2018-03-28 23:43:57 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2015-09-22 20:47:10 +08:00
|
|
|
/*
|
|
|
|
* System Trace Module (STM) infrastructure
|
|
|
|
* Copyright (c) 2014, Intel Corporation.
|
|
|
|
*
|
|
|
|
* STM class implements generic infrastructure for System Trace Module devices
|
|
|
|
* as defined in MIPI STPv2 specification.
|
|
|
|
*/
|
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
#include <linux/pm_runtime.h>
|
2015-09-22 20:47:10 +08:00
|
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/compat.h>
|
|
|
|
#include <linux/kdev_t.h>
|
|
|
|
#include <linux/srcu.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/stm.h>
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/mm.h>
|
2018-05-26 14:49:24 +08:00
|
|
|
#include <linux/vmalloc.h>
|
2015-09-22 20:47:10 +08:00
|
|
|
#include "stm.h"
|
|
|
|
|
|
|
|
#include <uapi/linux/stm.h>
|
|
|
|
|
|
|
|
static unsigned int stm_core_up;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The SRCU here makes sure that STM device doesn't disappear from under a
|
|
|
|
* stm_source_write() caller, which may want to have as little overhead as
|
|
|
|
* possible.
|
|
|
|
*/
|
|
|
|
static struct srcu_struct stm_source_srcu;
|
|
|
|
|
|
|
|
static ssize_t masters_show(struct device *dev,
|
|
|
|
struct device_attribute *attr,
|
|
|
|
char *buf)
|
|
|
|
{
|
|
|
|
struct stm_device *stm = to_stm_device(dev);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = sprintf(buf, "%u %u\n", stm->data->sw_start, stm->data->sw_end);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DEVICE_ATTR_RO(masters);
|
|
|
|
|
|
|
|
static ssize_t channels_show(struct device *dev,
|
|
|
|
struct device_attribute *attr,
|
|
|
|
char *buf)
|
|
|
|
{
|
|
|
|
struct stm_device *stm = to_stm_device(dev);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = sprintf(buf, "%u\n", stm->data->sw_nchannels);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DEVICE_ATTR_RO(channels);
|
|
|
|
|
2016-05-04 01:33:37 +08:00
|
|
|
static ssize_t hw_override_show(struct device *dev,
|
|
|
|
struct device_attribute *attr,
|
|
|
|
char *buf)
|
|
|
|
{
|
|
|
|
struct stm_device *stm = to_stm_device(dev);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = sprintf(buf, "%u\n", stm->data->hw_override);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DEVICE_ATTR_RO(hw_override);
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
static struct attribute *stm_attrs[] = {
|
|
|
|
&dev_attr_masters.attr,
|
|
|
|
&dev_attr_channels.attr,
|
2016-05-04 01:33:37 +08:00
|
|
|
&dev_attr_hw_override.attr,
|
2015-09-22 20:47:10 +08:00
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
ATTRIBUTE_GROUPS(stm);
|
|
|
|
|
|
|
|
static struct class stm_class = {
|
|
|
|
.name = "stm",
|
|
|
|
.dev_groups = stm_groups,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int stm_dev_match(struct device *dev, const void *data)
|
|
|
|
{
|
|
|
|
const char *name = data;
|
|
|
|
|
|
|
|
return sysfs_streq(name, dev_name(dev));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* stm_find_device() - find stm device by name
|
|
|
|
* @buf: character buffer containing the name
|
|
|
|
*
|
|
|
|
* This is called when either policy gets assigned to an stm device or an
|
|
|
|
* stm_source device gets linked to an stm device.
|
|
|
|
*
|
|
|
|
* This grabs device's reference (get_device()) and module reference, both
|
|
|
|
* of which the calling path needs to make sure to drop with stm_put_device().
|
|
|
|
*
|
|
|
|
* Return: stm device pointer or null if lookup failed.
|
|
|
|
*/
|
|
|
|
struct stm_device *stm_find_device(const char *buf)
|
|
|
|
{
|
|
|
|
struct stm_device *stm;
|
|
|
|
struct device *dev;
|
|
|
|
|
|
|
|
if (!stm_core_up)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
dev = class_find_device(&stm_class, NULL, buf, stm_dev_match);
|
|
|
|
if (!dev)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
stm = to_stm_device(dev);
|
|
|
|
if (!try_module_get(stm->owner)) {
|
2016-02-16 01:12:07 +08:00
|
|
|
/* matches class_find_device() above */
|
2015-09-22 20:47:10 +08:00
|
|
|
put_device(dev);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return stm;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* stm_put_device() - drop references on the stm device
|
|
|
|
* @stm: stm device, previously acquired by stm_find_device()
|
|
|
|
*
|
|
|
|
* This drops the module reference and device reference taken by
|
2016-02-16 01:12:07 +08:00
|
|
|
* stm_find_device() or stm_char_open().
|
2015-09-22 20:47:10 +08:00
|
|
|
*/
|
|
|
|
void stm_put_device(struct stm_device *stm)
|
|
|
|
{
|
|
|
|
module_put(stm->owner);
|
|
|
|
put_device(&stm->dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Internally we only care about software-writable masters here, that is the
|
|
|
|
* ones in the range [stm_data->sw_start..stm_data..sw_end], however we need
|
|
|
|
* original master numbers to be visible externally, since they are the ones
|
|
|
|
* that will appear in the STP stream. Thus, the internal bookkeeping uses
|
|
|
|
* $master - stm_data->sw_start to reference master descriptors and such.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define __stm_master(_s, _m) \
|
|
|
|
((_s)->masters[(_m) - (_s)->data->sw_start])
|
|
|
|
|
|
|
|
static inline struct stp_master *
|
|
|
|
stm_master(struct stm_device *stm, unsigned int idx)
|
|
|
|
{
|
|
|
|
if (idx < stm->data->sw_start || idx > stm->data->sw_end)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return __stm_master(stm, idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int stp_master_alloc(struct stm_device *stm, unsigned int idx)
|
|
|
|
{
|
|
|
|
struct stp_master *master;
|
|
|
|
size_t size;
|
|
|
|
|
|
|
|
size = ALIGN(stm->data->sw_nchannels, 8) / 8;
|
|
|
|
size += sizeof(struct stp_master);
|
|
|
|
master = kzalloc(size, GFP_ATOMIC);
|
|
|
|
if (!master)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
master->nr_free = stm->data->sw_nchannels;
|
|
|
|
__stm_master(stm, idx) = master;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void stp_master_free(struct stm_device *stm, unsigned int idx)
|
|
|
|
{
|
|
|
|
struct stp_master *master = stm_master(stm, idx);
|
|
|
|
|
|
|
|
if (!master)
|
|
|
|
return;
|
|
|
|
|
|
|
|
__stm_master(stm, idx) = NULL;
|
|
|
|
kfree(master);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void stm_output_claim(struct stm_device *stm, struct stm_output *output)
|
|
|
|
{
|
|
|
|
struct stp_master *master = stm_master(stm, output->master);
|
|
|
|
|
2016-02-16 01:12:06 +08:00
|
|
|
lockdep_assert_held(&stm->mc_lock);
|
|
|
|
lockdep_assert_held(&output->lock);
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
if (WARN_ON_ONCE(master->nr_free < output->nr_chans))
|
|
|
|
return;
|
|
|
|
|
|
|
|
bitmap_allocate_region(&master->chan_map[0], output->channel,
|
|
|
|
ilog2(output->nr_chans));
|
|
|
|
|
|
|
|
master->nr_free -= output->nr_chans;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
stm_output_disclaim(struct stm_device *stm, struct stm_output *output)
|
|
|
|
{
|
|
|
|
struct stp_master *master = stm_master(stm, output->master);
|
|
|
|
|
2016-02-16 01:12:06 +08:00
|
|
|
lockdep_assert_held(&stm->mc_lock);
|
|
|
|
lockdep_assert_held(&output->lock);
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
bitmap_release_region(&master->chan_map[0], output->channel,
|
|
|
|
ilog2(output->nr_chans));
|
|
|
|
|
|
|
|
master->nr_free += output->nr_chans;
|
2019-04-17 15:35:34 +08:00
|
|
|
output->nr_chans = 0;
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is like bitmap_find_free_region(), except it can ignore @start bits
|
|
|
|
* at the beginning.
