linux/drivers/net/bonding/bond_options.c

1340 lines
38 KiB
C
Raw Normal View History

/*
* drivers/net/bond/bond_options.c - bonding options
* Copyright (c) 2013 Jiri Pirko <jiri@resnulli.us>
* Copyright (c) 2013 Scott Feldman <sfeldma@cumulusnetworks.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/errno.h>
#include <linux/if.h>
#include <linux/netdevice.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
#include <linux/ctype.h>
#include <linux/inet.h>
#include "bonding.h"
static int bond_option_active_slave_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_miimon_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_updelay_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_downdelay_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_use_carrier_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_arp_interval_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_arp_ip_target_add(struct bonding *bond, __be32 target);
static int bond_option_arp_ip_target_rem(struct bonding *bond, __be32 target);
static int bond_option_arp_ip_targets_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_arp_validate_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_arp_all_targets_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_primary_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_primary_reselect_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_fail_over_mac_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_xmit_hash_policy_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_resend_igmp_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_num_peer_notif_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_all_slaves_active_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_min_links_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_lp_interval_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_pps_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_lacp_rate_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_ad_select_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_queue_id_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_mode_set(struct bonding *bond,
const struct bond_opt_value *newval);
static int bond_option_slaves_set(struct bonding *bond,
const struct bond_opt_value *newval);
static const struct bond_opt_value bond_mode_tbl[] = {
{ "balance-rr", BOND_MODE_ROUNDROBIN, BOND_VALFLAG_DEFAULT},
{ "active-backup", BOND_MODE_ACTIVEBACKUP, 0},
{ "balance-xor", BOND_MODE_XOR, 0},
{ "broadcast", BOND_MODE_BROADCAST, 0},
{ "802.3ad", BOND_MODE_8023AD, 0},
{ "balance-tlb", BOND_MODE_TLB, 0},
{ "balance-alb", BOND_MODE_ALB, 0},
{ NULL, -1, 0},
};
static const struct bond_opt_value bond_pps_tbl[] = {
{ "default", 1, BOND_VALFLAG_DEFAULT},
{ "maxval", USHRT_MAX, BOND_VALFLAG_MAX},
{ NULL, -1, 0},
};
static const struct bond_opt_value bond_xmit_hashtype_tbl[] = {
{ "layer2", BOND_XMIT_POLICY_LAYER2, BOND_VALFLAG_DEFAULT},
{ "layer3+4", BOND_XMIT_POLICY_LAYER34, 0},
{ "layer2+3", BOND_XMIT_POLICY_LAYER23, 0},
{ "encap2+3", BOND_XMIT_POLICY_ENCAP23, 0},
{ "encap3+4", BOND_XMIT_POLICY_ENCAP34, 0},
{ NULL, -1, 0},
};
static const struct bond_opt_value bond_arp_validate_tbl[] = {
{ "none", BOND_ARP_VALIDATE_NONE, BOND_VALFLAG_DEFAULT},
{ "active", BOND_ARP_VALIDATE_ACTIVE, 0},
{ "backup", BOND_ARP_VALIDATE_BACKUP, 0},
{ "all", BOND_ARP_VALIDATE_ALL, 0},
{ "filter", BOND_ARP_FILTER, 0},
{ "filter_active", BOND_ARP_FILTER_ACTIVE, 0},
{ "filter_backup", BOND_ARP_FILTER_BACKUP, 0},
{ NULL, -1, 0},
};
static const struct bond_opt_value bond_arp_all_targets_tbl[] = {
{ "any", BOND_ARP_TARGETS_ANY, BOND_VALFLAG_DEFAULT},
{ "all", BOND_ARP_TARGETS_ALL, 0},
{ NULL, -1, 0},
};
static const struct bond_opt_value bond_fail_over_mac_tbl[] = {
{ "none", BOND_FOM_NONE, BOND_VALFLAG_DEFAULT},
{ "active", BOND_FOM_ACTIVE, 0},
{ "follow", BOND_FOM_FOLLOW, 0},
{ NULL, -1, 0},
};
static const struct bond_opt_value bond_intmax_tbl[] = {
{ "off", 0, BOND_VALFLAG_DEFAULT},
{ "maxval", INT_MAX, BOND_VALFLAG_MAX},
};
static const struct bond_opt_value bond_lacp_rate_tbl[] = {
{ "slow", AD_LACP_SLOW, 0},
{ "fast", AD_LACP_FAST, 0},
{ NULL, -1, 0},
};
static const struct bond_opt_value bond_ad_select_tbl[] = {
{ "stable", BOND_AD_STABLE, BOND_VALFLAG_DEFAULT},
{ "bandwidth", BOND_AD_BANDWIDTH, 0},
{ "count", BOND_AD_COUNT, 0},
{ NULL, -1, 0},
};
static const struct bond_opt_value bond_num_peer_notif_tbl[] = {
{ "off", 0, 0},
{ "maxval", 255, BOND_VALFLAG_MAX},
{ "default", 1, BOND_VALFLAG_DEFAULT},
{ NULL, -1, 0}
};
static const struct bond_opt_value bond_primary_reselect_tbl[] = {
{ "always", BOND_PRI_RESELECT_ALWAYS, BOND_VALFLAG_DEFAULT},
{ "better", BOND_PRI_RESELECT_BETTER, 0},
{ "failure", BOND_PRI_RESELECT_FAILURE, 0},
{ NULL, -1},
};
static const struct bond_opt_value bond_use_carrier_tbl[] = {
{ "off", 0, 0},
{ "on", 1, BOND_VALFLAG_DEFAULT},
{ NULL, -1, 0}
};
static const struct bond_opt_value bond_all_slaves_active_tbl[] = {
{ "off", 0, BOND_VALFLAG_DEFAULT},
{ "on", 1, 0},
{ NULL, -1, 0}
};
static const struct bond_opt_value bond_resend_igmp_tbl[] = {
{ "off", 0, 0},
{ "maxval", 255, BOND_VALFLAG_MAX},
{ "default", 1, BOND_VALFLAG_DEFAULT},
{ NULL, -1, 0}
};
static const struct bond_opt_value bond_lp_interval_tbl[] = {
{ "minval", 1, BOND_VALFLAG_MIN | BOND_VALFLAG_DEFAULT},
{ "maxval", INT_MAX, BOND_VALFLAG_MAX},
{ NULL, -1, 0},
};
static const struct bond_option bond_opts[] = {
[BOND_OPT_MODE] = {
.id = BOND_OPT_MODE,
.name = "mode",
.desc = "bond device mode",
