT3,
CM_ASL_MODEM,
CM_ASL_CARDREADER,
CM_ASL_3G,
CM_ASL_WIMAX,
CM_ASL_HWCF,
CM_ASL_LID,
CM_ASL_TYPE,
CM_ASL_PANELPOWER, /*P901*/
CM_ASL_TPD
};
static const char *cm_getv[] = {
"WLDG", "BTHG", NULL, NULL,
"CAMG", NULL, NULL, NULL,
NULL, "PBLG", NULL, NULL,
"CFVG", NULL, NULL, NULL,
"USBG", NULL, NULL, "MODG",
"CRDG", "M3GG", "WIMG", "HWCF",
"LIDG", "TYPE", "PBPG", "TPDG"
};
static const char *cm_setv[] = {
"WLDS", "BTHS", NULL, NULL,
"CAMS", NULL, NULL, NULL,
"SDSP", "PBLS", "HDPS", NULL,
"CFVS", NULL, NULL, NULL,
"USBG", NULL, NULL, "MODS",
"CRDS", "M3GS", "WIMS", NULL,
NULL, NULL, "PBPS", "TPDS"
};
#define EEEPC_EC "\\_SB.PCI0.SBRG.EC0."
#define EEEPC_EC_FAN_PWM EEEPC_EC "SC02" /* Fan PWM duty cycle (%) */
#define EEEPC_EC_SC02 0x63
#define EEEPC_EC_FAN_HRPM EEEPC_EC "SC05" /* High byte, fan speed (RPM) */
#define EEEPC_EC_FAN_LRPM EEEPC_EC "SC06" /* Low byte, fan speed (RPM) */
#define EEEPC_EC_FAN_CTRL EEEPC_EC "SFB3" /* Byte containing SF25 */
#define EEEPC_EC_SFB3 0xD3
/*
* This is the main structure, we can use it to store useful information
* about the hotk device
*/
struct eeepc_hotk {
struct acpi_device *device; /* the device we are in */
acpi_handle handle; /* the handle of the hotk device */
u32 cm_supported; /* the control methods supported
by this BIOS */
uint init_flag; /* Init flags */
u16 event_count[128]; /* count for each event */
struct input_dev *inputdev;
u16 *keycode_map;
struct rfkill *wlan_rfkill;
struct rfkill *bluetooth_rfkill;
struct rfkill *wwan3g_rfkill;
struct rfkill *wimax_rfkill;
struct hotplug_slot *hotplug_slot;
struct mutex hotplug_lock;
};
/* The actual device the driver binds to */
static struct eeepc_hotk *ehotk;
/* Platform device/driver */
static int eeepc_hotk_thaw(struct device *device);
static int eeepc_hotk_restore(struct device *device);
static struct dev_pm_ops eeepc_pm_ops = {
.thaw = eeepc_hotk_thaw,
.restore = eeepc_hotk_restore,
};
static struct platform_driver platform_driver = {
.driver = {
.name = EEEPC_HOTK_FILE,
.owner = THIS_MODULE,
.pm = &eeepc_pm_ops,
}
};
static struct platform_device *platform_device;
struct key_entry {
char type;
u8 code;
u16 keycode;
};
enum { KE_KEY, KE_END };
static struct key_entry eeepc_keymap[] = {
/* Sleep already handled via generic ACPI code */
{KE_KEY, 0x10, KEY_WLAN },
eeepc-laptop: Work around rfkill firmware bug 1) Buggy firmware can change the RFKILL state by itself. This is easily detected. The RFKILL API states that in such cases, we should call rfkill_force_state() to notify the core. I have reported the bug to Asus. I believe this is the right thing to do for robustness, even if this particular firmware bug is fixed. 2) The same bug causes the wireless toggle key to be reported as 0x11 instead of 0x10. 0x11 is otherwise unused, so it should be safe to add this as a new keycode. The bug is triggered by removing the laptop battery while hibernated. On resume, the wireless toggle key causes the firmware to toggle the wireless state itself. (Also, the key is reported as 0x11 when the current wireless state is OFF). This is very poor behaviour because the OS can't predict whether the firmware is controlling the RFKILL state. Without this workaround, the bug means users have to press the wireless toggle key twice to enable, due to the OS/firmware conflict. (Assuming rfkill-input or equivalent is being used). The workaround avoids this. I believe that acpid scripts which toggle the value of the sysfs state file when the toggle key is pressed will be rendered ineffective by the bug, regardless of this workaround. If they simply toggle the state, when the firmware has already toggled it, then you will never see a state change. Tested on "EEEPC 4G" only. Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Corentin Chary <corentincj@iksaif.net> Signed-off-by: Len Brown <len.brown@intel.com>
2009-04-27 15:23:39 +08:00
{KE_KEY, 0x11, KEY_WLAN },
{KE_KEY, 0x12, KEY_PROG1 },
{KE_KEY, 0x13, KEY_MUTE },
{KE_KEY, 0x14, KEY_VOLUMEDOWN },
{KE_KEY, 0x15, KEY_VOLUMEUP },
{KE_KEY, 0x1a, KEY_COFFEE },
{KE_KEY, 0x1b, KEY_ZOOM },
{KE_KEY, 0x1c, KEY_PROG2 },
{KE_KEY, 0x1d, KEY_PROG3 },