|
|
|
|
*/
|
|
|
|
static int find_free_channels(unsigned long *bitmap, unsigned int start,
|
|
|
|
unsigned int end, unsigned int width)
|
|
|
|
{
|
|
|
|
unsigned int pos;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (pos = start; pos < end + 1; pos = ALIGN(pos, width)) {
|
|
|
|
pos = find_next_zero_bit(bitmap, end + 1, pos);
|
|
|
|
if (pos + width > end + 1)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (pos & (width - 1))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (i = 1; i < width && !test_bit(pos + i, bitmap); i++)
|
|
|
|
;
|
|
|
|
if (i == width)
|
|
|
|
return pos;
|
2018-09-06 15:22:10 +08:00
|
|
|
|
|
|
|
/* step over [pos..pos+i) to continue search */
|
|
|
|
pos += i;
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2016-02-16 01:11:51 +08:00
|
|
|
static int
|
2015-09-22 20:47:10 +08:00
|
|
|
stm_find_master_chan(struct stm_device *stm, unsigned int width,
|
|
|
|
unsigned int *mstart, unsigned int mend,
|
|
|
|
unsigned int *cstart, unsigned int cend)
|
|
|
|
{
|
|
|
|
struct stp_master *master;
|
|
|
|
unsigned int midx;
|
|
|
|
int pos, err;
|
|
|
|
|
|
|
|
for (midx = *mstart; midx <= mend; midx++) {
|
|
|
|
if (!stm_master(stm, midx)) {
|
|
|
|
err = stp_master_alloc(stm, midx);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
master = stm_master(stm, midx);
|
|
|
|
|
|
|
|
if (!master->nr_free)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pos = find_free_channels(master->chan_map, *cstart, cend,
|
|
|
|
width);
|
|
|
|
if (pos < 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
*mstart = midx;
|
|
|
|
*cstart = pos;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -ENOSPC;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int stm_output_assign(struct stm_device *stm, unsigned int width,
|
|
|
|
struct stp_policy_node *policy_node,
|
|
|
|
struct stm_output *output)
|
|
|
|
{
|
|
|
|
unsigned int midx, cidx, mend, cend;
|
|
|
|
int ret = -EINVAL;
|
|
|
|
|
|
|
|
if (width > stm->data->sw_nchannels)
|
|
|
|
return -EINVAL;
|
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
/* We no longer accept policy_node==NULL here */
|
|
|
|
if (WARN_ON_ONCE(!policy_node))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Also, the caller holds reference to policy_node, so it won't
|
|
|
|
* disappear on us.
|
|
|
|
*/
|
|
|
|
stp_policy_node_get_ranges(policy_node, &midx, &mend, &cidx, &cend);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
spin_lock(&stm->mc_lock);
|
2016-02-16 01:12:06 +08:00
|
|
|
spin_lock(&output->lock);
|
2015-09-22 20:47:10 +08:00
|
|
|
/* output is already assigned -- shouldn't happen */
|
|
|
|
if (WARN_ON_ONCE(output->nr_chans))
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
ret = stm_find_master_chan(stm, width, &midx, mend, &cidx, cend);
|
2016-02-16 01:11:51 +08:00
|
|
|
if (ret < 0)
|
2015-09-22 20:47:10 +08:00
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
output->master = midx;
|
|
|
|
output->channel = cidx;
|
|
|
|
output->nr_chans = width;
|
2018-10-05 20:42:54 +08:00
|
|
|
if (stm->pdrv->output_open) {
|
|
|
|
void *priv = stp_policy_node_priv(policy_node);
|
|
|
|
|
|
|
|
if (WARN_ON_ONCE(!priv))
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
/* configfs subsys mutex is held by the caller */
|
|
|
|
ret = stm->pdrv->output_open(priv, output);
|
|
|
|
if (ret)
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
stm_output_claim(stm, output);
|
|
|
|
dev_dbg(&stm->dev, "assigned %u:%u (+%u)\n", midx, cidx, width);
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
unlock:
|
2018-10-05 20:42:54 +08:00
|
|
|
if (ret)
|
|
|
|
output->nr_chans = 0;
|
|
|
|
|
2016-02-16 01:12:06 +08:00
|
|
|
spin_unlock(&output->lock);
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_unlock(&stm->mc_lock);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void stm_output_free(struct stm_device *stm, struct stm_output *output)
|
|
|
|
{
|
|
|
|
spin_lock(&stm->mc_lock);
|
2016-02-16 01:12:06 +08:00
|
|
|
spin_lock(&output->lock);
|
2015-09-22 20:47:10 +08:00
|
|
|
if (output->nr_chans)
|
|
|
|
stm_output_disclaim(stm, output);
|
2018-10-05 20:42:54 +08:00
|
|
|
if (stm->pdrv && stm->pdrv->output_close)
|
|
|
|
stm->pdrv->output_close(output);
|
2016-02-16 01:12:06 +08:00
|
|
|
spin_unlock(&output->lock);
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_unlock(&stm->mc_lock);
|
|
|
|
}
|
|
|
|
|
2016-02-16 01:12:06 +08:00
|
|
|
static void stm_output_init(struct stm_output *output)
|
|
|
|
{
|
|
|
|
spin_lock_init(&output->lock);
|
|
|
|
}
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
static int major_match(struct device *dev, const void *data)
|
|
|
|
{
|
|
|
|
unsigned int major = *(unsigned int *)data;
|
|
|
|
|
|
|
|
return MAJOR(dev->devt) == major;
|
|
|
|
}
|
|
|
|
|
2018-10-05 20:42:54 +08:00
|
|
|
/*
|
|
|
|
* Framing protocol management
|
|
|
|
* Modules can implement STM protocol drivers and (un-)register them
|
|
|
|
* with the STM class framework.