.flags = BOND_OPTFLAG_NOSLAVES | BOND_OPTFLAG_IFDOWN,
.values = bond_mode_tbl,
.set = bond_option_mode_set
},
[BOND_OPT_PACKETS_PER_SLAVE] = {
.id = BOND_OPT_PACKETS_PER_SLAVE,
.name = "packets_per_slave",
.desc = "Packets to send per slave in RR mode",
.unsuppmodes = BOND_MODE_ALL_EX(BIT(BOND_MODE_ROUNDROBIN)),
.values = bond_pps_tbl,
.set = bond_option_pps_set
},
[BOND_OPT_XMIT_HASH] = {
.id = BOND_OPT_XMIT_HASH,
.name = "xmit_hash_policy",
.desc = "balance-xor, 802.3ad, and tlb hashing method",
.values = bond_xmit_hashtype_tbl,
.set = bond_option_xmit_hash_policy_set
},
[BOND_OPT_ARP_VALIDATE] = {
.id = BOND_OPT_ARP_VALIDATE,
.name = "arp_validate",
.desc = "validate src/dst of ARP probes",
.unsuppmodes = BIT(BOND_MODE_8023AD) | BIT(BOND_MODE_TLB) |
BIT(BOND_MODE_ALB),
.values = bond_arp_validate_tbl,
.set = bond_option_arp_validate_set
},
[BOND_OPT_ARP_ALL_TARGETS] = {
.id = BOND_OPT_ARP_ALL_TARGETS,
.name = "arp_all_targets",
.desc = "fail on any/all arp targets timeout",
.values = bond_arp_all_targets_tbl,
.set = bond_option_arp_all_targets_set
},
[BOND_OPT_FAIL_OVER_MAC] = {
.id = BOND_OPT_FAIL_OVER_MAC,
.name = "fail_over_mac",
.desc = "For active-backup, do not set all slaves to the same MAC",
.flags = BOND_OPTFLAG_NOSLAVES,
.values = bond_fail_over_mac_tbl,
.set = bond_option_fail_over_mac_set
},
[BOND_OPT_ARP_INTERVAL] = {
.id = BOND_OPT_ARP_INTERVAL,
.name = "arp_interval",
.desc = "arp interval in milliseconds",
.unsuppmodes = BIT(BOND_MODE_8023AD) | BIT(BOND_MODE_TLB) |
BIT(BOND_MODE_ALB),
.values = bond_intmax_tbl,
.set = bond_option_arp_interval_set
},
[BOND_OPT_ARP_TARGETS] = {
.id = BOND_OPT_ARP_TARGETS,
.name = "arp_ip_target",
.desc = "arp targets in n.n.n.n form",
.flags = BOND_OPTFLAG_RAWVAL,
.set = bond_option_arp_ip_targets_set
},
[BOND_OPT_DOWNDELAY] = {
.id = BOND_OPT_DOWNDELAY,
.name = "downdelay",
.desc = "Delay before considering link down, in milliseconds",
.values = bond_intmax_tbl,
.set = bond_option_downdelay_set
},
[BOND_OPT_UPDELAY] = {
.id = BOND_OPT_UPDELAY,
.name = "updelay",
.desc = "Delay before considering link up, in milliseconds",
.values = bond_intmax_tbl,
.set = bond_option_updelay_set
},
[BOND_OPT_LACP_RATE] = {
.id = BOND_OPT_LACP_RATE,
.name = "lacp_rate",
.desc = "LACPDU tx rate to request from 802.3ad partner",
.flags = BOND_OPTFLAG_IFDOWN,
.unsuppmodes = BOND_MODE_ALL_EX(BIT(BOND_MODE_8023AD)),
.values = bond_lacp_rate_tbl,
.set = bond_option_lacp_rate_set
},
[BOND_OPT_MINLINKS] = {
.id = BOND_OPT_MINLINKS,
.name = "min_links",
.desc = "Minimum number of available links before turning on carrier",
.values = bond_intmax_tbl,
.set = bond_option_min_links_set
},
[BOND_OPT_AD_SELECT] = {
.id = BOND_OPT_AD_SELECT,
.name = "ad_select",
.desc = "803.ad aggregation selection logic",
.flags = BOND_OPTFLAG_IFDOWN,
.values = bond_ad_select_tbl,
.set = bond_option_ad_select_set
},
[BOND_OPT_NUM_PEER_NOTIF] = {
.id = BOND_OPT_NUM_PEER_NOTIF,
.name = "num_unsol_na",
.desc = "Number of peer notifications to send on failover event",
.values = bond_num_peer_notif_tbl,
.set = bond_option_num_peer_notif_set
},
[BOND_OPT_MIIMON] = {
.id = BOND_OPT_MIIMON,
.name = "miimon",
.desc = "Link check interval in milliseconds",
.values = bond_intmax_tbl,
.set = bond_option_miimon_set
},
[BOND_OPT_PRIMARY] = {
.id = BOND_OPT_PRIMARY,
.name = "primary",
.desc = "Primary network device to use",
.flags = BOND_OPTFLAG_RAWVAL,
.unsuppmodes = BOND_MODE_ALL_EX(BIT(BOND_MODE_ACTIVEBACKUP) |
BIT(BOND_MODE_TLB) |
BIT(BOND_MODE_ALB)),
.set = bond_option_primary_set
},
[BOND_OPT_PRIMARY_RESELECT] = {
.id = BOND_OPT_PRIMARY_RESELECT,
.name = "primary_reselect",
.desc = "Reselect primary slave once it comes up",
.values = bond_primary_reselect_tbl,
.set = bond_option_primary_reselect_set
},
[BOND_OPT_USE_CARRIER] = {
.id = BOND_OPT_USE_CARRIER,
.name = "use_carrier",
.desc = "Use netif_carrier_ok (vs MII ioctls) in miimon",
.values = bond_use_carrier_tbl,
.set = bond_option_use_carrier_set
},
[BOND_OPT_ACTIVE_SLAVE] = {
.id = BOND_OPT_ACTIVE_SLAVE,
.name = "active_slave",
.desc = "Currently active slave",
.flags = BOND_OPTFLAG_RAWVAL,
.unsuppmodes = BOND_MODE_ALL_EX(BIT(BOND_MODE_ACTIVEBACKUP) |
BIT(BOND_MODE_TLB) |
BIT(BOND_MODE_ALB)),
.set = bond_option_active_slave_set
},
[BOND_OPT_QUEUE_ID] = {
.id = BOND_OPT_QUEUE_ID,
.name = "queue_id",
.desc = "Set queue id of a slave",
.flags = BOND_OPTFLAG_RAWVAL,
.set = bond_option_queue_id_set
},
[BOND_OPT_ALL_SLAVES_ACTIVE] = {
.id = BOND_OPT_ALL_SLAVES_ACTIVE,
.name = "all_slaves_active",
.desc = "Keep all frames received on an interface by setting active flag for all slaves",
.values = bond_all_slaves_active_tbl,
.set = bond_option_all_slaves_active_set
},
[BOND_OPT_RESEND_IGMP] = {
.id = BOND_OPT_RESEND_IGMP,
.name = "resend_igmp",
.desc = "Number of IGMP membership reports to send on link failure",
.values = bond_resend_igmp_tbl,
.set = bond_option_resend_igmp_set
},
[BOND_OPT_LP_INTERVAL] = {
.id = BOND_OPT_LP_INTERVAL,
.name = "lp_interval",
.desc = "The number of seconds between instances where the bonding driver sends learning packets to each slave's peer switch",
.values = bond_lp_interval_tbl,
.set = bond_option_lp_interval_set
},
[BOND_OPT_SLAVES] = {
.id = BOND_OPT_SLAVES,
.name = "slaves",
.desc = "Slave membership management",
.flags = BOND_OPTFLAG_RAWVAL,
.set = bond_option_slaves_set
},
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
{ }
};
/* Searches for a value in opt's values[] table */
const struct bond_opt_value *bond_opt_get_val(unsigned int option, u64 val)