{KE_KEY, NOTIFY_BRN_MIN, KEY_BRIGHTNESSDOWN },
{KE_KEY, NOTIFY_BRN_MIN + 2, KEY_BRIGHTNESSUP },
{KE_KEY, 0x30, KEY_SWITCHVIDEOMODE },
{KE_KEY, 0x31, KEY_SWITCHVIDEOMODE },
{KE_KEY, 0x32, KEY_SWITCHVIDEOMODE },
{KE_END, 0},
};
/*
* The hotkey driver declaration
*/
static int eeepc_hotk_add(struct acpi_device *device);
static int eeepc_hotk_remove(struct acpi_device *device, int type);
static void eeepc_hotk_notify(struct acpi_device *device, u32 event);
static const struct acpi_device_id eeepc_device_ids[] = {
{EEEPC_HOTK_HID, 0},
{"", 0},
};
MODULE_DEVICE_TABLE(acpi, eeepc_device_ids);
static struct acpi_driver eeepc_hotk_driver = {
.name = EEEPC_HOTK_NAME,
.class = EEEPC_HOTK_CLASS,
.ids = eeepc_device_ids,
.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
.ops = {
.add = eeepc_hotk_add,
.remove = eeepc_hotk_remove,
.notify = eeepc_hotk_notify,
},
};
/* PCI hotplug ops */
static int eeepc_get_adapter_status(struct hotplug_slot *slot, u8 *value);
static struct hotplug_slot_ops eeepc_hotplug_slot_ops = {
.owner = THIS_MODULE,
.get_adapter_status = eeepc_get_adapter_status,
.get_power_status = eeepc_get_adapter_status,
};
/* The backlight device /sys/class/backlight */
static struct backlight_device *eeepc_backlight_device;
/* The hwmon device */
static struct device *eeepc_hwmon_device;
/*
* The backlight class declaration
*/
static int read_brightness(struct backlight_device *bd);
static int update_bl_status(struct backlight_device *bd);
static struct backlight_ops eeepcbl_ops = {
.get_brightness = read_brightness,
.update_status = update_bl_status,
};
MODULE_AUTHOR("Corentin Chary, Eric Cooper");
MODULE_DESCRIPTION(EEEPC_HOTK_NAME);
MODULE_LICENSE("GPL");
/*
* ACPI Helpers
*/
static int write_acpi_int(acpi_handle handle, const char *method, int val,
struct acpi_buffer *output)
{
struct acpi_object_list params;
union acpi_object in_obj;
acpi_status status;
params.count = 1;
params.pointer = &in_obj;
in_obj.type = ACPI_TYPE_INTEGER;
in_obj.integer.value = val;
status = acpi_evaluate_object(handle, (char *)method, &params, output);
return (status == AE_OK ? 0 : -1);
}
static int read_acpi_int(acpi_handle handle, const char *method, int *val)
{
acpi_status status;
unsigned long long result;
status = acpi_evaluate_integer(handle, (char *)method, NULL, &result);
if (ACPI_FAILURE(status)) {
*val = -1;
return -1;
} else {
*val = result;
return 0;
}
}
static int set_acpi(int cm, int value)
{
if (ehotk->cm_supported & (0x1 << cm)) {
const char *method = cm_setv[cm];
if (method == NULL)
return -ENODEV;
if (write_acpi_int(ehotk->handle, method, value, NULL))
pr_warning("Error writing %s\n", method);
}
return 0;
}
static int get_acpi(int cm)
{
int value = -ENODEV;
if ((ehotk->cm_supported & (0x1 << cm))) {
const char *method = cm_getv[cm];
if (method == NULL)
return -ENODEV;
if (read_acpi_int(ehotk->handle, method, &value))
pr_warning("Error reading %s\n", method);
}
return value;
}
/*
* Backlight
*/
static int read_brightness(struct backlight_device *bd)
{
return get_acpi(CM_ASL_PANELBRIGHT);
}
static int set_brightness(struct backlight_device *bd, int value)
{
value = max(0, min(15, value));
return set_acpi(CM_ASL_PANELBRIGHT, value);
}
static int update_bl_status(struct backlight_device *bd)
{
return set_brightness(bd, bd->props.brightness);
}
/*
* Rfkill helpers
*/
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 19:01:37 +08:00
static bool eeepc_wlan_rfkill_blocked(void)
{
if (get_acpi(CM_ASL_WLAN) == 1)
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 19:01:37 +08:00
return false;
return true;
}
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 19:01:37 +08:00
static int eeepc_rfkill_set(void *data, bool blocked)
{
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 19:01:37 +08:00
unsigned long asl = (unsigned long)data;
return set_acpi(asl, !blocked);
}
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 19:01:37 +08:00
static const struct rfkill_ops eeepc_rfkill_ops = {
.set_block = eeepc_rfkill_set,
};
static void __devinit eeepc_enable_camera(void)
{
/*
* If the following call to set_acpi() fails, it's because there's no
* camera so we can ignore the error.
