linux/drivers/infiniband/hw/qib/qib_tx.c

573 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008, 2009, 2010 QLogic Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/moduleparam.h>
#include "qib.h"
static unsigned qib_hol_timeout_ms = 3000;
module_param_named(hol_timeout_ms, qib_hol_timeout_ms, uint, S_IRUGO);
MODULE_PARM_DESC(hol_timeout_ms,
"duration of user app suspension after link failure");
unsigned qib_sdma_fetch_arb = 1;
module_param_named(fetch_arb, qib_sdma_fetch_arb, uint, S_IRUGO);
MODULE_PARM_DESC(fetch_arb, "IBA7220: change SDMA descriptor arbitration");
/**
* qib_disarm_piobufs - cancel a range of PIO buffers
* @dd: the qlogic_ib device
* @first: the first PIO buffer to cancel
* @cnt: the number of PIO buffers to cancel
*
* Cancel a range of PIO buffers. Used at user process close,
* in case it died while writing to a PIO buffer.
*/
void qib_disarm_piobufs(struct qib_devdata *dd, unsigned first, unsigned cnt)
{
unsigned long flags;
unsigned i;
unsigned last;
last = first + cnt;
spin_lock_irqsave(&dd->pioavail_lock, flags);
for (i = first; i < last; i++) {
__clear_bit(i, dd->pio_need_disarm);
dd->f_sendctrl(dd->pport, QIB_SENDCTRL_DISARM_BUF(i));
}
spin_unlock_irqrestore(&dd->pioavail_lock, flags);
}
/*
* This is called by a user process when it sees the DISARM_BUFS event
* bit is set.
*/
int qib_disarm_piobufs_ifneeded(struct qib_ctxtdata *rcd)
{
struct qib_devdata *dd = rcd->dd;
unsigned i;
unsigned last;
unsigned n = 0;
last = rcd->pio_base + rcd->piocnt;
/*
* Don't need uctxt_lock here, since user has called in to us.
* Clear at start in case more interrupts set bits while we
* are disarming
*/
if (rcd->user_event_mask) {
/*
* subctxt_cnt is 0 if not shared, so do base
* separately, first, then remaining subctxt, if any
*/
clear_bit(_QIB_EVENT_DISARM_BUFS_BIT, &rcd->user_event_mask[0]);
for (i = 1; i < rcd->subctxt_cnt; i++)
clear_bit(_QIB_EVENT_DISARM_BUFS_BIT,
&rcd->user_event_mask[i]);
}
spin_lock_irq(&dd->pioavail_lock);
for (i = rcd->pio_base; i < last; i++) {
if (__test_and_clear_bit(i, dd->pio_need_disarm)) {
n++;
dd->f_sendctrl(rcd->ppd, QIB_SENDCTRL_DISARM_BUF(i));
}
}
spin_unlock_irq(&dd->pioavail_lock);
return 0;
}
static struct qib_pportdata *is_sdma_buf(struct qib_devdata *dd, unsigned i)
{
struct qib_pportdata *ppd;
unsigned pidx;
for (pidx = 0; pidx < dd->num_pports; pidx++) {
ppd = dd->pport + pidx;
if (i >= ppd->sdma_state.first_sendbuf &&
i < ppd->sdma_state.last_sendbuf)
return ppd;
}
return NULL;
}
/*
* Return true if send buffer is being used by a user context.
* Sets _QIB_EVENT_DISARM_BUFS_BIT in user_event_mask as a side effect
*/
static int find_ctxt(struct qib_devdata *dd, unsigned bufn)
{
struct qib_ctxtdata *rcd;
unsigned ctxt;
int ret = 0;
spin_lock(&dd->uctxt_lock);
for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; ctxt++) {
rcd = dd->rcd[ctxt];
if (!rcd || bufn < rcd->pio_base ||
bufn >= rcd->pio_base + rcd->piocnt)
continue;
if (rcd->user_event_mask) {
int i;
/*
* subctxt_cnt is 0 if not shared, so do base
* separately, first, then remaining subctxt, if any
*/
set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
&rcd->user_event_mask[0]);
for (i = 1; i < rcd->subctxt_cnt; i++)
set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
&rcd->user_event_mask[i]);
}
ret = 1;
break;
}
spin_unlock(&dd->uctxt_lock);
return ret;
}
/*
* Disarm a set of send buffers. If the buffer might be actively being
* written to, mark the buffer to be disarmed later when it is not being
* written to.
*
* This should only be called from the IRQ error handler.