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
{
const struct bond_option *opt;
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
int i;
opt = bond_opt_get(option);
if (WARN_ON(!opt))
return NULL;
for (i = 0; opt->values && opt->values[i].string; i++)
if (opt->values[i].value == val)
return &opt->values[i];
return NULL;
}
/* Searches for a value in opt's values[] table which matches the flagmask */
static const struct bond_opt_value *bond_opt_get_flags(const struct bond_option *opt,
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
u32 flagmask)
{
int i;
for (i = 0; opt->values && opt->values[i].string; i++)
if (opt->values[i].flags & flagmask)
return &opt->values[i];
return NULL;
}
/* If maxval is missing then there's no range to check. In case minval is
* missing then it's considered to be 0.
*/
static bool bond_opt_check_range(const struct bond_option *opt, u64 val)
{
const struct bond_opt_value *minval, *maxval;
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
minval = bond_opt_get_flags(opt, BOND_VALFLAG_MIN);
maxval = bond_opt_get_flags(opt, BOND_VALFLAG_MAX);
if (!maxval || (minval && val < minval->value) || val > maxval->value)
return false;
return true;
}
/**
* bond_opt_parse - parse option value
* @opt: the option to parse against
* @val: value to parse
*
* This function tries to extract the value from @val and check if it's
* a possible match for the option and returns NULL if a match isn't found,
* or the struct_opt_value that matched. It also strips the new line from
* @val->string if it's present.
*/
const struct bond_opt_value *bond_opt_parse(const struct bond_option *opt,
struct bond_opt_value *val)
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
{
char *p, valstr[BOND_OPT_MAX_NAMELEN + 1] = { 0, };
const struct bond_opt_value *tbl;
const struct bond_opt_value *ret = NULL;
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
bool checkval;
int i, rv;
/* No parsing if the option wants a raw val */
if (opt->flags & BOND_OPTFLAG_RAWVAL)
return val;
tbl = opt->values;
if (!tbl)
goto out;
/* ULLONG_MAX is used to bypass string processing */
checkval = val->value != ULLONG_MAX;
if (!checkval) {
if (!val->string)
goto out;
p = strchr(val->string, '\n');
if (p)
*p = '\0';
for (p = val->string; *p; p++)
if (!(isdigit(*p) || isspace(*p)))
break;
/* The following code extracts the string to match or the value
* and sets checkval appropriately
*/
if (*p) {
rv = sscanf(val->string, "%32s", valstr);
} else {
rv = sscanf(val->string, "%llu", &val->value);
checkval = true;
}
if (!rv)
goto out;
}
for (i = 0; tbl[i].string; i++) {
/* Check for exact match */
if (checkval) {
if (val->value == tbl[i].value)
ret = &tbl[i];
} else {
if (!strcmp(valstr, "default") &&
(tbl[i].flags & BOND_VALFLAG_DEFAULT))
ret = &tbl[i];
if (!strcmp(valstr, tbl[i].string))
ret = &tbl[i];
}
/* Found an exact match */
if (ret)
goto out;
}
/* Possible range match */
if (checkval && bond_opt_check_range(opt, val->value))
ret = val;
out:
return ret;
}
/* Check opt's dependencies against bond mode and currently set options */
static int bond_opt_check_deps(struct bonding *bond,
const struct bond_option *opt)
{
struct bond_params *params = &bond->params;
if (test_bit(params->mode, &opt->unsuppmodes))
return -EACCES;
if ((opt->flags & BOND_OPTFLAG_NOSLAVES) && bond_has_slaves(bond))
return -ENOTEMPTY;
if ((opt->flags & BOND_OPTFLAG_IFDOWN) && (bond->dev->flags & IFF_UP))
return -EBUSY;
return 0;
}
static void bond_opt_dep_print(struct bonding *bond,
const struct bond_option *opt)
{
const struct bond_opt_value *modeval;
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
struct bond_params *params;
params = &bond->params;
modeval = bond_opt_get_val(BOND_OPT_MODE, params->mode);
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
if (test_bit(params->mode, &opt->unsuppmodes))
pr_err("%s: option %s: mode dependency failed, not supported in mode %s(%llu)\n",
bond->dev->name, opt->name,
modeval->string, modeval->value);
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
}
static void bond_opt_error_interpret(struct bonding *bond,
const struct bond_option *opt,
int error, const struct bond_opt_value *val)
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
{
const struct bond_opt_value *minval, *maxval;
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
char *p;
switch (error) {
case -EINVAL:
if (val) {
if (val->string) {
/* sometimes RAWVAL opts may have new lines */
p = strchr(val->string, '\n');
if (p)
*p = '\0';
pr_err("%s: option %s: invalid value (%s)\n",
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
bond->dev->name, opt->name, val->string);
} else {
pr_err("%s: option %s: invalid value (%llu)\n",
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
bond->dev->name, opt->name, val->value);
}
}
minval = bond_opt_get_flags(opt, BOND_VALFLAG_MIN);
maxval = bond_opt_get_flags(opt, BOND_VALFLAG_MAX);
if (!maxval)
break;
pr_err("%s: option %s: allowed values %llu - %llu\n",
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
bond->dev->name, opt->name, minval ? minval->value : 0,
maxval->value);
break;
case -EACCES:
bond_opt_dep_print(bond, opt);
break;
case -ENOTEMPTY:
pr_err("%s: option %s: unable to set because the bond device has slaves\n",
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
bond->dev->name, opt->name);
break;
case -EBUSY:
pr_err("%s: option %s: unable to set because the bond device is up\n",
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
bond->dev->name, opt->name);