|
|
|
|
*/
|
|
|
|
static struct list_head stm_pdrv_head;
|
|
|
|
static struct mutex stm_pdrv_mutex;
|
|
|
|
|
|
|
|
struct stm_pdrv_entry {
|
|
|
|
struct list_head entry;
|
|
|
|
const struct stm_protocol_driver *pdrv;
|
|
|
|
const struct config_item_type *node_type;
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct stm_pdrv_entry *
|
|
|
|
__stm_lookup_protocol(const char *name)
|
|
|
|
{
|
|
|
|
struct stm_pdrv_entry *pe;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If no name is given (NULL or ""), fall back to "p_basic".
|
|
|
|
*/
|
|
|
|
if (!name || !*name)
|
|
|
|
name = "p_basic";
|
|
|
|
|
|
|
|
list_for_each_entry(pe, &stm_pdrv_head, entry) {
|
|
|
|
if (!strcmp(name, pe->pdrv->name))
|
|
|
|
return pe;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int stm_register_protocol(const struct stm_protocol_driver *pdrv)
|
|
|
|
{
|
|
|
|
struct stm_pdrv_entry *pe = NULL;
|
|
|
|
int ret = -ENOMEM;
|
|
|
|
|
|
|
|
mutex_lock(&stm_pdrv_mutex);
|
|
|
|
|
|
|
|
if (__stm_lookup_protocol(pdrv->name)) {
|
|
|
|
ret = -EEXIST;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
|
|
|
|
if (!pe)
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
if (pdrv->policy_attr) {
|
|
|
|
pe->node_type = get_policy_node_type(pdrv->policy_attr);
|
|
|
|
if (!pe->node_type)
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_add_tail(&pe->entry, &stm_pdrv_head);
|
|
|
|
pe->pdrv = pdrv;
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
unlock:
|
|
|
|
mutex_unlock(&stm_pdrv_mutex);
|
|
|
|
|
|
|
|
if (ret)
|
|
|
|
kfree(pe);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(stm_register_protocol);
|
|
|
|
|
|
|
|
void stm_unregister_protocol(const struct stm_protocol_driver *pdrv)
|
|
|
|
{
|
|
|
|
struct stm_pdrv_entry *pe, *iter;
|
|
|
|
|
|
|
|
mutex_lock(&stm_pdrv_mutex);
|
|
|
|
|
|
|
|
list_for_each_entry_safe(pe, iter, &stm_pdrv_head, entry) {
|
|
|
|
if (pe->pdrv == pdrv) {
|
|
|
|
list_del(&pe->entry);
|
|
|
|
|
|
|
|
if (pe->node_type) {
|
|
|
|
kfree(pe->node_type->ct_attrs);
|
|
|
|
kfree(pe->node_type);
|
|
|
|
}
|
|
|
|
kfree(pe);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_unlock(&stm_pdrv_mutex);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(stm_unregister_protocol);
|
|
|
|
|
|
|
|
static bool stm_get_protocol(const struct stm_protocol_driver *pdrv)
|
|
|
|
{
|
|
|
|
return try_module_get(pdrv->owner);
|
|
|
|
}
|
|
|
|
|
|
|
|
void stm_put_protocol(const struct stm_protocol_driver *pdrv)
|
|
|
|
{
|
|
|
|
module_put(pdrv->owner);
|
|
|
|
}
|
|
|
|
|
|
|
|
int stm_lookup_protocol(const char *name,
|
|
|
|
const struct stm_protocol_driver **pdrv,
|
|
|
|
const struct config_item_type **node_type)
|
|
|
|
{
|
|
|
|
const struct stm_pdrv_entry *pe;
|
|
|
|
|
|
|
|
mutex_lock(&stm_pdrv_mutex);
|
|
|
|
|
|
|
|
pe = __stm_lookup_protocol(name);
|
|
|
|
if (pe && pe->pdrv && stm_get_protocol(pe->pdrv)) {
|
|
|
|
*pdrv = pe->pdrv;
|
|
|
|
*node_type = pe->node_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_unlock(&stm_pdrv_mutex);
|
|
|
|
|
|
|
|
return pe ? 0 : -ENOENT;
|
|
|
|
}
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
static int stm_char_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
struct stm_file *stmf;
|
|
|
|
struct device *dev;
|
|
|
|
unsigned int major = imajor(inode);
|
2016-11-18 20:17:31 +08:00
|
|
|
int err = -ENOMEM;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
dev = class_find_device(&stm_class, NULL, &major, major_match);
|
|
|
|
if (!dev)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
stmf = kzalloc(sizeof(*stmf), GFP_KERNEL);
|
|
|
|
if (!stmf)
|
2016-11-18 20:17:31 +08:00
|
|
|
goto err_put_device;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2016-11-18 20:17:31 +08:00
|
|
|
err = -ENODEV;
|
2016-02-16 01:12:06 +08:00
|
|
|
stm_output_init(&stmf->output);
|
2015-09-22 20:47:10 +08:00
|
|
|
stmf->stm = to_stm_device(dev);
|
|
|
|
|
|
|
|
if (!try_module_get(stmf->stm->owner))
|
|
|
|
goto err_free;
|
|
|
|
|
|
|
|
file->private_data = stmf;
|
|
|
|
|
|
|
|
return nonseekable_open(inode, file);
|
|
|
|
|
|
|
|
err_free:
|
2016-11-18 20:17:31 +08:00
|
|
|
kfree(stmf);
|
|
|
|
err_put_device:
|
2016-02-16 01:12:07 +08:00
|
|
|
/* matches class_find_device() above */
|
|
|
|
put_device(dev);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int stm_char_release(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
struct stm_file *stmf = file->private_data;
|
2016-02-16 01:12:09 +08:00
|
|
|
struct stm_device *stm = stmf->stm;
|
|
|
|
|
|
|
|
if (stm->data->unlink)
|
|
|
|
stm->data->unlink(stm->data, stmf->output.master,
|
|
|
|
stmf->output.channel);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2016-02-16 01:12:09 +08:00
|
|
|
stm_output_free(stm, &stmf->output);
|
2016-02-16 01:12:07 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* matches the stm_char_open()'s
|
|
|
|
* class_find_device() + try_module_get()
|
|
|
|
*/
|
2016-02-16 01:12:09 +08:00
|
|
|
stm_put_device(stm);
|
2015-09-22 20:47:10 +08:00
|
|
|
kfree(stmf);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
static int
|
|
|
|
stm_assign_first_policy(struct stm_device *stm, struct stm_output *output,
|
|
|
|
char **ids, unsigned int width)
|
2015-09-22 20:47:10 +08:00
|
|
|
{
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
struct stp_policy_node *pn;
|
|
|
|
int err, n;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
/*
|
|
|
|
* On success, stp_policy_node_lookup() will return holding the
|
|
|
|
* configfs subsystem mutex, which is then released in
|
|
|
|
* stp_policy_node_put(). This allows the pdrv->output_open() in
|
|
|
|
* stm_output_assign() to serialize against the attribute accessors.