*/
if (get_acpi(CM_ASL_CAMERA) == 0)
set_acpi(CM_ASL_CAMERA, 1);
}
/*
* Sys helpers
*/
static int parse_arg(const char *buf, unsigned long count, int *val)
{
if (!count)
return 0;
if (sscanf(buf, "%i", val) != 1)
return -EINVAL;
return count;
}
static ssize_t store_sys_acpi(int cm, const char *buf, size_t count)
{
int rv, value;
rv = parse_arg(buf, count, &value);
if (rv > 0)
value = set_acpi(cm, value);
if (value < 0)
return -EIO;
return rv;
}
static ssize_t show_sys_acpi(int cm, char *buf)
{
int value = get_acpi(cm);
if (value < 0)
return -EIO;
return sprintf(buf, "%d\n", value);
}
#define EEEPC_CREATE_DEVICE_ATTR(_name, _mode, _cm) \
static ssize_t show_##_name(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_sys_acpi(_cm, buf); \
} \
static ssize_t store_##_name(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return store_sys_acpi(_cm, buf, count); \
} \
static struct device_attribute dev_attr_##_name = { \
.attr = { \
.name = __stringify(_name), \
.mode = _mode }, \
.show = show_##_name, \
.store = store_##_name, \
}
EEEPC_CREATE_DEVICE_ATTR(camera, 0644, CM_ASL_CAMERA);
EEEPC_CREATE_DEVICE_ATTR(cardr, 0644, CM_ASL_CARDREADER);
EEEPC_CREATE_DEVICE_ATTR(disp, 0200, CM_ASL_DISPLAYSWITCH);
struct eeepc_cpufv {
int num;
int cur;
};
static int get_cpufv(struct eeepc_cpufv *c)
{
c->cur = get_acpi(CM_ASL_CPUFV);
c->num = (c->cur >> 8) & 0xff;
c->cur &= 0xff;
if (c->cur < 0 || c->num <= 0 || c->num > 12)
return -ENODEV;
return 0;
}
static ssize_t show_available_cpufv(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct eeepc_cpufv c;
int i;
ssize_t len = 0;
if (get_cpufv(&c))
return -ENODEV;
for (i = 0; i < c.num; i++)
len += sprintf(buf + len, "%d ", i);
len += sprintf(buf + len, "\n");
return len;
}
static ssize_t show_cpufv(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct eeepc_cpufv c;
if (get_cpufv(&c))
return -ENODEV;
return sprintf(buf, "%#x\n", (c.num << 8) | c.cur);
}
static ssize_t store_cpufv(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct eeepc_cpufv c;
int rv, value;
if (get_cpufv(&c))
return -ENODEV;
rv = parse_arg(buf, count, &value);
if (rv < 0)
return rv;
if (!rv || value < 0 || value >= c.num)
return -EINVAL;
set_acpi(CM_ASL_CPUFV, value);
return rv;
}
static struct device_attribute dev_attr_cpufv = {
.attr = {
.name = "cpufv",
.mode = 0644 },
.show = show_cpufv,
.store = store_cpufv
};
static struct device_attribute dev_attr_available_cpufv = {
.attr = {
.name = "available_cpufv",
.mode = 0444 },
.show = show_available_cpufv
};
static struct attribute *platform_attributes[] = {
&dev_attr_camera.attr,
&dev_attr_cardr.attr,
&dev_attr_disp.attr,
&dev_attr_cpufv.attr,
&dev_attr_available_cpufv.attr,
NULL
};
static struct attribute_group platform_attribute_group = {
.attrs = platform_attributes
};
/*
* Hotkey functions
*/
static struct key_entry *eepc_get_entry_by_scancode(int code)
{
struct key_entry *key;
for (key = eeepc_keymap; key->type != KE_END; key++)
if (code == key->code)
return key;
return NULL;
}
static struct key_entry *eepc_get_entry_by_keycode(int code)
{
struct key_entry *key;
for (key = eeepc_keymap; key->type != KE_END; key++)
if (code == key->keycode && key->type == KE_KEY)
return key;
return NULL;
}
static int eeepc_getkeycode(struct input_dev *dev, int scancode, int *keycode)