break;
default:
break;
}
}
/**
* __bond_opt_set - set a bonding option
* @bond: target bond device
* @option: option to set
* @val: value to set it to
*
* This function is used to change the bond's option value, it can be
* used for both enabling/changing an option and for disabling it. RTNL lock
* must be obtained before calling this function.
*/
int __bond_opt_set(struct bonding *bond,
unsigned int option, struct bond_opt_value *val)
{
const struct bond_opt_value *retval = NULL;
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
const struct bond_option *opt;
int ret = -ENOENT;
ASSERT_RTNL();
opt = bond_opt_get(option);
if (WARN_ON(!val) || WARN_ON(!opt))
goto out;
ret = bond_opt_check_deps(bond, opt);
if (ret)
goto out;
retval = bond_opt_parse(opt, val);
if (!retval) {
ret = -EINVAL;
goto out;
}
ret = opt->set(bond, retval);
out:
if (ret)
bond_opt_error_interpret(bond, opt, ret, val);
return ret;
}
/**
* bond_opt_tryset_rtnl - try to acquire rtnl and call __bond_opt_set
* @bond: target bond device
* @option: option to set
* @buf: value to set it to
*
* This function tries to acquire RTNL without blocking and if successful
* calls __bond_opt_set. It is mainly used for sysfs option manipulation.
*/
int bond_opt_tryset_rtnl(struct bonding *bond, unsigned int option, char *buf)
{
struct bond_opt_value optval;
int ret;
if (!rtnl_trylock())
return restart_syscall();
bond_opt_initstr(&optval, buf);
ret = __bond_opt_set(bond, option, &optval);
rtnl_unlock();
return ret;
}
/**
* bond_opt_get - get a pointer to an option
* @option: option for which to return a pointer
*
* This function checks if option is valid and if so returns a pointer
* to its entry in the bond_opts[] option array.
*/
const struct bond_option *bond_opt_get(unsigned int option)
bonding: add infrastructure for an option API This patch adds the necessary basic infrastructure to support centralized and unified option manipulation API for the bonding. The new structure bond_option will be used to describe each option with its dependencies on modes which will be checked automatically thus removing a lot of duplicated code. Also automatic range checking is added for some options. Currently the option setting function requires RTNL to be acquired prior to calling it, since many options already rely on RTNL it seemed like the best choice to protect all against common race conditions. In order to add an option the following steps need to be done: 1. Add an entry BOND_OPT_<option> to bond_options.h so it gets a unique id and a bit corresponding to the id 2. Add a bond_option entry to the bond_opts[] array in bond_options.c which describes the option, its dependencies and its manipulation function 3. Add code to export the option through sysfs and/or as a module parameter (the sysfs export will be made automatically in the future) The options can have different flags set, currently the following are supported: BOND_OPTFLAG_NOSLAVES - require that the bond device has no slaves prior to setting the option BOND_OPTFLAG_IFDOWN - require that the bond device is down prior to setting the option BOND_OPTFLAG_RAWVAL - don't parse the value but return it raw for the option to parse There's a new value structure to describe different types of values which can have the following flags: BOND_VALFLAG_DEFAULT - marks the default option (permanent string alias to this option is "default") BOND_VALFLAG_MIN - the minimum value that this option can have BOND_VALFLAG_MAX - the maximum value that this option can have An example would be nice here, so if we have an option which can have the values "off"(2), "special"(4, default) and supports a range, say 16 - 32, it should be defined as follows: "off", 2, "special", 4, BOND_VALFLAG_DEFAULT, "rangemin", 16, BOND_VALFLAG_MIN, "rangemax", 32, BOND_VALFLAG_MAX So we have the valid intervals: [2, 2], [4, 4], [16, 32] Also the valid strings: "off" = 2, "special" and "default" = 4 "rangemin" = 16, "rangemax" = 32 BOND_VALFLAG_(MIN|MAX) can be used to specify a valid range for an option, if MIN is omitted then 0 is considered as a minimum. If an exact match is found in the values[] table it will be returned, otherwise the range is tried (if available). The option parameter passing is done by using a special structure called bond_opt_value which can take either a string or a value to parse. One of the bond_opt_init(val|str) macros should be used depending on which one does the user want to parse (string or value). Then a call to __bond_opt_set should be done under RTNL. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 21:53:16 +08:00
{
if (!BOND_OPT_VALID(option))
return NULL;
return &bond_opts[option];
}
int bond_option_mode_set(struct bonding *bond, const struct bond_opt_value *newval)
{
if (BOND_NO_USES_ARP(newval->value) && bond->params.arp_interval) {
pr_info("%s: %s mode is incompatible with arp monitoring, start mii monitoring\n",
bond->dev->name, newval->string);
/* disable arp monitoring */
bond->params.arp_interval = 0;
/* set miimon to default value */
bond->params.miimon = BOND_DEFAULT_MIIMON;
pr_info("%s: Setting MII monitoring interval to %d\n",
bond->dev->name, bond->params.miimon);
}
/* don't cache arp_validate between modes */
bond->params.arp_validate = BOND_ARP_VALIDATE_NONE;
bond->params.mode = newval->value;
return 0;
}
static struct net_device *__bond_option_active_slave_get(struct bonding *bond,
struct slave *slave)
{
return USES_PRIMARY(bond->params.mode) && slave ? slave->dev : NULL;
}