|
|
|
|
*/
|
|
|
|
for (n = 0, pn = NULL; ids[n] && !pn; n++)
|
|
|
|
pn = stp_policy_node_lookup(stm, ids[n]);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
if (!pn)
|
|
|
|
return -EINVAL;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
err = stm_output_assign(stm, width, pn, output);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
stp_policy_node_put(pn);
|
|
|
|
|
|
|
|
return err;
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
2018-10-05 20:42:55 +08:00
|
|
|
/**
|
|
|
|
* stm_data_write() - send the given payload as data packets
|
|
|
|
* @data: stm driver's data
|
|
|
|
* @m: STP master
|
|
|
|
* @c: STP channel
|
|
|
|
* @ts_first: timestamp the first packet
|
|
|
|
* @buf: data payload buffer
|
|
|
|
* @count: data payload size
|
|
|
|
*/
|
|
|
|
ssize_t notrace stm_data_write(struct stm_data *data, unsigned int m,
|
|
|
|
unsigned int c, bool ts_first, const void *buf,
|
|
|
|
size_t count)
|
2015-09-22 20:47:10 +08:00
|
|
|
{
|
2018-10-05 20:42:55 +08:00
|
|
|
unsigned int flags = ts_first ? STP_PACKET_TIMESTAMPED : 0;
|
2015-09-22 20:47:10 +08:00
|
|
|
ssize_t sz;
|
2018-10-05 20:42:55 +08:00
|
|
|
size_t pos;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2018-10-05 20:42:55 +08:00
|
|
|
for (pos = 0, sz = 0; pos < count; pos += sz) {
|
2015-09-22 20:47:10 +08:00
|
|
|
sz = min_t(unsigned int, count - pos, 8);
|
2018-10-05 20:42:55 +08:00
|
|
|
sz = data->packet(data, m, c, STP_PACKET_DATA, flags, sz,
|
|
|
|
&((u8 *)buf)[pos]);
|
|
|
|
if (sz <= 0)
|
2016-02-16 01:12:01 +08:00
|
|
|
break;
|
2018-10-05 20:42:55 +08:00
|
|
|
|
|
|
|
if (ts_first) {
|
|
|
|
flags = 0;
|
|
|
|
ts_first = false;
|
|
|
|
}
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
2018-10-05 20:42:55 +08:00
|
|
|
return sz < 0 ? sz : pos;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(stm_data_write);
|
|
|
|
|
2018-10-05 20:42:57 +08:00
|
|
|
static ssize_t notrace
|
|
|
|
stm_write(struct stm_device *stm, struct stm_output *output,
|
|
|
|
unsigned int chan, const char *buf, size_t count)
|
2018-10-05 20:42:55 +08:00
|
|
|
{
|
2018-10-05 20:42:57 +08:00
|
|
|
int err;
|
|
|
|
|
|
|
|
/* stm->pdrv is serialized against policy_mutex */
|
|
|
|
if (!stm->pdrv)
|
|
|
|
return -ENODEV;
|
2018-10-05 20:42:55 +08:00
|
|
|
|
2018-10-05 20:42:57 +08:00
|
|
|
err = stm->pdrv->write(stm->data, output, chan, buf, count);
|
|
|
|
if (err < 0)
|
|
|
|
return err;
|
2016-02-16 01:12:01 +08:00
|
|
|
|
2018-10-05 20:42:57 +08:00
|
|
|
return err;
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t stm_char_write(struct file *file, const char __user *buf,
|
|
|
|
size_t count, loff_t *ppos)
|
|
|
|
{
|
|
|
|
struct stm_file *stmf = file->private_data;
|
|
|
|
struct stm_device *stm = stmf->stm;
|
|
|
|
char *kbuf;
|
|
|
|
int err;
|
|
|
|
|
2015-12-22 23:25:21 +08:00
|
|
|
if (count + 1 > PAGE_SIZE)
|
|
|
|
count = PAGE_SIZE - 1;
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
/*
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
* If no m/c have been assigned to this writer up to this
|
|
|
|
* point, try to use the task name and "default" policy entries.
|
2015-09-22 20:47:10 +08:00
|
|
|
*/
|
|
|
|
if (!stmf->output.nr_chans) {
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
char comm[sizeof(current->comm)];
|
|
|
|
char *ids[] = { comm, "default", NULL };
|
|
|
|
|
|
|
|
get_task_comm(comm, current);
|
|
|
|
|
|
|
|
err = stm_assign_first_policy(stmf->stm, &stmf->output, ids, 1);
|
2015-09-22 20:47:10 +08:00
|
|
|
/*
|
|
|
|
* EBUSY means that somebody else just assigned this
|
|
|
|
* output, which is just fine for write()
|
|
|
|
*/
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
if (err)
|
2015-09-22 20:47:10 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
kbuf = kmalloc(count + 1, GFP_KERNEL);
|
|
|
|
if (!kbuf)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
err = copy_from_user(kbuf, buf, count);
|
|
|
|
if (err) {
|
|
|
|
kfree(kbuf);
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
pm_runtime_get_sync(&stm->dev);
|
|
|
|
|
2018-10-05 20:42:57 +08:00
|
|
|
count = stm_write(stm, &stmf->output, 0, kbuf, count);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
pm_runtime_mark_last_busy(&stm->dev);
|
|
|
|
pm_runtime_put_autosuspend(&stm->dev);
|
2015-09-22 20:47:10 +08:00
|
|
|
kfree(kbuf);
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
static void stm_mmap_open(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct stm_file *stmf = vma->vm_file->private_data;
|
|
|
|
struct stm_device *stm = stmf->stm;
|
|
|
|
|
|
|
|
pm_runtime_get(&stm->dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void stm_mmap_close(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct stm_file *stmf = vma->vm_file->private_data;
|
|
|
|
struct stm_device *stm = stmf->stm;
|
|
|
|
|
|
|
|
pm_runtime_mark_last_busy(&stm->dev);
|
|
|
|
pm_runtime_put_autosuspend(&stm->dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct vm_operations_struct stm_mmap_vmops = {
|
|
|
|
.open = stm_mmap_open,
|
|
|
|
.close = stm_mmap_close,
|
|
|
|
};
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
static int stm_char_mmap(struct file *file, struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct stm_file *stmf = file->private_data;
|
|
|
|
struct stm_device *stm = stmf->stm;
|
|
|
|
unsigned long size, phys;
|
|
|
|
|
|
|
|
if (!stm->data->mmio_addr)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
if (vma->vm_pgoff)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
size = vma->vm_end - vma->vm_start;
|
|
|
|
|
|
|
|
if (stmf->output.nr_chans * stm->data->sw_mmiosz != size)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
phys = stm->data->mmio_addr(stm->data, stmf->output.master,
|
|
|
|
stmf->output.channel,
|
|
|
|
stmf->output.nr_chans);
|
|
|
|
|
|
|
|
if (!phys)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
pm_runtime_get_sync(&stm->dev);
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
|
vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP;
|
2016-06-28 16:35:02 +08:00
|
|
|
vma->vm_ops = &stm_mmap_vmops;
|
2015-09-22 20:47:10 +08:00
|
|
|
vm_iomap_memory(vma, phys, size);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int stm_char_policy_set_ioctl(struct stm_file *stmf, void __user *arg)