*/
void qib_disarm_piobufs_set(struct qib_devdata *dd, unsigned long *mask,
unsigned cnt)
{
struct qib_pportdata *ppd, *pppd[QIB_MAX_IB_PORTS];
unsigned i;
unsigned long flags;
for (i = 0; i < dd->num_pports; i++)
pppd[i] = NULL;
for (i = 0; i < cnt; i++) {
int which;
if (!test_bit(i, mask))
continue;
/*
* If the buffer is owned by the DMA hardware,
* reset the DMA engine.
*/
ppd = is_sdma_buf(dd, i);
if (ppd) {
pppd[ppd->port] = ppd;
continue;
}
/*
* If the kernel is writing the buffer or the buffer is
* owned by a user process, we can't clear it yet.
*/
spin_lock_irqsave(&dd->pioavail_lock, flags);
if (test_bit(i, dd->pio_writing) ||
(!test_bit(i << 1, dd->pioavailkernel) &&
find_ctxt(dd, i))) {
__set_bit(i, dd->pio_need_disarm);
which = 0;
} else {
which = 1;
dd->f_sendctrl(dd->pport, QIB_SENDCTRL_DISARM_BUF(i));
}
spin_unlock_irqrestore(&dd->pioavail_lock, flags);
}
/* do cancel_sends once per port that had sdma piobufs in error */
for (i = 0; i < dd->num_pports; i++)
if (pppd[i])
qib_cancel_sends(pppd[i]);
}
/**
* update_send_bufs - update shadow copy of the PIO availability map
* @dd: the qlogic_ib device
*
* called whenever our local copy indicates we have run out of send buffers
*/
static void update_send_bufs(struct qib_devdata *dd)
{
unsigned long flags;
unsigned i;
const unsigned piobregs = dd->pioavregs;
/*
* If the generation (check) bits have changed, then we update the
* busy bit for the corresponding PIO buffer. This algorithm will
* modify positions to the value they already have in some cases
* (i.e., no change), but it's faster than changing only the bits
* that have changed.
*
* We would like to do this atomicly, to avoid spinlocks in the
* critical send path, but that's not really possible, given the
* type of changes, and that this routine could be called on
* multiple cpu's simultaneously, so we lock in this routine only,
* to avoid conflicting updates; all we change is the shadow, and
* it's a single 64 bit memory location, so by definition the update
* is atomic in terms of what other cpu's can see in testing the
* bits. The spin_lock overhead isn't too bad, since it only
* happens when all buffers are in use, so only cpu overhead, not
* latency or bandwidth is affected.
*/
if (!dd->pioavailregs_dma)
return;
spin_lock_irqsave(&dd->pioavail_lock, flags);
for (i = 0; i < piobregs; i++) {
u64 pchbusy, pchg, piov, pnew;
piov = le64_to_cpu(dd->pioavailregs_dma[i]);
pchg = dd->pioavailkernel[i] &
~(dd->pioavailshadow[i] ^ piov);
pchbusy = pchg << QLOGIC_IB_SENDPIOAVAIL_BUSY_SHIFT;
if (pchg && (pchbusy & dd->pioavailshadow[i])) {
pnew = dd->pioavailshadow[i] & ~pchbusy;
pnew |= piov & pchbusy;
dd->pioavailshadow[i] = pnew;
}
}
spin_unlock_irqrestore(&dd->pioavail_lock, flags);
}
/*
* Debugging code and stats updates if no pio buffers available.
*/
static noinline void no_send_bufs(struct qib_devdata *dd)
{
dd->upd_pio_shadow = 1;
/* not atomic, but if we lose a stat count in a while, that's OK */
qib_stats.sps_nopiobufs++;
}
/*
* Common code for normal driver send buffer allocation, and reserved
* allocation.
*
* Do appropriate marking as busy, etc.
* Returns buffer pointer if one is found, otherwise NULL.
*/
u32 __iomem *qib_getsendbuf_range(struct qib_devdata *dd, u32 *pbufnum,
u32 first, u32 last)
{
unsigned i, j, updated = 0;
unsigned nbufs;
unsigned long flags;
unsigned long *shadow = dd->pioavailshadow;
u32 __iomem *buf;
if (!(dd->flags & QIB_PRESENT))
return NULL;
nbufs = last - first + 1; /* number in range to check */
if (dd->upd_pio_shadow) {
update_shadow:
/*
* Minor optimization. If we had no buffers on last call,
* start out by doing the update; continue and do scan even
* if no buffers were updated, to be paranoid.
*/
update_send_bufs(dd);
updated++;
}
i = first;
/*
* While test_and_set_bit() is atomic, we do that and then the
* change_bit(), and the pair is not. See if this is the cause
* of the remaining armlaunch errors.