struct net_device *bond_option_active_slave_get_rcu(struct bonding *bond)
{
struct slave *slave = rcu_dereference(bond->curr_active_slave);
return __bond_option_active_slave_get(bond, slave);
}
struct net_device *bond_option_active_slave_get(struct bonding *bond)
{
return __bond_option_active_slave_get(bond, bond->curr_active_slave);
}
static int bond_option_active_slave_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
char ifname[IFNAMSIZ] = { 0, };
struct net_device *slave_dev;
int ret = 0;
sscanf(newval->string, "%15s", ifname); /* IFNAMSIZ */
if (!strlen(ifname) || newval->string[0] == '\n') {
slave_dev = NULL;
} else {
slave_dev = __dev_get_by_name(dev_net(bond->dev), ifname);
if (!slave_dev)
return -ENODEV;
}
if (slave_dev) {
if (!netif_is_bond_slave(slave_dev)) {
pr_err("Device %s is not bonding slave\n",
slave_dev->name);
return -EINVAL;
}
if (bond->dev != netdev_master_upper_dev_get(slave_dev)) {
pr_err("%s: Device %s is not our slave\n",
bond->dev->name, slave_dev->name);
return -EINVAL;
}
}
block_netpoll_tx();
write_lock_bh(&bond->curr_slave_lock);
/* check to see if we are clearing active */
if (!slave_dev) {
pr_info("%s: Clearing current active slave\n", bond->dev->name);
RCU_INIT_POINTER(bond->curr_active_slave, NULL);
bond_select_active_slave(bond);
} else {
struct slave *old_active = bond->curr_active_slave;
struct slave *new_active = bond_slave_get_rtnl(slave_dev);
BUG_ON(!new_active);
if (new_active == old_active) {
/* do nothing */
pr_info("%s: %s is already the current active slave\n",
bond->dev->name, new_active->dev->name);
} else {
if (old_active && (new_active->link == BOND_LINK_UP) &&
IS_UP(new_active->dev)) {
pr_info("%s: Setting %s as active slave\n",
bond->dev->name, new_active->dev->name);
bond_change_active_slave(bond, new_active);
} else {
pr_err("%s: Could not set %s as active slave; either %s is down or the link is down\n",
bond->dev->name, new_active->dev->name,
new_active->dev->name);
ret = -EINVAL;
}
}
}
write_unlock_bh(&bond->curr_slave_lock);
unblock_netpoll_tx();
return ret;
}
static int bond_option_miimon_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting MII monitoring interval to %llu\n",
bond->dev->name, newval->value);
bond->params.miimon = newval->value;
if (bond->params.updelay)
pr_info("%s: Note: Updating updelay (to %d) since it is a multiple of the miimon value\n",
bond->dev->name,
bond->params.updelay * bond->params.miimon);
if (bond->params.downdelay)
pr_info("%s: Note: Updating downdelay (to %d) since it is a multiple of the miimon value\n",
bond->dev->name,
bond->params.downdelay * bond->params.miimon);
if (newval->value && bond->params.arp_interval) {
pr_info("%s: MII monitoring cannot be used with ARP monitoring - disabling ARP monitoring...\n",
bond->dev->name);
bond->params.arp_interval = 0;
if (bond->params.arp_validate)
bond->params.arp_validate = BOND_ARP_VALIDATE_NONE;
}
if (bond->dev->flags & IFF_UP) {
/* If the interface is up, we may need to fire off
* the MII timer. If the interface is down, the
* timer will get fired off when the open function
* is called.
*/
if (!newval->value) {
cancel_delayed_work_sync(&bond->mii_work);
} else {
cancel_delayed_work_sync(&bond->arp_work);
queue_delayed_work(bond->wq, &bond->mii_work, 0);
}
}
return 0;
}
static int bond_option_updelay_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
int value = newval->value;
if (!bond->params.miimon) {
pr_err("%s: Unable to set up delay as MII monitoring is disabled\n",
bond->dev->name);
return -EPERM;
}
if ((value % bond->params.miimon) != 0) {
pr_warn("%s: Warning: up delay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n",
bond->dev->name, value,
bond->params.miimon,
(value / bond->params.miimon) *
bond->params.miimon);
}
bond->params.updelay = value / bond->params.miimon;
pr_info("%s: Setting up delay to %d\n",
bond->dev->name, bond->params.updelay * bond->params.miimon);
return 0;
}
static int bond_option_downdelay_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
int value = newval->value;
if (!bond->params.miimon) {
pr_err("%s: Unable to set down delay as MII monitoring is disabled\n",
bond->dev->name);
return -EPERM;
}
if ((value % bond->params.miimon) != 0) {
pr_warn("%s: Warning: down delay (%d) is not a multiple of miimon (%d), delay rounded to %d ms\n",
bond->dev->name, value,
bond->params.miimon,
(value / bond->params.miimon) *
bond->params.miimon);
}
bond->params.downdelay = value / bond->params.miimon;
pr_info("%s: Setting down delay to %d\n",
bond->dev->name, bond->params.downdelay * bond->params.miimon);
return 0;
}
static int bond_option_use_carrier_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting use_carrier to %llu\n",
bond->dev->name, newval->value);
bond->params.use_carrier = newval->value;
return 0;
}
static int bond_option_arp_interval_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting ARP monitoring interval to %llu\n",
bond->dev->name, newval->value);
bond->params.arp_interval = newval->value;
if (newval->value) {
if (bond->params.miimon) {
pr_info("%s: ARP monitoring cannot be used with MII monitoring. %s Disabling MII monitoring\n",
bond->dev->name, bond->dev->name);
bond->params.miimon = 0;
}
if (!bond->params.arp_targets[0])
pr_info("%s: ARP monitoring has been set up, but no ARP targets have been specified\n",
bond->dev->name);
}
if (bond->dev->flags & IFF_UP) {
/* If the interface is up, we may need to fire off
* the ARP timer. If the interface is down, the
* timer will get fired off when the open function
* is called.