|
|
|
|
{
|
|
|
|
struct stm_device *stm = stmf->stm;
|
|
|
|
struct stp_policy_id *id;
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
char *ids[] = { NULL, NULL };
|
2019-02-21 20:19:17 +08:00
|
|
|
int ret = -EINVAL, wlimit = 1;
|
2015-09-22 20:47:10 +08:00
|
|
|
u32 size;
|
|
|
|
|
|
|
|
if (stmf->output.nr_chans)
|
|
|
|
return -EBUSY;
|
|
|
|
|
|
|
|
if (copy_from_user(&size, arg, sizeof(size)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
2017-08-10 20:45:10 +08:00
|
|
|
if (size < sizeof(*id) || size >= PATH_MAX + sizeof(*id))
|
2015-09-22 20:47:10 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* size + 1 to make sure the .id string at the bottom is terminated,
|
|
|
|
* which is also why memdup_user() is not useful here
|
|
|
|
*/
|
|
|
|
id = kzalloc(size + 1, GFP_KERNEL);
|
|
|
|
if (!id)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
if (copy_from_user(id, arg, size)) {
|
|
|
|
ret = -EFAULT;
|
|
|
|
goto err_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (id->__reserved_0 || id->__reserved_1)
|
|
|
|
goto err_free;
|
|
|
|
|
2019-02-21 20:19:17 +08:00
|
|
|
if (stm->data->sw_mmiosz)
|
|
|
|
wlimit = PAGE_SIZE / stm->data->sw_mmiosz;
|
|
|
|
|
|
|
|
if (id->width < 1 || id->width > wlimit)
|
2015-09-22 20:47:10 +08:00
|
|
|
goto err_free;
|
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
ids[0] = id->id;
|
|
|
|
ret = stm_assign_first_policy(stmf->stm, &stmf->output, ids,
|
|
|
|
id->width);
|
2015-09-22 20:47:10 +08:00
|
|
|
if (ret)
|
|
|
|
goto err_free;
|
|
|
|
|
|
|
|
if (stm->data->link)
|
|
|
|
ret = stm->data->link(stm->data, stmf->output.master,
|
|
|
|
stmf->output.channel);
|
|
|
|
|
2016-02-16 01:12:07 +08:00
|
|
|
if (ret)
|
2015-09-22 20:47:10 +08:00
|
|
|
stm_output_free(stmf->stm, &stmf->output);
|
|
|
|
|
|
|
|
err_free:
|
|
|
|
kfree(id);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int stm_char_policy_get_ioctl(struct stm_file *stmf, void __user *arg)
|
|
|
|
{
|
|
|
|
struct stp_policy_id id = {
|
|
|
|
.size = sizeof(id),
|
|
|
|
.master = stmf->output.master,
|
|
|
|
.channel = stmf->output.channel,
|
|
|
|
.width = stmf->output.nr_chans,
|
|
|
|
.__reserved_0 = 0,
|
|
|
|
.__reserved_1 = 0,
|
|
|
|
};
|
|
|
|
|
|
|
|
return copy_to_user(arg, &id, id.size) ? -EFAULT : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long
|
|
|
|
stm_char_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
|
|
{
|
|
|
|
struct stm_file *stmf = file->private_data;
|
|
|
|
struct stm_data *stm_data = stmf->stm->data;
|
|
|
|
int err = -ENOTTY;
|
|
|
|
u64 options;
|
|
|
|
|
|
|
|
switch (cmd) {
|
|
|
|
case STP_POLICY_ID_SET:
|
|
|
|
err = stm_char_policy_set_ioctl(stmf, (void __user *)arg);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
return stm_char_policy_get_ioctl(stmf, (void __user *)arg);
|
|
|
|
|
|
|
|
case STP_POLICY_ID_GET:
|
|
|
|
return stm_char_policy_get_ioctl(stmf, (void __user *)arg);
|
|
|
|
|
|
|
|
case STP_SET_OPTIONS:
|
|
|
|
if (copy_from_user(&options, (u64 __user *)arg, sizeof(u64)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (stm_data->set_options)
|
|
|
|
err = stm_data->set_options(stm_data,
|
|
|
|
stmf->output.master,
|
|
|
|
stmf->output.channel,
|
|
|
|
stmf->output.nr_chans,
|
|
|
|
options);
|
|
|
|
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
static long
|
|
|
|
stm_char_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
|
|
{
|
|
|
|
return stm_char_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define stm_char_compat_ioctl NULL
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static const struct file_operations stm_fops = {
|
|
|
|
.open = stm_char_open,
|
|
|
|
.release = stm_char_release,
|
|
|
|
.write = stm_char_write,
|
|
|
|
.mmap = stm_char_mmap,
|
|
|
|
.unlocked_ioctl = stm_char_ioctl,
|
|
|
|
.compat_ioctl = stm_char_compat_ioctl,
|
|
|
|
.llseek = no_llseek,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void stm_device_release(struct device *dev)
|
|
|
|
{
|
|
|
|
struct stm_device *stm = to_stm_device(dev);
|
|
|
|
|
2018-05-24 16:27:26 +08:00
|
|
|
vfree(stm);
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int stm_register_device(struct device *parent, struct stm_data *stm_data,
|
|
|
|
struct module *owner)
|
|
|
|
{
|
|
|
|
struct stm_device *stm;
|
|
|
|
unsigned int nmasters;
|
|
|
|
int err = -ENOMEM;
|
|
|
|
|
|
|
|
if (!stm_core_up)
|
|
|
|
return -EPROBE_DEFER;
|
|
|
|
|
|
|
|
if (!stm_data->packet || !stm_data->sw_nchannels)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2015-12-22 23:25:20 +08:00
|
|
|
nmasters = stm_data->sw_end - stm_data->sw_start + 1;
|
2018-05-24 16:27:26 +08:00
|
|
|
stm = vzalloc(sizeof(*stm) + nmasters * sizeof(void *));
|
2015-09-22 20:47:10 +08:00
|
|
|
if (!stm)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
stm->major = register_chrdev(0, stm_data->name, &stm_fops);
|
|
|
|
if (stm->major < 0)
|
|
|
|
goto err_free;
|
|
|
|
|
|
|
|
device_initialize(&stm->dev);
|
|
|
|
stm->dev.devt = MKDEV(stm->major, 0);
|
|
|
|
stm->dev.class = &stm_class;
|
|
|
|
stm->dev.parent = parent;
|
|
|
|
stm->dev.release = stm_device_release;
|
|
|
|
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_init(&stm->link_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_lock_init(&stm->link_lock);
|
|
|
|
INIT_LIST_HEAD(&stm->link_list);
|
|
|
|
|
2016-03-04 22:48:14 +08:00
|
|
|
/* initialize the object before it is accessible via sysfs */
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_lock_init(&stm->mc_lock);
|
|
|
|
mutex_init(&stm->policy_mutex);
|
|
|
|
stm->sw_nmasters = nmasters;
|
|
|
|
stm->owner = owner;
|
|
|
|
stm->data = stm_data;
|
|
|
|
stm_data->stm = stm;
|
|
|
|
|
2016-03-04 22:48:14 +08:00
|
|
|
err = kobject_set_name(&stm->dev.kobj, "%s", stm_data->name);
|
|
|
|
if (err)
|
|
|
|
goto err_device;
|
|
|
|
|
|
|
|
err = device_add(&stm->dev);
|
|
|
|
if (err)
|
|
|
|
goto err_device;
|
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
/*
|
|
|
|
* Use delayed autosuspend to avoid bouncing back and forth
|
|
|
|
* on recurring character device writes, with the initial
|
|
|
|
* delay time of 2 seconds.