*/
spin_lock_irqsave(&dd->pioavail_lock, flags);
if (dd->last_pio >= first && dd->last_pio <= last)
i = dd->last_pio + 1;
if (!first)
/* adjust to min possible */
nbufs = last - dd->min_kernel_pio + 1;
for (j = 0; j < nbufs; j++, i++) {
if (i > last)
i = !first ? dd->min_kernel_pio : first;
if (__test_and_set_bit((2 * i) + 1, shadow))
continue;
/* flip generation bit */
__change_bit(2 * i, shadow);
/* remember that the buffer can be written to now */
__set_bit(i, dd->pio_writing);
if (!first && first != last) /* first == last on VL15, avoid */
dd->last_pio = i;
break;
}
spin_unlock_irqrestore(&dd->pioavail_lock, flags);
if (j == nbufs) {
if (!updated)
/*
* First time through; shadow exhausted, but may be
* buffers available, try an update and then rescan.
*/
goto update_shadow;
no_send_bufs(dd);
buf = NULL;
} else {
if (i < dd->piobcnt2k)
buf = (u32 __iomem *)(dd->pio2kbase +
i * dd->palign);
else if (i < dd->piobcnt2k + dd->piobcnt4k || !dd->piovl15base)
buf = (u32 __iomem *)(dd->pio4kbase +
(i - dd->piobcnt2k) * dd->align4k);
else
buf = (u32 __iomem *)(dd->piovl15base +
(i - (dd->piobcnt2k + dd->piobcnt4k)) *
dd->align4k);
if (pbufnum)
*pbufnum = i;
dd->upd_pio_shadow = 0;
}
return buf;
}
/*
* Record that the caller is finished writing to the buffer so we don't
* disarm it while it is being written and disarm it now if needed.
*/
void qib_sendbuf_done(struct qib_devdata *dd, unsigned n)
{
unsigned long flags;
spin_lock_irqsave(&dd->pioavail_lock, flags);
__clear_bit(n, dd->pio_writing);
if (__test_and_clear_bit(n, dd->pio_need_disarm))
dd->f_sendctrl(dd->pport, QIB_SENDCTRL_DISARM_BUF(n));
spin_unlock_irqrestore(&dd->pioavail_lock, flags);
}
/**
* qib_chg_pioavailkernel - change which send buffers are available for kernel
* @dd: the qlogic_ib device
* @start: the starting send buffer number
* @len: the number of send buffers
* @avail: true if the buffers are available for kernel use, false otherwise
*/
void qib_chg_pioavailkernel(struct qib_devdata *dd, unsigned start,
unsigned len, u32 avail, struct qib_ctxtdata *rcd)
{
unsigned long flags;
unsigned end;
unsigned ostart = start;
/* There are two bits per send buffer (busy and generation) */
start *= 2;
end = start + len * 2;
spin_lock_irqsave(&dd->pioavail_lock, flags);
/* Set or clear the busy bit in the shadow. */
while (start < end) {
if (avail) {
unsigned long dma;
int i;
/*
* The BUSY bit will never be set, because we disarm
* the user buffers before we hand them back to the
* kernel. We do have to make sure the generation
* bit is set correctly in shadow, since it could
* have changed many times while allocated to user.
* We can't use the bitmap functions on the full
* dma array because it is always little-endian, so
* we have to flip to host-order first.
* BITS_PER_LONG is slightly wrong, since it's
* always 64 bits per register in chip...
* We only work on 64 bit kernels, so that's OK.
*/
i = start / BITS_PER_LONG;
__clear_bit(QLOGIC_IB_SENDPIOAVAIL_BUSY_SHIFT + start,
dd->pioavailshadow);
dma = (unsigned long)
le64_to_cpu(dd->pioavailregs_dma[i]);
if (test_bit((QLOGIC_IB_SENDPIOAVAIL_CHECK_SHIFT +
start) % BITS_PER_LONG, &dma))
__set_bit(QLOGIC_IB_SENDPIOAVAIL_CHECK_SHIFT +
start, dd->pioavailshadow);
else
__clear_bit(QLOGIC_IB_SENDPIOAVAIL_CHECK_SHIFT
+ start, dd->pioavailshadow);
__set_bit(start, dd->pioavailkernel);
if ((start >> 1) < dd->min_kernel_pio)
dd->min_kernel_pio = start >> 1;
} else {
__set_bit(start + QLOGIC_IB_SENDPIOAVAIL_BUSY_SHIFT,
dd->pioavailshadow);
__clear_bit(start, dd->pioavailkernel);
if ((start >> 1) > dd->min_kernel_pio)
dd->min_kernel_pio = start >> 1;
}
start += 2;
}
if (dd->min_kernel_pio > 0 && dd->last_pio < dd->min_kernel_pio - 1)
dd->last_pio = dd->min_kernel_pio - 1;
spin_unlock_irqrestore(&dd->pioavail_lock, flags);
dd->f_txchk_change(dd, ostart, len, avail, rcd);
}
/*
* Flush all sends that might be in the ready to send state, as well as any
* that are in the process of being sent. Used whenever we need to be
* sure the send side is idle. Cleans up all buffer state by canceling
* all pio buffers, and issuing an abort, which cleans up anything in the
* launch fifo. The cancel is superfluous on some chip versions, but
* it's safer to always do it.