{
struct key_entry *key = eepc_get_entry_by_scancode(scancode);
if (key && key->type == KE_KEY) {
*keycode = key->keycode;
return 0;
}
return -EINVAL;
}
static int eeepc_setkeycode(struct input_dev *dev, int scancode, int keycode)
{
struct key_entry *key;
int old_keycode;
if (keycode < 0 || keycode > KEY_MAX)
return -EINVAL;
key = eepc_get_entry_by_scancode(scancode);
if (key && key->type == KE_KEY) {
old_keycode = key->keycode;
key->keycode = keycode;
set_bit(keycode, dev->keybit);
if (!eepc_get_entry_by_keycode(old_keycode))
clear_bit(old_keycode, dev->keybit);
return 0;
}
return -EINVAL;
}
static void cmsg_quirk(int cm, const char *name)
{
int dummy;
/* Some BIOSes do not report cm although it is avaliable.
Check if cm_getv[cm] works and, if yes, assume cm should be set. */
if (!(ehotk->cm_supported & (1 << cm))
&& !read_acpi_int(ehotk->handle, cm_getv[cm], &dummy)) {
pr_info("%s (%x) not reported by BIOS,"
" enabling anyway\n", name, 1 << cm);
ehotk->cm_supported |= 1 << cm;
}
}
static void cmsg_quirks(void)
{
cmsg_quirk(CM_ASL_LID, "LID");
cmsg_quirk(CM_ASL_TYPE, "TYPE");
cmsg_quirk(CM_ASL_PANELPOWER, "PANELPOWER");
cmsg_quirk(CM_ASL_TPD, "TPD");
}
static int eeepc_hotk_check(void)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
int result;
result = acpi_bus_get_status(ehotk->device);
if (result)
return result;
if (ehotk->device->status.present) {
if (write_acpi_int(ehotk->handle, "INIT", ehotk->init_flag,
&buffer)) {
pr_err("Hotkey initialization failed\n");
return -ENODEV;
} else {
pr_notice("Hotkey init flags 0x%x\n", ehotk->init_flag);
}
/* get control methods supported */
if (read_acpi_int(ehotk->handle, "CMSG"
, &ehotk->cm_supported)) {
pr_err("Get control methods supported failed\n");
return -ENODEV;
} else {
cmsg_quirks();
pr_info("Get control methods supported: 0x%x\n",
ehotk->cm_supported);
}
} else {
pr_err("Hotkey device not present, aborting\n");
return -EINVAL;
}
return 0;
}
static int notify_brn(void)
{
/* returns the *previous* brightness, or -1 */
struct backlight_device *bd = eeepc_backlight_device;
if (bd) {
int old = bd->props.brightness;
backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
return old;
}
return -1;
}
static int eeepc_get_adapter_status(struct hotplug_slot *hotplug_slot,
u8 *value)
{
int val = get_acpi(CM_ASL_WLAN);
if (val == 1 || val == 0)
*value = val;
else
return -EINVAL;
return 0;
}
static void eeepc_rfkill_hotplug(void)
{
struct pci_dev *dev;
struct pci_bus *bus;
bool blocked = eeepc_wlan_rfkill_blocked();
if (ehotk->wlan_rfkill)
rfkill_set_sw_state(ehotk->wlan_rfkill, blocked);
mutex_lock(&ehotk->hotplug_lock);
if (ehotk->hotplug_slot) {
bus = pci_find_bus(0, 1);
if (!bus) {
pr_warning("Unable to find PCI bus 1?\n");
goto out_unlock;
}
if (!blocked) {
dev = pci_get_slot(bus, 0);
if (dev) {
/* Device already present */
pci_dev_put(dev);
goto out_unlock;
}
dev = pci_scan_single_device(bus, 0);
if (dev) {
pci_bus_assign_resources(bus);
if (pci_bus_add_device(dev))
pr_err("Unable to hotplug wifi\n");
}
} else {
dev = pci_get_slot(bus, 0);
if (dev) {
pci_remove_bus_device(dev);
pci_dev_put(dev);
}
}
}
out_unlock:
mutex_unlock(&ehotk->hotplug_lock);
}
static void eeepc_rfkill_notify(acpi_handle handle, u32 event, void *data)
{