|
|
|
|
*/
|
|
|
|
pm_runtime_no_callbacks(&stm->dev);
|
|
|
|
pm_runtime_use_autosuspend(&stm->dev);
|
|
|
|
pm_runtime_set_autosuspend_delay(&stm->dev, 2000);
|
|
|
|
pm_runtime_set_suspended(&stm->dev);
|
|
|
|
pm_runtime_enable(&stm->dev);
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_device:
|
2016-03-04 22:36:10 +08:00
|
|
|
unregister_chrdev(stm->major, stm_data->name);
|
|
|
|
|
2016-02-16 01:12:07 +08:00
|
|
|
/* matches device_initialize() above */
|
2015-09-22 20:47:10 +08:00
|
|
|
put_device(&stm->dev);
|
|
|
|
err_free:
|
2018-05-24 16:27:26 +08:00
|
|
|
vfree(stm);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(stm_register_device);
|
|
|
|
|
2016-02-16 01:12:08 +08:00
|
|
|
static int __stm_source_link_drop(struct stm_source_device *src,
|
|
|
|
struct stm_device *stm);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
void stm_unregister_device(struct stm_data *stm_data)
|
|
|
|
{
|
|
|
|
struct stm_device *stm = stm_data->stm;
|
|
|
|
struct stm_source_device *src, *iter;
|
2016-02-16 01:12:08 +08:00
|
|
|
int i, ret;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
pm_runtime_dont_use_autosuspend(&stm->dev);
|
|
|
|
pm_runtime_disable(&stm->dev);
|
|
|
|
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_lock(&stm->link_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
list_for_each_entry_safe(src, iter, &stm->link_list, link_entry) {
|
2016-02-16 01:12:08 +08:00
|
|
|
ret = __stm_source_link_drop(src, stm);
|
|
|
|
/*
|
|
|
|
* src <-> stm link must not change under the same
|
|
|
|
* stm::link_mutex, so complain loudly if it has;
|
|
|
|
* also in this situation ret!=0 means this src is
|
|
|
|
* not connected to this stm and it should be otherwise
|
|
|
|
* safe to proceed with the tear-down of stm.
|
|
|
|
*/
|
|
|
|
WARN_ON_ONCE(ret);
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_unlock(&stm->link_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
synchronize_srcu(&stm_source_srcu);
|
|
|
|
|
|
|
|
unregister_chrdev(stm->major, stm_data->name);
|
|
|
|
|
|
|
|
mutex_lock(&stm->policy_mutex);
|
|
|
|
if (stm->policy)
|
|
|
|
stp_policy_unbind(stm->policy);
|
|
|
|
mutex_unlock(&stm->policy_mutex);
|
|
|
|
|
2016-02-16 01:11:52 +08:00
|
|
|
for (i = stm->data->sw_start; i <= stm->data->sw_end; i++)
|
2015-09-22 20:47:10 +08:00
|
|
|
stp_master_free(stm, i);
|
|
|
|
|
|
|
|
device_unregister(&stm->dev);
|
|
|
|
stm_data->stm = NULL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(stm_unregister_device);
|
|
|
|
|
2015-12-22 23:25:19 +08:00
|
|
|
/*
|
|
|
|
* stm::link_list access serialization uses a spinlock and a mutex; holding
|
|
|
|
* either of them guarantees that the list is stable; modification requires
|
|
|
|
* holding both of them.
|
|
|
|
*
|
|
|
|
* Lock ordering is as follows:
|
|
|
|
* stm::link_mutex
|
|
|
|
* stm::link_lock
|
|
|
|
* src::link_lock
|
|
|
|
*/
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
/**
|
|
|
|
* stm_source_link_add() - connect an stm_source device to an stm device
|
|
|
|
* @src: stm_source device
|
|
|
|
* @stm: stm device
|
|
|
|
*
|
|
|
|
* This function establishes a link from stm_source to an stm device so that
|
|
|
|
* the former can send out trace data to the latter.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, -errno otherwise.
|
|
|
|
*/
|
|
|
|
static int stm_source_link_add(struct stm_source_device *src,
|
|
|
|
struct stm_device *stm)
|
|
|
|
{
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
char *ids[] = { NULL, "default", NULL };
|
|
|
|
int err = -ENOMEM;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_lock(&stm->link_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_lock(&stm->link_lock);
|
|
|
|
spin_lock(&src->link_lock);
|
|
|
|
|
|
|
|
/* src->link is dereferenced under stm_source_srcu but not the list */
|
|
|
|
rcu_assign_pointer(src->link, stm);
|
|
|
|
list_add_tail(&src->link_entry, &stm->link_list);
|
|
|
|
|
|
|
|
spin_unlock(&src->link_lock);
|
|
|
|
spin_unlock(&stm->link_lock);
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_unlock(&stm->link_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
ids[0] = kstrdup(src->data->name, GFP_KERNEL);
|
|
|
|
if (!ids[0])
|
|
|
|
goto fail_detach;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
stm class: Rework policy node fallback
Currently, if no matching policy node can be found for a trace source,
we'll try to use "default" policy node, then, if that doesn't exist,
we'll pick the first node, in order of creation. If that also fails,
we'll allocate M/C range from the beginning of the device's M/C range.
This makes it difficult to know which node (if any) was used in any
particular case.
In order to make things more deterministic, the new order is as follows:
* if they supply ID string, use that and nothing else,
* if they are a task, use their task name (comm),
* use "default", if it exists,
* return failure, to let them know there is no suitable rule.
This should provide enough convenience with the "default" catch-all node,
while not leaving *everything* to chance. As a side effect, this relaxes
the requirement of using ioctl() for identification with the possibility of
using task names as policy nodes.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 20:42:51 +08:00
|
|
|
err = stm_assign_first_policy(stm, &src->output, ids,
|
|
|
|
src->data->nr_chans);
|
|
|
|
kfree(ids[0]);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
if (err)
|
|
|
|
goto fail_detach;
|
|
|
|
|
|
|
|
/* this is to notify the STM device that a new link has been made */
|
|
|
|
if (stm->data->link)
|
|
|
|
err = stm->data->link(stm->data, src->output.master,
|
|
|
|
src->output.channel);
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
goto fail_free_output;
|
|
|
|
|
|
|
|
/* this is to let the source carry out all necessary preparations */
|
|
|
|
if (src->data->link)
|
|
|
|
src->data->link(src->data);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail_free_output:
|
|
|
|
stm_output_free(stm, &src->output);
|
|
|
|
|
|
|
|
fail_detach:
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_lock(&stm->link_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_lock(&stm->link_lock);
|
|
|
|
spin_lock(&src->link_lock);
|
|
|
|
|
|
|
|
rcu_assign_pointer(src->link, NULL);
|
|
|
|
list_del_init(&src->link_entry);
|
|
|
|
|
|
|
|
spin_unlock(&src->link_lock);
|
|
|
|
spin_unlock(&stm->link_lock);
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_unlock(&stm->link_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __stm_source_link_drop() - detach stm_source from an stm device
|
|
|
|
* @src: stm_source device
|
|
|
|
* @stm: stm device
|
|
|
|
*
|
|
|
|
* If @stm is @src::link, disconnect them from one another and put the
|
|
|
|
* reference on the @stm device.