*/
if (!newval->value) {
if (bond->params.arp_validate)
bond->recv_probe = NULL;
cancel_delayed_work_sync(&bond->arp_work);
} else {
/* arp_validate can be set only in active-backup mode */
bond->recv_probe = bond_arp_rcv;
cancel_delayed_work_sync(&bond->mii_work);
queue_delayed_work(bond->wq, &bond->arp_work, 0);
}
}
return 0;
}
static void _bond_options_arp_ip_target_set(struct bonding *bond, int slot,
__be32 target,
unsigned long last_rx)
{
__be32 *targets = bond->params.arp_targets;
struct list_head *iter;
struct slave *slave;
if (slot >= 0 && slot < BOND_MAX_ARP_TARGETS) {
bond_for_each_slave(bond, slave, iter)
slave->target_last_arp_rx[slot] = last_rx;
targets[slot] = target;
}
}
static int _bond_option_arp_ip_target_add(struct bonding *bond, __be32 target)
{
__be32 *targets = bond->params.arp_targets;
int ind;
if (IS_IP_TARGET_UNUSABLE_ADDRESS(target)) {
pr_err("%s: invalid ARP target %pI4 specified for addition\n",
bond->dev->name, &target);
return -EINVAL;
}
if (bond_get_targets_ip(targets, target) != -1) { /* dup */
pr_err("%s: ARP target %pI4 is already present\n",
bond->dev->name, &target);
return -EINVAL;
}
ind = bond_get_targets_ip(targets, 0); /* first free slot */
if (ind == -1) {
pr_err("%s: ARP target table is full!\n", bond->dev->name);
return -EINVAL;
}
pr_info("%s: Adding ARP target %pI4\n", bond->dev->name, &target);
_bond_options_arp_ip_target_set(bond, ind, target, jiffies);
return 0;
}
static int bond_option_arp_ip_target_add(struct bonding *bond, __be32 target)
{
int ret;
/* not to race with bond_arp_rcv */
write_lock_bh(&bond->lock);
ret = _bond_option_arp_ip_target_add(bond, target);
write_unlock_bh(&bond->lock);
return ret;
}
static int bond_option_arp_ip_target_rem(struct bonding *bond, __be32 target)
{
__be32 *targets = bond->params.arp_targets;
struct list_head *iter;
struct slave *slave;
unsigned long *targets_rx;
int ind, i;
if (IS_IP_TARGET_UNUSABLE_ADDRESS(target)) {
pr_err("%s: invalid ARP target %pI4 specified for removal\n",
bond->dev->name, &target);
return -EINVAL;
}
ind = bond_get_targets_ip(targets, target);
if (ind == -1) {
pr_err("%s: unable to remove nonexistent ARP target %pI4\n",
bond->dev->name, &target);
return -EINVAL;
}
if (ind == 0 && !targets[1] && bond->params.arp_interval)
pr_warn("%s: Removing last arp target with arp_interval on\n",
bond->dev->name);
pr_info("%s: Removing ARP target %pI4\n", bond->dev->name, &target);
/* not to race with bond_arp_rcv */
write_lock_bh(&bond->lock);
bond_for_each_slave(bond, slave, iter) {
targets_rx = slave->target_last_arp_rx;
for (i = ind; (i < BOND_MAX_ARP_TARGETS-1) && targets[i+1]; i++)
targets_rx[i] = targets_rx[i+1];
targets_rx[i] = 0;
}
for (i = ind; (i < BOND_MAX_ARP_TARGETS-1) && targets[i+1]; i++)
targets[i] = targets[i+1];
targets[i] = 0;
write_unlock_bh(&bond->lock);
return 0;
}
void bond_option_arp_ip_targets_clear(struct bonding *bond)
{
int i;
/* not to race with bond_arp_rcv */
write_lock_bh(&bond->lock);
for (i = 0; i < BOND_MAX_ARP_TARGETS; i++)
_bond_options_arp_ip_target_set(bond, i, 0, 0);
write_unlock_bh(&bond->lock);
}
static int bond_option_arp_ip_targets_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
int ret = -EPERM;
__be32 target;
if (newval->string) {
if (!in4_pton(newval->string+1, -1, (u8 *)&target, -1, NULL)) {
pr_err("%s: invalid ARP target %pI4 specified\n",
bond->dev->name, &target);
return ret;
}
if (newval->string[0] == '+')
ret = bond_option_arp_ip_target_add(bond, target);
else if (newval->string[0] == '-')
ret = bond_option_arp_ip_target_rem(bond, target);
else
pr_err("no command found in arp_ip_targets file for bond %s - use +<addr> or -<addr>\n",
bond->dev->name);
} else {
target = newval->value;
ret = bond_option_arp_ip_target_add(bond, target);
}
return ret;
}
static int bond_option_arp_validate_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting arp_validate to %s (%llu)\n",
bond->dev->name, newval->string, newval->value);
if (bond->dev->flags & IFF_UP) {
if (!newval->value)
bond->recv_probe = NULL;
else if (bond->params.arp_interval)
bond->recv_probe = bond_arp_rcv;
}
bond->params.arp_validate = newval->value;
return 0;
}
static int bond_option_arp_all_targets_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting arp_all_targets to %s (%llu)\n",
bond->dev->name, newval->string, newval->value);
bond->params.arp_all_targets = newval->value;
return 0;
}
static int bond_option_primary_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
char *p, *primary = newval->string;
struct list_head *iter;
struct slave *slave;
block_netpoll_tx();
read_lock(&bond->lock);
write_lock_bh(&bond->curr_slave_lock);
p = strchr(primary, '\n');
if (p)
*p = '\0';
/* check to see if we are clearing primary */
if (!strlen(primary)) {
pr_info("%s: Setting primary slave to None\n", bond->dev->name);
bond->primary_slave = NULL;
memset(bond->params.primary, 0, sizeof(bond->params.primary));
bond_select_active_slave(bond);
goto out;
}
bond_for_each_slave(bond, slave, iter) {
if (strncmp(slave->dev->name, primary, IFNAMSIZ) == 0) {
pr_info("%s: Setting %s as primary slave\n",
bond->dev->name, slave->dev->name);
bond->primary_slave = slave;
strcpy(bond->params.primary, slave->dev->name);
bond_select_active_slave(bond);
goto out;
}
}
if (bond->primary_slave) {
pr_info("%s: Setting primary slave to None\n", bond->dev->name);
bond->primary_slave = NULL;