if (event != ACPI_NOTIFY_BUS_CHECK)
return;
eeepc_rfkill_hotplug();
}
static void eeepc_hotk_notify(struct acpi_device *device, u32 event)
{
static struct key_entry *key;
u16 count;
int brn = -ENODEV;
if (!ehotk)
return;
if (event > ACPI_MAX_SYS_NOTIFY)
return;
if (event >= NOTIFY_BRN_MIN && event <= NOTIFY_BRN_MAX)
brn = notify_brn();
count = ehotk->event_count[event % 128]++;
acpi_bus_generate_proc_event(ehotk->device, event, count);
acpi_bus_generate_netlink_event(ehotk->device->pnp.device_class,
dev_name(&ehotk->device->dev), event,
count);
if (ehotk->inputdev) {
if (brn != -ENODEV) {
/* brightness-change events need special
* handling for conversion to key events
*/
if (brn < 0)
brn = event;
else
brn += NOTIFY_BRN_MIN;
if (event < brn)
event = NOTIFY_BRN_MIN; /* brightness down */
else if (event > brn)
event = NOTIFY_BRN_MIN + 2; /* ... up */
else
event = NOTIFY_BRN_MIN + 1; /* ... unchanged */
}
key = eepc_get_entry_by_scancode(event);
if (key) {
switch (key->type) {
case KE_KEY:
input_report_key(ehotk->inputdev, key->keycode,
1);
input_sync(ehotk->inputdev);
input_report_key(ehotk->inputdev, key->keycode,
0);
input_sync(ehotk->inputdev);
break;
}
}
}
}
static int eeepc_register_rfkill_notifier(char *node)
{
acpi_status status = AE_OK;
acpi_handle handle;
status = acpi_get_handle(NULL, node, &handle);
if (ACPI_SUCCESS(status)) {
status = acpi_install_notify_handler(handle,
ACPI_SYSTEM_NOTIFY,
eeepc_rfkill_notify,
NULL);
if (ACPI_FAILURE(status))
pr_warning("Failed to register notify on %s\n", node);
} else
return -ENODEV;
return 0;
}
static void eeepc_unregister_rfkill_notifier(char *node)
{
acpi_status status = AE_OK;
acpi_handle handle;
status = acpi_get_handle(NULL, node, &handle);
if (ACPI_SUCCESS(status)) {
status = acpi_remove_notify_handler(handle,
ACPI_SYSTEM_NOTIFY,
eeepc_rfkill_notify);
if (ACPI_FAILURE(status))
pr_err("Error removing rfkill notify handler %s\n",
node);
}
}
static void eeepc_cleanup_pci_hotplug(struct hotplug_slot *hotplug_slot)
{
kfree(hotplug_slot->info);
kfree(hotplug_slot);
}
static int eeepc_setup_pci_hotplug(void)
{
int ret = -ENOMEM;
struct pci_bus *bus = pci_find_bus(0, 1);
if (!bus) {
pr_err("Unable to find wifi PCI bus\n");
return -ENODEV;
}
ehotk->hotplug_slot = kzalloc(sizeof(struct hotplug_slot), GFP_KERNEL);
if (!ehotk->hotplug_slot)
goto error_slot;
ehotk->hotplug_slot->info = kzalloc(sizeof(struct hotplug_slot_info),
GFP_KERNEL);
if (!ehotk->hotplug_slot->info)
goto error_info;
ehotk->hotplug_slot->private = ehotk;
ehotk->hotplug_slot->release = &eeepc_cleanup_pci_hotplug;
ehotk->hotplug_slot->ops = &eeepc_hotplug_slot_ops;
eeepc_get_adapter_status(ehotk->hotplug_slot,
&ehotk->hotplug_slot->info->adapter_status);
ret = pci_hp_register(ehotk->hotplug_slot, bus, 0, "eeepc-wifi");
if (ret) {
pr_err("Unable to register hotplug slot - %d\n", ret);
goto error_register;
}
return 0;
error_register:
kfree(ehotk->hotplug_slot->info);
error_info:
kfree(ehotk->hotplug_slot);
ehotk->hotplug_slot = NULL;
error_slot:
return ret;
}
static int eeepc_hotk_thaw(struct device *device)
{
if (ehotk->wlan_rfkill) {
bool wlan;
/*
* Work around bios bug - acpi _PTS turns off the wireless led
* during suspend. Normally it restores it on resume, but
* we should kick it ourselves in case hibernation is aborted.