|
|
|
|
*
|
2015-12-22 23:25:19 +08:00
|
|
|
* Caller must hold stm::link_mutex.
|
2015-09-22 20:47:10 +08:00
|
|
|
*/
|
2016-02-16 01:12:08 +08:00
|
|
|
static int __stm_source_link_drop(struct stm_source_device *src,
|
|
|
|
struct stm_device *stm)
|
2015-09-22 20:47:10 +08:00
|
|
|
{
|
2015-10-06 17:47:17 +08:00
|
|
|
struct stm_device *link;
|
2016-02-16 01:12:08 +08:00
|
|
|
int ret = 0;
|
2015-10-06 17:47:17 +08:00
|
|
|
|
2015-12-22 23:25:19 +08:00
|
|
|
lockdep_assert_held(&stm->link_mutex);
|
|
|
|
|
|
|
|
/* for stm::link_list modification, we hold both mutex and spinlock */
|
|
|
|
spin_lock(&stm->link_lock);
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_lock(&src->link_lock);
|
2015-10-06 17:47:17 +08:00
|
|
|
link = srcu_dereference_check(src->link, &stm_source_srcu, 1);
|
2016-02-16 01:12:08 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The linked device may have changed since we last looked, because
|
|
|
|
* we weren't holding the src::link_lock back then; if this is the
|
|
|
|
* case, tell the caller to retry.
|
|
|
|
*/
|
|
|
|
if (link != stm) {
|
|
|
|
ret = -EAGAIN;
|
2016-02-16 01:12:05 +08:00
|
|
|
goto unlock;
|
2016-02-16 01:12:08 +08:00
|
|
|
}
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2015-10-06 17:47:17 +08:00
|
|
|
stm_output_free(link, &src->output);
|
2015-09-22 20:47:10 +08:00
|
|
|
list_del_init(&src->link_entry);
|
2016-06-28 16:35:02 +08:00
|
|
|
pm_runtime_mark_last_busy(&link->dev);
|
|
|
|
pm_runtime_put_autosuspend(&link->dev);
|
2015-09-22 20:47:10 +08:00
|
|
|
/* matches stm_find_device() from stm_source_link_store() */
|
2015-10-06 17:47:17 +08:00
|
|
|
stm_put_device(link);
|
2015-09-22 20:47:10 +08:00
|
|
|
rcu_assign_pointer(src->link, NULL);
|
|
|
|
|
2016-02-16 01:12:05 +08:00
|
|
|
unlock:
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_unlock(&src->link_lock);
|
2015-12-22 23:25:19 +08:00
|
|
|
spin_unlock(&stm->link_lock);
|
2016-02-16 01:12:08 +08:00
|
|
|
|
2016-02-16 01:12:09 +08:00
|
|
|
/*
|
|
|
|
* Call the unlink callbacks for both source and stm, when we know
|
|
|
|
* that we have actually performed the unlinking.
|
|
|
|
*/
|
|
|
|
if (!ret) {
|
|
|
|
if (src->data->unlink)
|
|
|
|
src->data->unlink(src->data);
|
|
|
|
|
|
|
|
if (stm->data->unlink)
|
|
|
|
stm->data->unlink(stm->data, src->output.master,
|
|
|
|
src->output.channel);
|
|
|
|
}
|
2016-02-16 01:12:08 +08:00
|
|
|
|
|
|
|
return ret;
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* stm_source_link_drop() - detach stm_source from its stm device
|
|
|
|
* @src: stm_source device
|
|
|
|
*
|
|
|
|
* Unlinking means disconnecting from source's STM device; after this
|
|
|
|
* writes will be unsuccessful until it is linked to a new STM device.
|
|
|
|
*
|
|
|
|
* This will happen on "stm_source_link" sysfs attribute write to undo
|
|
|
|
* the existing link (if any), or on linked STM device's de-registration.
|
|
|
|
*/
|
|
|
|
static void stm_source_link_drop(struct stm_source_device *src)
|
|
|
|
{
|
|
|
|
struct stm_device *stm;
|
2016-02-16 01:12:08 +08:00
|
|
|
int idx, ret;
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2016-02-16 01:12:08 +08:00
|
|
|
retry:
|
2015-09-22 20:47:10 +08:00
|
|
|
idx = srcu_read_lock(&stm_source_srcu);
|
2016-02-16 01:12:08 +08:00
|
|
|
/*
|
|
|
|
* The stm device will be valid for the duration of this
|
|
|
|
* read section, but the link may change before we grab
|
|
|
|
* the src::link_lock in __stm_source_link_drop().
|
|
|
|
*/
|
2015-09-22 20:47:10 +08:00
|
|
|
stm = srcu_dereference(src->link, &stm_source_srcu);
|
|
|
|
|
2016-02-16 01:12:08 +08:00
|
|
|
ret = 0;
|
2015-09-22 20:47:10 +08:00
|
|
|
if (stm) {
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_lock(&stm->link_mutex);
|
2016-02-16 01:12:08 +08:00
|
|
|
ret = __stm_source_link_drop(src, stm);
|
2015-12-22 23:25:19 +08:00
|
|
|
mutex_unlock(&stm->link_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
srcu_read_unlock(&stm_source_srcu, idx);
|
2016-02-16 01:12:08 +08:00
|
|
|
|
|
|
|
/* if it did change, retry */
|
|
|
|
if (ret == -EAGAIN)
|
|
|
|
goto retry;
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t stm_source_link_show(struct device *dev,
|
|
|
|
struct device_attribute *attr,
|
|
|
|
char *buf)
|
|
|
|
{
|
|
|
|
struct stm_source_device *src = to_stm_source_device(dev);
|
|
|
|
struct stm_device *stm;
|
|
|
|
int idx, ret;
|
|
|
|
|
|
|
|
idx = srcu_read_lock(&stm_source_srcu);
|
|
|
|
stm = srcu_dereference(src->link, &stm_source_srcu);
|
|
|
|
ret = sprintf(buf, "%s\n",
|
|
|
|
stm ? dev_name(&stm->dev) : "<none>");
|
|
|
|
srcu_read_unlock(&stm_source_srcu, idx);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t stm_source_link_store(struct device *dev,
|
|
|
|
struct device_attribute *attr,
|
|
|
|
const char *buf, size_t count)
|
|
|
|
{
|
|
|
|
struct stm_source_device *src = to_stm_source_device(dev);
|
|
|
|
struct stm_device *link;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
stm_source_link_drop(src);
|
|
|
|
|
|
|
|
link = stm_find_device(buf);
|
|
|
|
if (!link)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
pm_runtime_get(&link->dev);
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
err = stm_source_link_add(src, link);
|
2016-02-16 01:12:07 +08:00
|
|
|
if (err) {
|
2016-06-28 16:35:02 +08:00
|
|
|
pm_runtime_put_autosuspend(&link->dev);
|
2016-02-16 01:12:07 +08:00
|
|
|
/* matches the stm_find_device() above */
|
2015-09-22 20:47:10 +08:00
|
|
|
stm_put_device(link);
|
2016-02-16 01:12:07 +08:00
|
|
|
}
|
2015-09-22 20:47:10 +08:00
|
|
|
|
|
|
|
return err ? : count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DEVICE_ATTR_RW(stm_source_link);
|
|
|
|
|
|
|
|
static struct attribute *stm_source_attrs[] = {
|
|
|
|
&dev_attr_stm_source_link.attr,
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
ATTRIBUTE_GROUPS(stm_source);
|
|
|
|
|
|
|
|
static struct class stm_source_class = {
|
|
|
|
.name = "stm_source",
|
|
|
|
.dev_groups = stm_source_groups,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void stm_source_device_release(struct device *dev)
|
|
|
|
{
|
|
|
|
struct stm_source_device *src = to_stm_source_device(dev);
|
|
|
|
|
|
|
|
kfree(src);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* stm_source_register_device() - register an stm_source device
|
|
|
|
* @parent: parent device
|
|
|
|
* @data: device description structure
|
|
|
|
*
|
|
|
|
* This will create a device of stm_source class that can write
|
|
|
|
* data to an stm device once linked.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, -errno otherwise.
