linux/arch/s390/mm/vmem.c

441 lines
10 KiB
C
Raw Normal View History

/*
* Copyright IBM Corp. 2006
* Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
*/
#include <linux/bootmem.h>
#include <linux/pfn.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/hugetlb.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/memblock.h>
#include <asm/cacheflush.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/set_memory.h>
static DEFINE_MUTEX(vmem_mutex);
struct memory_segment {
struct list_head list;
unsigned long start;
unsigned long size;
};
static LIST_HEAD(mem_segs);
static void __ref *vmem_alloc_pages(unsigned int order)
{
unsigned long size = PAGE_SIZE << order;
if (slab_is_available())
return (void *)__get_free_pages(GFP_KERNEL, order);
return (void *) memblock_alloc(size, size);
}
void *vmem_crst_alloc(unsigned long val)
{
unsigned long *table;
table = vmem_alloc_pages(CRST_ALLOC_ORDER);
if (table)
crst_table_init(table, val);
return table;
}
pte_t __ref *vmem_pte_alloc(void)
{
unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
pte_t *pte;
if (slab_is_available())
pte = (pte_t *) page_table_alloc(&init_mm);
else
pte = (pte_t *) memblock_alloc(size, size);
if (!pte)
return NULL;
clear_table((unsigned long *) pte, _PAGE_INVALID, size);
return pte;
}
/*
* Add a physical memory range to the 1:1 mapping.
*/
static int vmem_add_mem(unsigned long start, unsigned long size)
{
unsigned long pgt_prot, sgt_prot, r3_prot;
unsigned long pages4k, pages1m, pages2g;
unsigned long end = start + size;
unsigned long address = start;
pgd_t *pg_dir;
p4d_t *p4_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
int ret = -ENOMEM;
pgt_prot = pgprot_val(PAGE_KERNEL);
sgt_prot = pgprot_val(SEGMENT_KERNEL);
r3_prot = pgprot_val(REGION3_KERNEL);
if (!MACHINE_HAS_NX) {
pgt_prot &= ~_PAGE_NOEXEC;
sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
r3_prot &= ~_REGION_ENTRY_NOEXEC;
}
pages4k = pages1m = pages2g = 0;
while (address < end) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
if (!p4_dir)
goto out;
pgd_populate(&init_mm, pg_dir, p4_dir);
}
p4_dir = p4d_offset(pg_dir, address);
if (p4d_none(*p4_dir)) {
pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
if (!pu_dir)
goto out;
p4d_populate(&init_mm, p4_dir, pu_dir);
}
pu_dir = pud_offset(p4_dir, address);
if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
!(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
!debug_pagealloc_enabled()) {
pud_val(*pu_dir) = address | r3_prot;
address += PUD_SIZE;
pages2g++;
continue;
}
if (pud_none(*pu_dir)) {
pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
if (!pm_dir)
goto out;
pud_populate(&init_mm, pu_dir, pm_dir);
}
pm_dir = pmd_offset(pu_dir, address);
if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
!(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
!debug_pagealloc_enabled()) {
pmd_val(*pm_dir) = address | sgt_prot;
address += PMD_SIZE;
pages1m++;
continue;
}
if (pmd_none(*pm_dir)) {
pt_dir = vmem_pte_alloc();
if (!pt_dir)
goto out;
pmd_populate(&init_mm, pm_dir, pt_dir);
}
pt_dir = pte_offset_kernel(pm_dir, address);
pte_val(*pt_dir) = address | pgt_prot;
address += PAGE_SIZE;
pages4k++;
}
ret = 0;
out:
update_page_count(PG_DIRECT_MAP_4K, pages4k);
update_page_count(PG_DIRECT_MAP_1M, pages1m);
update_page_count(PG_DIRECT_MAP_2G, pages2g);
return ret;
}
/*
* Remove a physical memory range from the 1:1 mapping.
* Currently only invalidates page table entries.
*/
static void vmem_remove_range(unsigned long start, unsigned long size)
{
unsigned long pages4k, pages1m, pages2g;
unsigned long end = start + size;
unsigned long address = start;
pgd_t *pg_dir;
p4d_t *p4_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
pages4k = pages1m = pages2g = 0;
while (address < end) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
address += PGDIR_SIZE;
continue;
}
p4_dir = p4d_offset(pg_dir, address);
if (p4d_none(*p4_dir)) {
address += P4D_SIZE;
continue;
}
pu_dir = pud_offset(p4_dir, address);
if (pud_none(*pu_dir)) {
address += PUD_SIZE;
continue;
}
if (pud_large(*pu_dir)) {
pud_clear(pu_dir);
address += PUD_SIZE;
pages2g++;
continue;
}
pm_dir = pmd_offset(pu_dir, address);
if (pmd_none(*pm_dir)) {
address += PMD_SIZE;
continue;
}
if (pmd_large(*pm_dir)) {
pmd_clear(pm_dir);
address += PMD_SIZE;
pages1m++;
continue;
}
pt_dir = pte_offset_kernel(pm_dir, address);
pte_clear(&init_mm, address, pt_dir);
address += PAGE_SIZE;
pages4k++;
}
flush_tlb_kernel_range(start, end);
update_page_count(PG_DIRECT_MAP_4K, -pages4k);
update_page_count(PG_DIRECT_MAP_1M, -pages1m);
update_page_count(PG_DIRECT_MAP_2G, -pages2g);
}
/*
* Add a backed mem_map array to the virtual mem_map array.