*/
wlan = get_acpi(CM_ASL_WLAN);
set_acpi(CM_ASL_WLAN, wlan);
}
return 0;
}
static int eeepc_hotk_restore(struct device *device)
{
/* Refresh both wlan rfkill state and pci hotplug */
if (ehotk->wlan_rfkill)
eeepc_rfkill_hotplug();
if (ehotk->bluetooth_rfkill)
rfkill_set_sw_state(ehotk->bluetooth_rfkill,
get_acpi(CM_ASL_BLUETOOTH) != 1);
if (ehotk->wwan3g_rfkill)
rfkill_set_sw_state(ehotk->wwan3g_rfkill,
get_acpi(CM_ASL_3G) != 1);
if (ehotk->wimax_rfkill)
rfkill_set_sw_state(ehotk->wimax_rfkill,
get_acpi(CM_ASL_WIMAX) != 1);
return 0;
}
/*
* Hwmon
*/
static int eeepc_get_fan_pwm(void)
{
int value = 0;
read_acpi_int(NULL, EEEPC_EC_FAN_PWM, &value);
value = value * 255 / 100;
return (value);
}
static void eeepc_set_fan_pwm(int value)
{
value = SENSORS_LIMIT(value, 0, 255);
value = value * 100 / 255;
ec_write(EEEPC_EC_SC02, value);
}
static int eeepc_get_fan_rpm(void)
{
int high = 0;
int low = 0;
read_acpi_int(NULL, EEEPC_EC_FAN_HRPM, &high);
read_acpi_int(NULL, EEEPC_EC_FAN_LRPM, &low);
return (high << 8 | low);
}
static int eeepc_get_fan_ctrl(void)
{
int value = 0;
read_acpi_int(NULL, EEEPC_EC_FAN_CTRL, &value);
return ((value & 0x02 ? 1 : 0));
}
static void eeepc_set_fan_ctrl(int manual)
{
int value = 0;
read_acpi_int(NULL, EEEPC_EC_FAN_CTRL, &value);
if (manual)
value |= 0x02;
else
value &= ~0x02;
ec_write(EEEPC_EC_SFB3, value);
}
static ssize_t store_sys_hwmon(void (*set)(int), const char *buf, size_t count)
{
int rv, value;
rv = parse_arg(buf, count, &value);
if (rv > 0)
set(value);
return rv;
}
static ssize_t show_sys_hwmon(int (*get)(void), char *buf)
{
return sprintf(buf, "%d\n", get());
}
#define EEEPC_CREATE_SENSOR_ATTR(_name, _mode, _set, _get) \
static ssize_t show_##_name(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
return show_sys_hwmon(_set, buf); \
} \
static ssize_t store_##_name(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return store_sys_hwmon(_get, buf, count); \
} \
static SENSOR_DEVICE_ATTR(_name, _mode, show_##_name, store_##_name, 0);
EEEPC_CREATE_SENSOR_ATTR(fan1_input, S_IRUGO, eeepc_get_fan_rpm, NULL);
EEEPC_CREATE_SENSOR_ATTR(pwm1, S_IRUGO | S_IWUSR,
eeepc_get_fan_pwm, eeepc_set_fan_pwm);
EEEPC_CREATE_SENSOR_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
eeepc_get_fan_ctrl, eeepc_set_fan_ctrl);
static ssize_t
show_name(struct device *dev, struct device_attribute *attr, char *buf)
{
return sprintf(buf, "eeepc\n");
}
static SENSOR_DEVICE_ATTR(name, S_IRUGO, show_name, NULL, 0);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_name.dev_attr.attr,
NULL
};
static struct attribute_group hwmon_attribute_group = {
.attrs = hwmon_attributes
};
/*
* exit/init
*/
static void eeepc_backlight_exit(void)
{
if (eeepc_backlight_device)
backlight_device_unregister(eeepc_backlight_device);
eeepc_backlight_device = NULL;
}
static void eeepc_rfkill_exit(void)