* PIOAvail bits are updated by the chip as if a normal send had happened.
*/
void qib_cancel_sends(struct qib_pportdata *ppd)
{
struct qib_devdata *dd = ppd->dd;
struct qib_ctxtdata *rcd;
unsigned long flags;
unsigned ctxt;
unsigned i;
unsigned last;
/*
* Tell PSM to disarm buffers again before trying to reuse them.
* We need to be sure the rcd doesn't change out from under us
* while we do so. We hold the two locks sequentially. We might
* needlessly set some need_disarm bits as a result, if the
* context is closed after we release the uctxt_lock, but that's
* fairly benign, and safer than nesting the locks.
*/
for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; ctxt++) {
spin_lock_irqsave(&dd->uctxt_lock, flags);
rcd = dd->rcd[ctxt];
if (rcd && rcd->ppd == ppd) {
last = rcd->pio_base + rcd->piocnt;
if (rcd->user_event_mask) {
/*
* subctxt_cnt is 0 if not shared, so do base
* separately, first, then remaining subctxt,
* if any
*/
set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
&rcd->user_event_mask[0]);
for (i = 1; i < rcd->subctxt_cnt; i++)
set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
&rcd->user_event_mask[i]);
}
i = rcd->pio_base;
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
spin_lock_irqsave(&dd->pioavail_lock, flags);
for (; i < last; i++)
__set_bit(i, dd->pio_need_disarm);
spin_unlock_irqrestore(&dd->pioavail_lock, flags);
} else
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
}
if (!(dd->flags & QIB_HAS_SEND_DMA))
dd->f_sendctrl(ppd, QIB_SENDCTRL_DISARM_ALL |
QIB_SENDCTRL_FLUSH);
}
/*
* Force an update of in-memory copy of the pioavail registers, when
* needed for any of a variety of reasons.
* If already off, this routine is a nop, on the assumption that the
* caller (or set of callers) will "do the right thing".
* This is a per-device operation, so just the first port.
*/
void qib_force_pio_avail_update(struct qib_devdata *dd)
{
dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP);
}
void qib_hol_down(struct qib_pportdata *ppd)
{
/*
* Cancel sends when the link goes DOWN so that we aren't doing it
* at INIT when we might be trying to send SMI packets.
*/
if (!(ppd->lflags & QIBL_IB_AUTONEG_INPROG))
qib_cancel_sends(ppd);
}
/*
* Link is at INIT.
* We start the HoL timer so we can detect stuck packets blocking SMP replies.
* Timer may already be running, so use mod_timer, not add_timer.
*/
void qib_hol_init(struct qib_pportdata *ppd)
{
if (ppd->hol_state != QIB_HOL_INIT) {
ppd->hol_state = QIB_HOL_INIT;
mod_timer(&ppd->hol_timer,
jiffies + msecs_to_jiffies(qib_hol_timeout_ms));
}
}
/*
* Link is up, continue any user processes, and ensure timer
* is a nop, if running. Let timer keep running, if set; it
* will nop when it sees the link is up.
*/
void qib_hol_up(struct qib_pportdata *ppd)
{
ppd->hol_state = QIB_HOL_UP;
}
/*
* This is only called via the timer.
*/
void qib_hol_event(unsigned long opaque)
{
struct qib_pportdata *ppd = (struct qib_pportdata *)opaque;
/* If hardware error, etc, skip. */
if (!(ppd->dd->flags & QIB_INITTED))
return;
if (ppd->hol_state != QIB_HOL_UP) {
/*
* Try to flush sends in case a stuck packet is blocking
* SMP replies.
*/
qib_hol_down(ppd);
mod_timer(&ppd->hol_timer,
jiffies + msecs_to_jiffies(qib_hol_timeout_ms));
}
}