*/
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:07:50 +08:00
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
unsigned long pgt_prot, sgt_prot;
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:07:50 +08:00
unsigned long address = start;
pgd_t *pg_dir;
p4d_t *p4_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
int ret = -ENOMEM;
pgt_prot = pgprot_val(PAGE_KERNEL);
sgt_prot = pgprot_val(SEGMENT_KERNEL);
if (!MACHINE_HAS_NX) {
pgt_prot &= ~_PAGE_NOEXEC;
sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
}
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:07:50 +08:00
for (address = start; address < end;) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
if (!p4_dir)
goto out;
pgd_populate(&init_mm, pg_dir, p4_dir);
}
p4_dir = p4d_offset(pg_dir, address);
if (p4d_none(*p4_dir)) {
pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
if (!pu_dir)
goto out;
p4d_populate(&init_mm, p4_dir, pu_dir);
}
pu_dir = pud_offset(p4_dir, address);
if (pud_none(*pu_dir)) {
pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
if (!pm_dir)
goto out;
pud_populate(&init_mm, pu_dir, pm_dir);
}
pm_dir = pmd_offset(pu_dir, address);
if (pmd_none(*pm_dir)) {
/* Use 1MB frames for vmemmap if available. We always
* use large frames even if they are only partially
* used.
* Otherwise we would have also page tables since
* vmemmap_populate gets called for each section
* separately. */
if (MACHINE_HAS_EDAT1) {
void *new_page;
new_page = vmemmap_alloc_block(PMD_SIZE, node);
if (!new_page)
goto out;
pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
address = (address + PMD_SIZE) & PMD_MASK;
continue;
}
pt_dir = vmem_pte_alloc();
if (!pt_dir)
goto out;
pmd_populate(&init_mm, pm_dir, pt_dir);
} else if (pmd_large(*pm_dir)) {
address = (address + PMD_SIZE) & PMD_MASK;
continue;
}
pt_dir = pte_offset_kernel(pm_dir, address);
if (pte_none(*pt_dir)) {
void *new_page;
new_page = vmemmap_alloc_block(PAGE_SIZE, node);
if (!new_page)
goto out;
pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
}
address += PAGE_SIZE;
}
ret = 0;
out:
return ret;
}
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:07:50 +08:00
void vmemmap_free(unsigned long start, unsigned long end)
{
}
/*
* Add memory segment to the segment list if it doesn't overlap with
* an already present segment.
*/
static int insert_memory_segment(struct memory_segment *seg)
{
struct memory_segment *tmp;
if (seg->start + seg->size > VMEM_MAX_PHYS ||
seg->start + seg->size < seg->start)
return -ERANGE;
list_for_each_entry(tmp, &mem_segs, list) {
if (seg->start >= tmp->start + tmp->size)
continue;
if (seg->start + seg->size <= tmp->start)
continue;
return -ENOSPC;
}
list_add(&seg->list, &mem_segs);
return 0;
}
/*
* Remove memory segment from the segment list.
*/
static void remove_memory_segment(struct memory_segment *seg)
{
list_del(&seg->list);
}
static void __remove_shared_memory(struct memory_segment *seg)
{
remove_memory_segment(seg);
vmem_remove_range(seg->start, seg->size);
}
int vmem_remove_mapping(unsigned long start, unsigned long size)
{
struct memory_segment *seg;
int ret;
mutex_lock(&vmem_mutex);
ret = -ENOENT;
list_for_each_entry(seg, &mem_segs, list) {
if (seg->start == start && seg->size == size)
break;
}
if (seg->start != start || seg->size != size)
goto out;
ret = 0;
__remove_shared_memory(seg);
kfree(seg);
out:
mutex_unlock(&vmem_mutex);
return ret;
}
int vmem_add_mapping(unsigned long start, unsigned long size)
{
struct memory_segment *seg;
int ret;
mutex_lock(&vmem_mutex);
ret = -ENOMEM;
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
goto out;
seg->start = start;
seg->size = size;
ret = insert_memory_segment(seg);
if (ret)
goto out_free;
ret = vmem_add_mem(start, size);
if (ret)
goto out_remove;
goto out;
out_remove:
__remove_shared_memory(seg);
out_free:
kfree(seg);
out:
mutex_unlock(&vmem_mutex);
return ret;
}
/*
* map whole physical memory to virtual memory (identity mapping)
* we reserve enough space in the vmalloc area for vmemmap to hotplug
* additional memory segments.
*/
void __init vmem_map_init(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg)
vmem_add_mem(reg->base, reg->size);
__set_memory((unsigned long) _stext,
(_etext - _stext) >> PAGE_SHIFT,
SET_MEMORY_RO | SET_MEMORY_X);
__set_memory((unsigned long) _etext,
(_eshared - _etext) >> PAGE_SHIFT,
SET_MEMORY_RO);
__set_memory((unsigned long) _sinittext,
(_einittext - _sinittext) >> PAGE_SHIFT,
SET_MEMORY_RO | SET_MEMORY_X);
pr_info("Write protected kernel read-only data: %luk\n",
(_eshared - _stext) >> 10);
}
/*
* Convert memblock.memory to a memory segment list so there is a single
* list that contains all memory segments.
*/
static int __init vmem_convert_memory_chunk(void)
{
struct memblock_region *reg;
struct memory_segment *seg;
mutex_lock(&vmem_mutex);
for_each_memblock(memory, reg) {
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
panic("Out of memory...\n");
seg->start = reg->base;
seg->size = reg->size;
insert_memory_segment(seg);
}
mutex_unlock(&vmem_mutex);
return 0;
}
core_initcall(vmem_convert_memory_chunk);