{
eeepc_unregister_rfkill_notifier("\\_SB.PCI0.P0P5");
eeepc_unregister_rfkill_notifier("\\_SB.PCI0.P0P6");
eeepc_unregister_rfkill_notifier("\\_SB.PCI0.P0P7");
if (ehotk->wlan_rfkill) {
rfkill_unregister(ehotk->wlan_rfkill);
rfkill_destroy(ehotk->wlan_rfkill);
ehotk->wlan_rfkill = NULL;
}
/*
* Refresh pci hotplug in case the rfkill state was changed after
* eeepc_unregister_rfkill_notifier()
*/
eeepc_rfkill_hotplug();
if (ehotk->hotplug_slot)
pci_hp_deregister(ehotk->hotplug_slot);
if (ehotk->bluetooth_rfkill) {
rfkill_unregister(ehotk->bluetooth_rfkill);
rfkill_destroy(ehotk->bluetooth_rfkill);
ehotk->bluetooth_rfkill = NULL;
}
if (ehotk->wwan3g_rfkill) {
rfkill_unregister(ehotk->wwan3g_rfkill);
rfkill_destroy(ehotk->wwan3g_rfkill);
ehotk->wwan3g_rfkill = NULL;
}
if (ehotk->wimax_rfkill) {
rfkill_unregister(ehotk->wimax_rfkill);
rfkill_destroy(ehotk->wimax_rfkill);
ehotk->wimax_rfkill = NULL;
}
}
static void eeepc_input_exit(void)
{
if (ehotk->inputdev)
input_unregister_device(ehotk->inputdev);
}
static void eeepc_hwmon_exit(void)
{
struct device *hwmon;
hwmon = eeepc_hwmon_device;
if (!hwmon)
return ;
sysfs_remove_group(&hwmon->kobj,
&hwmon_attribute_group);
hwmon_device_unregister(hwmon);
eeepc_hwmon_device = NULL;
}
static int eeepc_new_rfkill(struct rfkill **rfkill,
const char *name, struct device *dev,
enum rfkill_type type, int cm)
{
int result;
result = get_acpi(cm);
if (result < 0)
return result;
*rfkill = rfkill_alloc(name, dev, type,
&eeepc_rfkill_ops, (void *)(unsigned long)cm);
if (!*rfkill)
return -EINVAL;
rfkill_init_sw_state(*rfkill, get_acpi(cm) != 1);
result = rfkill_register(*rfkill);
if (result) {
rfkill_destroy(*rfkill);
*rfkill = NULL;
return result;
}
return 0;
}
static int eeepc_rfkill_init(struct device *dev)
{
int result = 0;
mutex_init(&ehotk->hotplug_lock);
result = eeepc_new_rfkill(&ehotk->wlan_rfkill,
"eeepc-wlan", dev,
RFKILL_TYPE_WLAN, CM_ASL_WLAN);
if (result && result != -ENODEV)
goto exit;
result = eeepc_new_rfkill(&ehotk->bluetooth_rfkill,
"eeepc-bluetooth", dev,
RFKILL_TYPE_BLUETOOTH, CM_ASL_BLUETOOTH);
if (result && result != -ENODEV)
goto exit;
result = eeepc_new_rfkill(&ehotk->wwan3g_rfkill,
"eeepc-wwan3g", dev,
RFKILL_TYPE_WWAN, CM_ASL_3G);
if (result && result != -ENODEV)
goto exit;
result = eeepc_new_rfkill(&ehotk->wimax_rfkill,
"eeepc-wimax", dev,
RFKILL_TYPE_WIMAX, CM_ASL_WIMAX);
if (result && result != -ENODEV)
goto exit;
result = eeepc_setup_pci_hotplug();
/*
* If we get -EBUSY then something else is handling the PCI hotplug -
* don't fail in this case
*/
if (result == -EBUSY)
result = 0;
eeepc_register_rfkill_notifier("\\_SB.PCI0.P0P5");
eeepc_register_rfkill_notifier("\\_SB.PCI0.P0P6");
eeepc_register_rfkill_notifier("\\_SB.PCI0.P0P7");
/*
* Refresh pci hotplug in case the rfkill state was changed during
* setup.