bond_select_active_slave(bond);
}
strncpy(bond->params.primary, primary, IFNAMSIZ);
bond->params.primary[IFNAMSIZ - 1] = 0;
pr_info("%s: Recording %s as primary, but it has not been enslaved to %s yet\n",
bond->dev->name, primary, bond->dev->name);
out:
write_unlock_bh(&bond->curr_slave_lock);
read_unlock(&bond->lock);
unblock_netpoll_tx();
return 0;
}
static int bond_option_primary_reselect_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting primary_reselect to %s (%llu)\n",
bond->dev->name, newval->string, newval->value);
bond->params.primary_reselect = newval->value;
block_netpoll_tx();
write_lock_bh(&bond->curr_slave_lock);
bond_select_active_slave(bond);
write_unlock_bh(&bond->curr_slave_lock);
unblock_netpoll_tx();
return 0;
}
static int bond_option_fail_over_mac_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting fail_over_mac to %s (%llu)\n",
bond->dev->name, newval->string, newval->value);
bond->params.fail_over_mac = newval->value;
return 0;
}
static int bond_option_xmit_hash_policy_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting xmit hash policy to %s (%llu)\n",
bond->dev->name, newval->string, newval->value);
bond->params.xmit_policy = newval->value;
return 0;
}
static int bond_option_resend_igmp_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting resend_igmp to %llu\n",
bond->dev->name, newval->value);
bond->params.resend_igmp = newval->value;
return 0;
}
static int bond_option_num_peer_notif_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
bond->params.num_peer_notif = newval->value;
return 0;
}
static int bond_option_all_slaves_active_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
struct list_head *iter;
struct slave *slave;
if (newval->value == bond->params.all_slaves_active)
return 0;
bond->params.all_slaves_active = newval->value;
bond_for_each_slave(bond, slave, iter) {
if (!bond_is_active_slave(slave)) {
if (newval->value)
slave->inactive = 0;
else
slave->inactive = 1;
}
}
return 0;
}
static int bond_option_min_links_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting min links value to %llu\n",
bond->dev->name, newval->value);
bond->params.min_links = newval->value;
return 0;
}
static int bond_option_lp_interval_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
bond->params.lp_interval = newval->value;
return 0;
}
static int bond_option_pps_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
bond->params.packets_per_slave = newval->value;
if (newval->value > 0) {
reciprocal_divide: update/correction of the algorithm Jakub Zawadzki noticed that some divisions by reciprocal_divide() were not correct [1][2], which he could also show with BPF code after divisions are transformed into reciprocal_value() for runtime invariance which can be passed to reciprocal_divide() later on; reverse in BPF dump ended up with a different, off-by-one K in some situations. This has been fixed by Eric Dumazet in commit aee636c4809fa5 ("bpf: do not use reciprocal divide"). This follow-up patch improves reciprocal_value() and reciprocal_divide() to work in all cases by using Granlund and Montgomery method, so that also future use is safe and without any non-obvious side-effects. Known problems with the old implementation were that division by 1 always returned 0 and some off-by-ones when the dividend and divisor where very large. This seemed to not be problematic with its current users, as far as we can tell. Eric Dumazet checked for the slab usage, we cannot surely say so in the case of flex_array. Still, in order to fix that, we propose an extension from the original implementation from commit 6a2d7a955d8d resp. [3][4], by using the algorithm proposed in "Division by Invariant Integers Using Multiplication" [5], Torbjörn Granlund and Peter L. Montgomery, that is, pseudocode for q = n/d where q, n, d is in u32 universe: 1) Initialization: int l = ceil(log_2 d) uword m' = floor((1<<32)*((1<<l)-d)/d)+1 int sh_1 = min(l,1) int sh_2 = max(l-1,0) 2) For q = n/d, all uword: uword t = (n*m')>>32 q = (t+((n-t)>>sh_1))>>sh_2 The assembler implementation from Agner Fog [6] also helped a lot while implementing. We have tested the implementation on x86_64, ppc64, i686, s390x; on x86_64/haswell we're still half the latency compared to normal divide. Joint work with Daniel Borkmann. [1] http://www.wireshark.org/~darkjames/reciprocal-buggy.c [2] http://www.wireshark.org/~darkjames/set-and-dump-filter-k-bug.c [3] https://gmplib.org/~tege/division-paper.pdf [4] http://homepage.cs.uiowa.edu/~jones/bcd/divide.html [5] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556 [6] http://www.agner.org/optimize/asmlib.zip Reported-by: Jakub Zawadzki <darkjames-ws@darkjames.pl> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: linux-kernel@vger.kernel.org Cc: Jesse Gross <jesse@nicira.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andy Gospodarek <andy@greyhouse.net> Cc: Veaceslav Falico <vfalico@redhat.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Jakub Zawadzki <darkjames-ws@darkjames.pl> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 09:29:41 +08:00
bond->params.reciprocal_packets_per_slave =
reciprocal_value(newval->value);