|
|
|
|
*/
|
|
|
|
int stm_source_register_device(struct device *parent,
|
|
|
|
struct stm_source_data *data)
|
|
|
|
{
|
|
|
|
struct stm_source_device *src;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (!stm_core_up)
|
|
|
|
return -EPROBE_DEFER;
|
|
|
|
|
|
|
|
src = kzalloc(sizeof(*src), GFP_KERNEL);
|
|
|
|
if (!src)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
device_initialize(&src->dev);
|
|
|
|
src->dev.class = &stm_source_class;
|
|
|
|
src->dev.parent = parent;
|
|
|
|
src->dev.release = stm_source_device_release;
|
|
|
|
|
|
|
|
err = kobject_set_name(&src->dev.kobj, "%s", data->name);
|
|
|
|
if (err)
|
|
|
|
goto err;
|
|
|
|
|
2016-06-28 16:35:02 +08:00
|
|
|
pm_runtime_no_callbacks(&src->dev);
|
|
|
|
pm_runtime_forbid(&src->dev);
|
|
|
|
|
2015-09-22 20:47:10 +08:00
|
|
|
err = device_add(&src->dev);
|
|
|
|
if (err)
|
|
|
|
goto err;
|
|
|
|
|
2016-02-16 01:12:06 +08:00
|
|
|
stm_output_init(&src->output);
|
2015-09-22 20:47:10 +08:00
|
|
|
spin_lock_init(&src->link_lock);
|
|
|
|
INIT_LIST_HEAD(&src->link_entry);
|
|
|
|
src->data = data;
|
|
|
|
data->src = src;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err:
|
|
|
|
put_device(&src->dev);
|
|
|
|
kfree(src);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(stm_source_register_device);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* stm_source_unregister_device() - unregister an stm_source device
|
|
|
|
* @data: device description that was used to register the device
|
|
|
|
*
|
|
|
|
* This will remove a previously created stm_source device from the system.
|
|
|
|
*/
|
|
|
|
void stm_source_unregister_device(struct stm_source_data *data)
|
|
|
|
{
|
|
|
|
struct stm_source_device *src = data->src;
|
|
|
|
|
|
|
|
stm_source_link_drop(src);
|
|
|
|
|
2017-09-19 23:47:40 +08:00
|
|
|
device_unregister(&src->dev);
|
2015-09-22 20:47:10 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(stm_source_unregister_device);
|
|
|
|
|
2016-11-21 15:57:23 +08:00
|
|
|
int notrace stm_source_write(struct stm_source_data *data,
|
|
|
|
unsigned int chan,
|
|
|
|
const char *buf, size_t count)
|
2015-09-22 20:47:10 +08:00
|
|
|
{
|
|
|
|
struct stm_source_device *src = data->src;
|
|
|
|
struct stm_device *stm;
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
if (!src->output.nr_chans)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
if (chan >= src->output.nr_chans)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
idx = srcu_read_lock(&stm_source_srcu);
|
|
|
|
|
|
|
|
stm = srcu_dereference(src->link, &stm_source_srcu);
|
|
|
|
if (stm)
|
2018-10-05 20:42:57 +08:00
|
|
|
count = stm_write(stm, &src->output, chan, buf, count);
|
2015-09-22 20:47:10 +08:00
|
|
|
else
|
|
|
|
count = -ENODEV;
|
|
|
|
|
|
|
|
srcu_read_unlock(&stm_source_srcu, idx);
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(stm_source_write);
|
|
|
|
|
|
|
|
static int __init stm_core_init(void)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = class_register(&stm_class);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
err = class_register(&stm_source_class);
|
|
|
|
if (err)
|
|
|
|
goto err_stm;
|
|
|
|
|
|
|
|
err = stp_configfs_init();
|
|
|
|
if (err)
|
|
|
|
goto err_src;
|
|
|
|
|
|
|
|
init_srcu_struct(&stm_source_srcu);
|
2018-10-05 20:42:54 +08:00
|
|
|
INIT_LIST_HEAD(&stm_pdrv_head);
|
|
|
|
mutex_init(&stm_pdrv_mutex);
|
2015-09-22 20:47:10 +08:00
|
|
|
|
2018-10-05 20:42:57 +08:00
|
|
|
/*
|
|
|
|
* So as to not confuse existing users with a requirement
|
|
|
|
* to load yet another module, do it here.
|
|
|
|
*/
|
|
|
|
if (IS_ENABLED(CONFIG_STM_PROTO_BASIC))
|
|
|
|
(void)request_module_nowait("stm_p_basic");
|
2015-09-22 20:47:10 +08:00
|
|
|
stm_core_up++;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_src:
|
|
|
|
class_unregister(&stm_source_class);
|
|
|
|
err_stm:
|
|
|
|
class_unregister(&stm_class);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(stm_core_init);
|
|
|
|
|
|
|
|
static void __exit stm_core_exit(void)
|
|
|
|
{
|
|
|
|
cleanup_srcu_struct(&stm_source_srcu);
|
|
|
|
class_unregister(&stm_source_class);
|
|
|
|
class_unregister(&stm_class);
|
|
|
|
stp_configfs_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
module_exit(stm_core_exit);
|
|
|
|
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
MODULE_DESCRIPTION("System Trace Module device class");
|
|
|
|
MODULE_AUTHOR("Alexander Shishkin <alexander.shishkin@linux.intel.com>");
|