*/
eeepc_rfkill_hotplug();
exit:
if (result && result != -ENODEV)
eeepc_rfkill_exit();
return result;
}
static int eeepc_backlight_init(struct device *dev)
{
struct backlight_device *bd;
bd = backlight_device_register(EEEPC_HOTK_FILE, dev,
NULL, &eeepcbl_ops);
if (IS_ERR(bd)) {
pr_err("Could not register eeepc backlight device\n");
eeepc_backlight_device = NULL;
return PTR_ERR(bd);
}
eeepc_backlight_device = bd;
bd->props.max_brightness = 15;
bd->props.brightness = read_brightness(NULL);
bd->props.power = FB_BLANK_UNBLANK;
backlight_update_status(bd);
return 0;
}
static int eeepc_hwmon_init(struct device *dev)
{
struct device *hwmon;
int result;
hwmon = hwmon_device_register(dev);
if (IS_ERR(hwmon)) {
pr_err("Could not register eeepc hwmon device\n");
eeepc_hwmon_device = NULL;
return PTR_ERR(hwmon);
}
eeepc_hwmon_device = hwmon;
result = sysfs_create_group(&hwmon->kobj,
&hwmon_attribute_group);
if (result)
eeepc_hwmon_exit();
return result;
}
static int eeepc_input_init(struct device *dev)
{
const struct key_entry *key;
int result;
ehotk->inputdev = input_allocate_device();
if (!ehotk->inputdev) {
pr_info("Unable to allocate input device\n");
return -ENOMEM;
}
ehotk->inputdev->name = "Asus EeePC extra buttons";
ehotk->inputdev->dev.parent = dev;
ehotk->inputdev->phys = EEEPC_HOTK_FILE "/input0";
ehotk->inputdev->id.bustype = BUS_HOST;
ehotk->inputdev->getkeycode = eeepc_getkeycode;
ehotk->inputdev->setkeycode = eeepc_setkeycode;
for (key = eeepc_keymap; key->type != KE_END; key++) {
switch (key->type) {
case KE_KEY:
set_bit(EV_KEY, ehotk->inputdev->evbit);
set_bit(key->keycode, ehotk->inputdev->keybit);
break;
}
}
result = input_register_device(ehotk->inputdev);
if (result) {
pr_info("Unable to register input device\n");
input_free_device(ehotk->inputdev);
return result;
}
return 0;
}
static int __devinit eeepc_hotk_add(struct acpi_device *device)
{
struct device *dev;
int result;
if (!device)
return -EINVAL;
pr_notice(EEEPC_HOTK_NAME "\n");
ehotk = kzalloc(sizeof(struct eeepc_hotk), GFP_KERNEL);
if (!ehotk)
return -ENOMEM;
ehotk->init_flag = DISABLE_ASL_WLAN | DISABLE_ASL_DISPLAYSWITCH;
ehotk->handle = device->handle;
strcpy(acpi_device_name(device), EEEPC_HOTK_DEVICE_NAME);
strcpy(acpi_device_class(device), EEEPC_HOTK_CLASS);
device->driver_data = ehotk;
ehotk->device = device;
result = eeepc_hotk_check();
if (result)
goto fail_platform_driver;
eeepc_enable_camera();
/* Register platform stuff */
result = platform_driver_register(&platform_driver);
if (result)
goto fail_platform_driver;
platform_device = platform_device_alloc(EEEPC_HOTK_FILE, -1);
if (!platform_device) {
result = -ENOMEM;
goto fail_platform_device1;
}
result = platform_device_add(platform_device);
if (result)
goto fail_platform_device2;
result = sysfs_create_group(&platform_device->dev.kobj,
&platform_attribute_group);
if (result)
goto fail_sysfs;
dev = &platform_device->dev;
if (!acpi_video_backlight_support()) {
result = eeepc_backlight_init(dev);
if (result)
goto fail_backlight;
} else
pr_info("Backlight controlled by ACPI video "
"driver\n");
result = eeepc_input_init(dev);
if (result)
goto fail_input;
result = eeepc_hwmon_init(dev);
if (result)
goto fail_hwmon;
result = eeepc_rfkill_init(dev);
if (result)
goto fail_rfkill;
return 0;
fail_rfkill:
eeepc_hwmon_exit();
fail_hwmon:
eeepc_input_exit();
fail_input:
eeepc_backlight_exit();
fail_backlight:
sysfs_remove_group(&platform_device->dev.kobj,
&platform_attribute_group);
fail_sysfs:
platform_device_del(platform_device);
fail_platform_device2:
platform_device_put(platform_device);
fail_platform_device1:
platform_driver_unregister(&platform_driver);
fail_platform_driver:
kfree(ehotk);
return result;
}
static int eeepc_hotk_remove(struct acpi_device *device, int type)
{
if (!device || !acpi_driver_data(device))
return -EINVAL;
eeepc_backlight_exit();
eeepc_rfkill_exit();
eeepc_input_exit();
eeepc_hwmon_exit();
sysfs_remove_group(&platform_device->dev.kobj,
&platform_attribute_group);
platform_device_unregister(platform_device);
platform_driver_unregister(&platform_driver);
kfree(ehotk);
return 0;
}
static int __init eeepc_laptop_init(void)
{
int result;
if (acpi_disabled)
return -ENODEV;
result = acpi_bus_register_driver(&eeepc_hotk_driver);
if (result < 0)
return result;
if (!ehotk) {
acpi_bus_unregister_driver(&eeepc_hotk_driver);
return -ENODEV;
}
return 0;
}
static void __exit eeepc_laptop_exit(void)
{
acpi_bus_unregister_driver(&eeepc_hotk_driver);
}
module_init(eeepc_laptop_init);
module_exit(eeepc_laptop_exit);