reciprocal_divide: update/correction of the algorithm Jakub Zawadzki noticed that some divisions by reciprocal_divide() were not correct [1][2], which he could also show with BPF code after divisions are transformed into reciprocal_value() for runtime invariance which can be passed to reciprocal_divide() later on; reverse in BPF dump ended up with a different, off-by-one K in some situations. This has been fixed by Eric Dumazet in commit aee636c4809fa5 ("bpf: do not use reciprocal divide"). This follow-up patch improves reciprocal_value() and reciprocal_divide() to work in all cases by using Granlund and Montgomery method, so that also future use is safe and without any non-obvious side-effects. Known problems with the old implementation were that division by 1 always returned 0 and some off-by-ones when the dividend and divisor where very large. This seemed to not be problematic with its current users, as far as we can tell. Eric Dumazet checked for the slab usage, we cannot surely say so in the case of flex_array. Still, in order to fix that, we propose an extension from the original implementation from commit 6a2d7a955d8d resp. [3][4], by using the algorithm proposed in "Division by Invariant Integers Using Multiplication" [5], Torbjörn Granlund and Peter L. Montgomery, that is, pseudocode for q = n/d where q, n, d is in u32 universe: 1) Initialization: int l = ceil(log_2 d) uword m' = floor((1<<32)*((1<<l)-d)/d)+1 int sh_1 = min(l,1) int sh_2 = max(l-1,0) 2) For q = n/d, all uword: uword t = (n*m')>>32 q = (t+((n-t)>>sh_1))>>sh_2 The assembler implementation from Agner Fog [6] also helped a lot while implementing. We have tested the implementation on x86_64, ppc64, i686, s390x; on x86_64/haswell we're still half the latency compared to normal divide. Joint work with Daniel Borkmann. [1] http://www.wireshark.org/~darkjames/reciprocal-buggy.c [2] http://www.wireshark.org/~darkjames/set-and-dump-filter-k-bug.c [3] https://gmplib.org/~tege/division-paper.pdf [4] http://homepage.cs.uiowa.edu/~jones/bcd/divide.html [5] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556 [6] http://www.agner.org/optimize/asmlib.zip Reported-by: Jakub Zawadzki <darkjames-ws@darkjames.pl> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: linux-kernel@vger.kernel.org Cc: Jesse Gross <jesse@nicira.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andy Gospodarek <andy@greyhouse.net> Cc: Veaceslav Falico <vfalico@redhat.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Jakub Zawadzki <darkjames-ws@darkjames.pl> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 09:29:41 +08:00
} else {
/* reciprocal_packets_per_slave is unused if
* packets_per_slave is 0 or 1, just initialize it
*/
bond->params.reciprocal_packets_per_slave =
(struct reciprocal_value) { 0 };
}
return 0;
}
static int bond_option_lacp_rate_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting LACP rate to %s (%llu)\n",
bond->dev->name, newval->string, newval->value);
bond->params.lacp_fast = newval->value;
bond_3ad_update_lacp_rate(bond);
return 0;
}
static int bond_option_ad_select_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
pr_info("%s: Setting ad_select to %s (%llu)\n",
bond->dev->name, newval->string, newval->value);
bond->params.ad_select = newval->value;
return 0;
}
static int bond_option_queue_id_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
struct slave *slave, *update_slave;
struct net_device *sdev;
struct list_head *iter;
char *delim;
int ret = 0;
u16 qid;
/* delim will point to queue id if successful */
delim = strchr(newval->string, ':');
if (!delim)
goto err_no_cmd;
/* Terminate string that points to device name and bump it
* up one, so we can read the queue id there.
*/
*delim = '\0';
if (sscanf(++delim, "%hd\n", &qid) != 1)
goto err_no_cmd;
/* Check buffer length, valid ifname and queue id */
if (!dev_valid_name(newval->string) ||
qid > bond->dev->real_num_tx_queues)
goto err_no_cmd;
/* Get the pointer to that interface if it exists */
sdev = __dev_get_by_name(dev_net(bond->dev), newval->string);
if (!sdev)
goto err_no_cmd;
/* Search for thes slave and check for duplicate qids */
update_slave = NULL;
bond_for_each_slave(bond, slave, iter) {
if (sdev == slave->dev)
/* We don't need to check the matching
* slave for dups, since we're overwriting it
*/
update_slave = slave;
else if (qid && qid == slave->queue_id) {
goto err_no_cmd;
}
}
if (!update_slave)
goto err_no_cmd;
/* Actually set the qids for the slave */
update_slave->queue_id = qid;
out:
return ret;
err_no_cmd:
pr_info("invalid input for queue_id set for %s\n", bond->dev->name);
ret = -EPERM;
goto out;
}
static int bond_option_slaves_set(struct bonding *bond,
const struct bond_opt_value *newval)
{
char command[IFNAMSIZ + 1] = { 0, };
struct net_device *dev;
char *ifname;
int ret;
sscanf(newval->string, "%16s", command); /* IFNAMSIZ*/
ifname = command + 1;
if ((strlen(command) <= 1) ||
!dev_valid_name(ifname))
goto err_no_cmd;
dev = __dev_get_by_name(dev_net(bond->dev), ifname);
if (!dev) {
pr_info("%s: interface %s does not exist!\n",
bond->dev->name, ifname);
ret = -ENODEV;
goto out;
}
switch (command[0]) {
case '+':
pr_info("%s: Adding slave %s\n", bond->dev->name, dev->name);
ret = bond_enslave(bond->dev, dev);
break;
case '-':
pr_info("%s: Removing slave %s\n", bond->dev->name, dev->name);
ret = bond_release(bond->dev, dev);
break;
default:
goto err_no_cmd;
}
out:
return ret;
err_no_cmd:
pr_err("no command found in slaves file for bond %s - use +ifname or -ifname\n",
bond->dev->name);
ret = -EPERM;
goto out;
}